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Abstract Defensins are a large family of genes that were first characterised as
encoding antimicrobial peptides, with a broad range of activity against viruses,
bacteria and fungi. It is clear, however, that at least in vertebrates, they have
acquired a variety of other roles in addition to direct antimicrobial activity,
including cell signalling, reproduction and mammalian coat colour. In this article,
we review the evolutionary history of the three types of defensins found in verte-
brates, namely a-, b- and h-defensins. We consider evolution at a deep timescale,
where a pattern of duplication and divergence emerges, consistent with
birth-and-death evolution. At a more recent timescale, we consider the evolutionary
genetics of defensins within species, particularly copy number variation which is
observed for many defensins across several lineages. The different functions of at
least some defensins in different evolutionary lineages raise some problems in
inferring function based on identification of a homologous gene in a different
species. However, defensins are also an excellent model for studying the evolution
of new functions following duplication and divergence of genes.

1 The Big Picture of Defensin Evolution

Defensins are a family of genes that encode small proteins defined by a shared
six-cysteine motif. These six cysteines form a distinct arrangement of three disul-
phide bridges in the mature tertiary structure and differ from a- and h-defensins by
the arrangement of these disulphide bridges (Fig. 1), which forms the basis for
classification of defensins into a, b and h. In b-defensins, Cys1 pairs with Cys5,
Cys3 links to Cys6 and Cys2 links to Cys4, in contrast to a-defensins where Cys1
links to Cys6 and Cys3 links to Cys5. They have been characterised in a wide
variety of vertebrates and were given the name defensins because of their antimi-
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crobial activity. Indeed, defensins are an important part of the innate immune
response, as they form part of the mucosal barrier against microbes. At the amino
acid sequence level, different human b-defensins are very distinct (Fig. 2). The
six-cysteine motif that defines a b-defensin is highly conserved, with only a glycine
and aspartic acid within the b-defensin core region also showing extensive con-
servation. This is also the general case for a-defensins, although not for the more
recently evolved h-defensins, as only one member of this family exists. This amino
acid diversity suggests that different b-defensins may have very diverse functions
both within and outside the innate immune response.

Fig. 1 Orientation of
disulphide bonds in defensins.
a and b Comparison of
disulphide pair orientations,
forming the highest-level
differentiation between
defensins. c Arrangement of
disulphide bonds between
cysteine residues in vertebrate
a-, b- and h-defensins.
Figure reproduced, with
modification, from Shafee
et al. (2017) with permission
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The extensive variation at the amino acid level, combined with the small size of
most defensins, limits our understanding of deep evolutionary relationships between
b-defensins and other members of the defensin family. However, comparison of
protein structures of defensins showed that all defensins, previously classified by
cysteine-bridging patterns, can in fact be divided into just two main groups (cis- and
trans-) based on their arrangement of the disulphide bridges in the three-dimensional
protein structure (Fig. 1). These two groups have distinct evolutionary origins yet
share a six-cysteine motif because of convergent evolution (Shafee et al. 2016).
Vertebrate b-defensins are a type of trans-defensin that share a distinctive protein
fold called the b-defensin fold (Fig. 3). Because a- and h-defensins have arisen and
diverged from b-defensins, they are also trans-defensins. Cis-defensins are present
broadly across eukaryotes, but, because no cis-defensins have yet been identified in
vertebrates, the origin and evolution of b-defensins in vertebrates may be a result of
this loss of cis-defensins (Shafee et al. 2016).

Fig. 3 Examples of vertebrate b-defensin structures. A variety of b-defensin protein structures,
highlighting the b-defensin fold. The disulphide bonds are shown in yellow, b-strands in cyan and
a-helices in red/yellow. Figure reproduced, with modification, from Torres and Kuchel (2004),
with permission
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In this review, we focus on defensins in vertebrates, aware that this is only part
of the field of defensin evolution. However most is known about the defensins in
vertebrates, particularly for the largest defensin family, the b-defensins, which have
also been the focus of our research. Because of the size of the b-defensin family (27
members in humans, compared to four a-defensin genes and no h-defensin genes),
and because b-defensins are ancestral to a and h, we also focus more on b-defensins
than others. It is also the case that a single review could not encompass the whole
field, and there are other excellent reviews elsewhere about other aspects of
defensin biology, which we cite in this review.

2 Function of Defensins

Defensins were first isolated and characterised as small antimicrobial peptides
expressed in neutrophils and at mucosal surfaces (Ganz et al. 1985; Diamond et al.
1991; Eisenhauer et al. 1990). In humans, a-defensins are expressed in the Paneth
cells of the intestine and neutrophils, while both a- and b-defensins are expressed
on a variety of mucosal surfaces. Mice lack a-defensins in neutrophils but express
a-defensins (also known as cryptdins) in Paneth cells and, together with
b-defensins, at mucosal surfaces. a-defensins play a key role in innate immune
defence. This key role is emphasised by the fact that a-defensins 1–3 (encoded by
DEFA1A3) comprise as much as 30–50% of human neutrophil granules (Rice et al.
1987), and a-defensin 5 (encoded by DEFA5) is active against Salmonella typhi-
murium in vivo (Salzman et al. 2003; Bevins 2013). Both a- and b-defensins have
been shown to have broad antimicrobial spectrum activity against bacteria, fungi
and viruses (Feng et al. 2005; Aerts et al. 2008; Chu et al. 2012; Raschig et al.
2017; Wilson et al. 2016; Wiens et al. 2014; Lehrer and Lu 2012; Taylor et al.
2008).

It soon was established that both a- and b-defensins had roles in immune sig-
nalling and at a concentration lower than that required for their antimicrobial effects
(Lehrer and Lu 2012; Semple and Dorin 2012). For example, a-defensins 1–3
chemoattract naive CD4+ T cells and immature dendritic cells to the site of
inflammation (Yang et al. 2000). Another example is human b-defensin 2, which
interacts with the CCR6 and CCR2 receptors and chemoattracts CD4+ memory T
cells and dendritic cells (Rohrl et al. 2010; Yang et al. 1999). It is clear that
although defensins mediate these effects via receptors, they may in fact be
promiscuous ligands that interact electrostatically with a wide variety of receptors
involved in the immune response (Suarez-Carmona et al. 2015; Semple and Dorin
2012). In this way, the interactions of defensins with the immune system may have
evolved early in vertebrate evolution as an effective way of co-opting an innate
antimicrobial response to become a signal to the adaptive immune system.

Despite the well-established role of b-defensins at the mucosal surface, it is
striking that most b-defensins are in fact expressed in the epididymis of the testis,
and for most of these, their precise function is unknown (Fig. 4) (Zhou et al. 2004;
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Dorin and Barratt 2014). All are annotated by databases as having direct antimi-
crobial activity, although for most this has not been directly demonstrated and is
only an assumption from the fact that they share a predicted six-cysteine motif and
are therefore identified by similarity to existing members of the b-defensin family.

In humans, b-defensin proteins are commonly referred to as hbds. The
b-defensins hbd-1 (encoded by the gene DEFB1) and hbd-2 (encoded by the gene

Fig. 4 b-defensin expression in humans across 16 tissues. Heatmap showing relative expression
levels from RNASeq data generated by the Illumina BodyMap 2.0 project. Legend shows heat
colour related to Fragments Per Kilobase of transcript per Million mapped reads (FPKM). Note the
absence of skin tissue, and the predominance of testes expression of most human b-defensins
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DEFB4) were isolated first, and most research effort has focused on these. Other
genes predicted to encode b-defensins were identified by genome sequence search
strategies (Schutte et al. 2002). A total of 33 b-defensin genes that are transcribed
and predicted to generate proteins have been identified in humans. They are
comprised of a signal sequence (except DEFB112 which lacks a signal consensus
cleavage site), a core b-defensin region, and some have an extended C-terminal
sequence. Some b-defensins have been shown to undergo further proteolytic pro-
cessing after signal sequence cleavage.

Mice carrying deletions of one or several b-defensin genes are now illuminating
the function of these proteins beyond their direct antimicrobial activity. A key
finding is that a knockout of nine b-defensins renders male mice infertile, sup-
porting a key role of b-defensins in reproduction, previously suggested by the fact
that many b-defensins are expressed solely in the epididymis (Dorin 2015; Zhou
et al. 2013). The importance of b-defensins in fertility is underlined by work on
DEFB126 in humans and rhesus macaques. This has shown that DEFB126 protein
is highly glycosylated and is adsorbed on to the surface of sperm during movement
through the epididymis (Tollner et al. 2008a; Yudin et al. 2005). DEFB126 may
facilitate penetration of negative cervical mucus and protect the sperm against
immune recognition in the female during transit (Tollner et al. 2008b). DEFB126 is
subsequently shed in the oviduct allowing normal fertilisation to occur (Tollner
et al. 2011, 2012). An important role for DEFB126 in sperm motility has also been
shown in cattle (Fernandez-Fuertes et al. 2016).

Only one h-defensin (also known as retrocyclin) is known, encoded by the
DEFT1 gene, identified in rhesus macaques but a non-functioning pseudogene in
humans (Nguyen et al. 2003). The structure is very different from other defensins
and involves head-to-tail ligation of two nine-amino acid peptides to form a circular
molecule (Tang et al. 1999; Lehrer et al. 2012). The antimicrobial effects of this
molecule are well characterised (Gallo et al. 2006; Wang et al. 2006; Beringer et al.
2016), but it is not known whether it has any other function, such as acting as a
chemokine.

3 Rapid Evolution of b-Defensins

The human b-defensins are rather distinct from each other at the amino acid level,
and clear orthologues of human b-defensins can be identified in primate genomes,
arguing against very recent (i.e. within the primates) rapid duplication and diver-
gence across the whole family but suggesting older origins for most of the
b-defensins seen in humans today (Fig. 2). Most human b-defensins have clear
orthologues not just in primates but in other mammals as well.

In primates, the strongest evidence for selection is on the b-defensins that are
involved in reproduction. An early study showed some evidence in the vervet
monkey (Cercopithicus aethiops) for positive selection of DEFB107 and
DEFB108, both genes expressed in the epididymis (Semple et al. 2003). A later
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study identified four other b-defensin genes that are expressed in the epididymis
showing evidence of positive selection by likelihood-based substitution rate anal-
ysis in catarrhine primates (DEFB118, DEFB120, DEFB127, DEFB132) (Hollox
and Armour 2008). However, one antimicrobial b-defensin, DEFB1, showed evi-
dence of positive selection in this study, and population genetic analysis in humans
suggested that balancing selection is operating on this gene (Cagliani et al. 2008).
This has also been suggested for DEFB127, raising the possibility of ongoing
episodes of balancing selection and positive selection, depending on the selective
environment (Hollox and Armour 2008).

In humans and other primates, the b-defensins on chromosome region 8p23.1
(with the exception of DEFB1) are in a complex repeated region that is polymor-
phically duplicated and show extensive copy number variation (see section below).
This can potentially limit comparative analyses as the region tends to be poorly
represented in genome assemblies and recombination between paralogues can affect
potential signals of positive selection. This complex region includes some
b-defensin genes that have expanded in copy number in the orangutan lineage only
(DEFB130, DEFB134, DEFB135, DEFB136) (Mohajeri et al. 2016).

Some particular b-defensins have undergone repeated rounds of duplication and
divergence, particularly in rodents (Morrison et al. 2003). Analysis of rodent
genomes showed a number of genes that were very similar to each other, suggesting
recent duplication and divergence. For example, the mouse Defb4 gene has
repeatedly duplicated to generate five paralogues (Defb3, Defb5, Defb6, Defb7 and
Defb8) clustered together in the genome. The rodent-specific clades show evidence
of positive selection using likelihood-based models identifying increased
non-synonymous substitution rates at particular amino acid residues. The selected
residues occur throughout the protein, and also, surprisingly, within the prepro-
protein region which is usually cleaved intracellularly before export of the mature
b-defensin from the cell (Morrison et al. 2003; Maxwell et al. 2003).

This rapid duplication and divergence of defensins in rodents initially led to
some uncertainty in identifying the true orthologue of some human genes and
because of this uncertainty, most defensin genes in humans and mice were named
independently and orthologous relationships established afterwards. Mouse defen-
sins are named Defbx, where x is a number that usually reflects the order of
discovery in mice, and most human b-defensin genes are named DEFBx where x
either reflects the order of discovery in humans or is a number starting at 103. The
analysis of complete genomes of mouse and humans has established orthologous
pairs by using synteny as well as sequence similarity (Table 1; Patil et al. 2005).

A large study of avian defensins from 53 species of birds showed particular
amino acid residues under positive selection. The degree of positive selection varies
across the different b-defensin genes, and the position of the selected residues is
difficult to interpret, being spread across the mature peptide and preproprotein,
although there was a suggestion that residues flanking the conserved cysteine
residues were more likely to be subject to positive selection (Cheng et al. 2015).

Population genetic analysis of a single species can give evolutionary insights of
a more recent timescale compared to comparative analysis across different species.
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A study of wild mallards (Anas platyrhynchos) showed strong evidence for negative
selection, with some evidence of balancing selection at certain genes. This
emphasises the fact that by looking at different timescales of evolution, different
patterns emerge—because of the changing environment, a gene that was subject to
positive selection in the past may not be subject to positive selection now and vice
versa (Chapman et al. 2016). In contrast, population genetic analysis of the
domestic dog DEFB103 variant encoding the coat colour allele dominant black
(Candille et al. 2007) indicates recent positive selection where it has been intro-
duced into wild wolves by hybridisation (Anderson et al. 2009). The melanism

Table 1 Known mouse orthologues of human b-defensin genes

Human chromosomal
region

Human
gene

Known Mouse
orthologue(s)

Mouse chromosomal
region

8p23.1 DEFB1 Defb1 8qA1.3-A2

8p23.1 DEFB4 Defb4 familya 8qA1.3-A2

8p23.1 DEFB103 Defb14 8qA1.3-A2

8p23.1 DEFB105 Defb12/Defb35 8qA1.3-A2

8p23.1 DEFB106 Defb15/Defb34 8qA1.3-A2

8p23.1 DEFB107 Defb13 8qA1.3-A2

8p23.1 DEFB109 Defb42 14qC3

6p12.3 DEFB110 Defb16 1qA3

6p12.3 DEFB112 Defb17 1qA3

6p12.3 DEFB113 Defb18 1qA3

20q11.21 DEFB115 Defb28 2qH1

20q11.21 DEFB116 Defb29 2qH1

20q11.21 DEFB117 Defb19 2qH1

20q11.21 DEFB118 Defb21 2qH1

20q11.21 DEFB119 Defb24 2qH1

20q11.21 DEFB122 Defb27 2qH1

20q11.21 DEFB123 Defb36 2qH1

20q11.21 DEFB124 Defb25 2qH1

20p13 DEFB125 Defb26 2qH1

20p13 DEFB126 Defb22 2qH1

20p13 DEFB128 Defb20 2qH1

20p13 DEFB129 Defb23 2qH1

8p23.1 DEFB130 Defb41 14qC3

8p23.1b DEFB131 Defb43 14qC3

6p12.3 DEFB133 Defb49 1qA3

8p23.1 DEFB135 Defb30 14qC3

8p23.1 DEFB136 Defb44 14qC3

Based on Zhou et al. (2013) and Patil et al. (2005)
aDefb4, Defb3, Defb5, Defb6, Defb7 and Defb8, see text
bAnnotated only on a duplication on chr4

Evolution and Diversity of Defensins in Vertebrates 35



variant has risen to high frequency in forested areas, where it has a camouflage
advantage for the predator in pursuit of prey. Alternatively, this polymorphism may
be maintained by negative assortative mating (Hedrick et al. 2016).

Analysis of the platypus (Ornithoryhnchus anatinus) genome has identified a
b-defensin family (Ornithorhynchus venom defensin-like peptides, OvDLPs) that
has been subject to rapid duplication and divergence (Whittington et al. 2008a, b).
This duplication and divergence process started *190 million years ago, probably
from a common ancestor with mouse Defb33. OvDLPs have a role in the venom of
the male platypus, which is produced by a hollow spur on the hind leg of males and
is thought to be involved in asserting dominance over other males in the breeding
season. Other venomous non-mammalian vertebrates have b-defensin-derived
peptides in their venom. For example, crotamines and venom crotamine-like pep-
tides (vCLPs) have arisen from b-defensins (Yount et al. 2009). Snake venom
crotamines have arisen by duplication and divergence from an ancestor of mouse
Defb51 (Whittington et al. 2008a). This evidence shows that vCLPs have arisen
independently from the platypus OvDLPs, showing evidence of convergent evo-
lution of function.

The example of defensin-like peptides in venom illustrates a couple of important
points in defensin evolution. Firstly, rapid sequence changes are a signature of
adaptive evolution, and the adaptive evolution results in a change of function. For
defensins, the change of function was often interpreted to reflect a change in
microbial specificity, reflecting a host–pathogen co-evolutionary arms race.
However, it is clear that defensins can evolve to have different functions and may
often have two physiological roles at the same time. Therefore, bursts of adaptive
evolution may reflect dramatic changes in function, and that a b-defensin in one
organism may not necessarily be performing the same role as a defensin in another
organism (i.e. be homologous) even if the gene is orthologous. Secondly, mouse
Defb33 shares the most recent common ancestor with OvDLPs, and mouse Defb51
shares the most recent common ancestor with vCLPs, but neither Defb33 nor
Defb51 have an orthologue in humans. This shows that b-defensins are lost by
pseudogenisation or deletion in lineages, as well as gained by duplication and
divergence, in a process known as birth-and-death evolution (Nei and Rooney
2005). However, the full extent of this is unknown, as absence of particular
b-defensins from non-humans or non-mouse genomes may be due to incomplete
genome assembly of complex repeated regions rich in defensin genes, rather than a
true loss of a gene in a lineage.

4 Rapid Evolution of a- and h-Defensins

a-defensins are unique to mammals, as no examples have yet been found in
non-mammalian vertebrates, and have rapidly duplicated and diverged in different
mammalian lineages leading to different a-defensin repertoires in different mam-
malian clades. There is evidence of gene loss—for example, in mice, in contrast to
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rats, there appear to be no neutrophil a-defensins (Eisenhauer and Lehrer 1992). In
humans, there are six functional a-defensins and six a-defensin pseudogenes. The
functional a-defensins are enteric (DEFA5, DEFA6) or neutrophil-specific (DEFA4
and DEFA1A3 encoding a defensins 1–4). DEFA1A3 shows extensive polymorphic
copy number variation (CNV) as it is a coding gene entirely within a tandem repeat
with a 19 kb repeat size with diploid copy numbers ranging from 4 to 10. Next to
the 19 kb tandem repeat is a partial repeat which also carries a copy of the
DEFA1A3 gene (Aldred et al. 2005; Khan et al. 2013). Different copies of the
repeat encode either DEFA1 or DEFA3, which differ only by a single nucleotide
base and encoded amino acid. DEFA2 is thought to derive from the DEFA1 gene by
proteolytic processing of the peptide removing an extra N-terminal amino acid. The
human pseudogenes are named DEFA7P-DEFA11P (Li et al. 2014).

There is a similar ratio of genes to pseudogenes across other catarrhine primates,
but in the marmoset, there appears to be fewer pseudogenes, although this could be an
artefact of poor genome assembly. A comparative analysis of a-defensin sequences
strongly suggests extensive positive selection throughout the mature peptide (Lynn
et al. 2004; Patil et al. 2004; Das et al. 2010), and the high number of pseudogenes
suggests rapid birth-and-death evolution. Expression patterns of a-defensins can also
evolve, as rabbits appear to have two kidney-specific a-defensins in a clade.
h-defensin, encoded by the DEFT1 gene, is related to a-defensins (Tang et al. 1999).
It is catarrhine-primate specific, having been initially identified in Macaca mulatta
(rhesus macaque), but the DEFT1 gene has become a pseudogene in the hominid
lineage, including humans (Nguyen et al. 2003).

In summary, a-defensins evolved from one, perhaps two unidentified ancestral
b-defensins in the mammalian lineage, an expansion that appears to have been
triggered by an alteration in the disulphide bridge formation pattern and a conse-
quent change in structure (Patil et al. 2004). Subsequently, in catarrhine primates,
an a-defensin was truncated and became DEFT1, which encodes a small peptide
which is self-ligated into a circular structure forming a h-defensin called retrocyclin.
In hominids, DEFT1 acquired an inactivating mutation becoming the pseudogene
DEFT1P (Nguyen et al. 2003; Li et al. 2014; Cheng et al. 2014), illustrating the
process of birth-and-death evolution across a *25-million-year time span from the
divergence of platyrrhine and catarrhine primates to the divergence of human and
gorilla lineages.

5 Copy Number Variation of a-Defensins

In humans, DEFA1A3 and DEFT1P are on a 19 kb tandem repeat that is copy
number variable, as described in the previous section. This CNV is shared with
chimpanzees, bonobos and orangutans, but not with gorillas (Sudmant et al. 2013).
It is unclear whether this pattern is due to loss of CNV in the gorilla lineage or
independent evolution of CNV in the human–chimpanzee ancestor and in the
orangutan lineage.
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There is evidence of non-allelic homologous recombination events causing copy
number changes at the DEFA1A3 locus, but the high linkage disequilibrium of SNP
alleles flanking the CNV suggests that alternative mechanisms, like gene conver-
sion, account for the majority of copy number mutation events. Gene conversion
events homogenise sequence repeats, which will prevent sequence divergence of
different copies of the DEFA1A3 gene. Indeed, the sequence variant which specifies
the DEFA3 protein (in contrast to the DEFA1 protein) can exist at either the distal
or proximal end of the repeat, suggesting extensive shuffling of sequence between
the repeat units by gene conversion (Black et al. 2014).

6 Copy Number Variation of b-Defensins

A notable feature of b-defensin gene clusters is that they often show extensive gen-
ome structural variation, particularly CNV, within a species. Analyses of CNV have
identified variable regions containing b-defensins in humans (Conrad et al. 2009;
Sudmant et al. 2015), cattle (Liu et al. 2010; Bickhart et al. 2012), dogs (Leonard et al.
2012), pigs (Wang et al. 2013), rhesus macaque (Lee et al. 2008; Gokcumen et al.
2011) and chickens (Lee et al. 2016).

The human CNV is the most studied of all the CNVs involving b-defensins. It
involves a repeat unit of 322 kb in length (called DEFB), with six b-defensin genes
(DEFB4, DEFB103, DEFB104, DEFB105, DEFB106 and DEFB107) and
SPAG11, a b-defensin-related gene (Ottolini et al. 2014; Forni et al. 2015). In the
latest genome assembly, two copies of DEFB are embedded within a complex
repeated region called REPD at chromosomal region 8p23.1. However, genetic
mapping has shown that DEFB can also be present, polymorphically, at a related
complex repeat region called REPP, *4 Mb proximal to REPD (Abu Bakar et al.
2009; Mohajeri et al. 2016). Total diploid copy number can range from 1 copy per
diploid genome to 12, with copy number between 2 and 7 frequent in the popu-
lation, and a diploid copy number of 4 being modal. High copy numbers due to
tandemly arranged DEFB repeats on one homologous chromosome are visible
directly using G-band staining of metaphase chromosomes, are called 8p23.1
euchromatic variants, and can be mistaken for pathological duplications of the
entire region between REPP and REPD (Hollox et al. 2003; Barber et al. 2005).
Copy number variation of DEFB is not pathological, but increased copy number of
DEFB is associated with an increased risk of the inflammatory skin disease pso-
riasis (Hollox et al. 2008; Stuart et al. 2012).

Because of the unusual arrangement of DEFB repeats on chromosome 8, allelic
recombination anywhere between REPP and REPD can potentially change the copy
number of a particular haplotype. For example, if a meiotic crossover happened
between a 1–1 chromosome (1 copy at REPD and 1 copy at REPP) and a 2–0
chromosome, then the resulting gametes would be 2–1 and 1–0. Measuring the copy
number changes in human pedigrees established the copy number mutation rate to be
around 0.7% per gamete per generation, which is between 5 and 6 orders of
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magnitude faster than single nucleotide substitution rates (Abu Bakar et al. 2009),
and is comparable with mutation rates at tandemly repeated minisatellite loci.

DEFB is also variable in copy number in chimpanzees (Pan troglodytes) and
bonobos (Pan paniscus) but not in gorilla or orangutan, suggesting that this CNV
arose 7–10 million years ago after the divergence of the human lineage with
gorillas, but prior to the divergence of humans and chimpanzees (Sudmant et al.
2013; Pala 2012). In rhesus macaques, the genes present on the DEFB repeat in
humans are all single copy and do not show CNV, with the exception of the DEFB4
gene (termed DEFB2L in macaques). This gene is on a tandemly repeated 20 kb
repeat unit in rhesus macaques which varies between 3 and 6 copies per diploid
genome (Fig. 5). The duplication that has been maintained as a CNV arose at least
3MYa and shows a signature of positive selection following that duplication event
when the substitution pattern between DEFB2L copies is analysed by a McDonald–
Kreitman test (Ottolini et al. 2014).

7 Is Copy Number Variation Adaptive?

Mutation rate clearly evolves to a particular value, as evolved genomes must have
had a mutation rate fast enough to generate that particular evolved genome yet slow
enough to prevent a fatal accumulation of deleterious mutations. It is also possible
that certain loci (sometimes called “contingency loci”) may have higher mutation
rates—be more “evolvable”—because genomes carrying these high mutation rate
loci are more likely to be carrying a beneficial variant (Sniegowski et al. 2000). This
would be an example of second-order selection, where the rapidly mutating CNV
does not affect the fitness of its carriers but affects the fitness of its descendants
(Yona et al. 2015). Such a high CNV mutation rate locus might be more likely to
evolve if any deleterious effects of CNV mutation at that locus are low—a low-risk
high-gain strategy.

DEFB107

DEFB105

DEFB106

DEFB104

DEFB103

DEFB4

human

macaque 20 kb CNV

322 kb CNV

LTR5A-ERVK LTR5A-ERVK

LTR65-ERV1 LTR65-ERV1

Fig. 5 Comparison between macaque and human b-defensin CNV. A cartoon showing the
relative extents of the copy number variable region (shaded in blue) in humans and in the rhesus
macaque. Genes are shown as yellow boxes, and the retroviral repeat elements at the boundaries of
the CNV regions are also highlighted
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Most modern population genetic methods to test for selection cannot easily be
applied to complex CNV regions, like the b-defensin region in humans. Simple
population genetic models, such as those using the stepwise mutation model, often
do not fully integrate sequence variation between copies into the evolutionary
model. Some attempts have been made to model CNV using coalescent approaches
(Teshima and Innan 2012; Thornton 2007), but they often require an oversimpli-
fication of reality, particularly for multiallelic variants. Forward-in-time population
genetic simulations are more flexible and may provide a more appropriate frame-
work for examining the population genetics of complex CNV, but are computa-
tionally intensive. Almost all approaches require that the copy number and
sequence variation of an individual are phased into individual haplotypes, which are
still technically challenging. At present, this can be done most reliably by observing
segregation of individual alleles in a pedigree (Palta et al. 2015) or by PCR methods
designed to phase individual variants across tens of kb (Tyson and Armour 2017).
When application of long-read sequencing technology, such as that provided by
Pacific Biosystems or Oxford Nanopore, becomes routine for vertebrate genomes,
phasing of complex CNV should become more straightforward (Buermans et al.
2017).

Nevertheless, CNV-aware comparative approaches across species and popula-
tion genetic approaches within species can allow us to infer some aspects of the
evolution of b-defensin CNV. The observation that b-defensin CNV has originated
independently in both the macaque lineage and the human lineage is evidence of
convergent evolution at the molecular level (Fig. 6). This argues that CNV itself
has been favoured, at least for DEFB4, the gene that is copy number variable in
humans and macaques. In humans, other defensin genes are on the CNV block, and
this could either be adaptive or they could be bystanders in the CNV, with neutral
or mildly deleterious consequences at high copy number, for example.

Could there be deleterious effects of high copy number at the b-defensin locus? In
humans, the CNV repeat units can sponsor rare 3.6 Mb deletions in 8p23.1 which
cause developmental delay (Mohajeri et al. 2016). We might predict that since larger
regions of sequence identity are more prone to pathogenic NAHR mutations, there
would be a positive relationship between b-defensin copy number and likelihood of
a de novo pathogenic deletion involving these repeats, but at present, there is no
evidence to support this. Furthermore, individuals carrying chromosomes with high
b-defensin copy numbers (10–11 on one chromosome, diploid copy number of 12 or
13) are 8p23.1 euchromatic variant carriers and show no clinical pathology (Barber
et al. 1998; Hollox et al. 2003). It is possible that an upper limit is placed on the
DEFB copy number because high copy number chromosomes are more susceptible
to genomic rearrangements, but this has not been shown.

At the lower end of the copy number distribution, deletion of the entire CNV
region (0 copy allele) has been observed in heterozygous form (individuals with a
diploid copy number of 1), but never in homozygous form. An estimate of the
frequency of such a complete deletion allele is less than 1% in Europeans (Table 2),
with a predicted homozygote frequency of 0.01%. At this low frequency, the
expected number of 0 copy individuals in a sample size of over 20,000 northern
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European individuals is two, so the observed absence of these individuals is con-
sistent with sampling effects (Fisher’s exact test, p = 0.25). Therefore, we have no
evidence at present for deleterious effects of the 0 copy allele shown by selection
against zero copy number individuals.

If the CNV really is adaptive in humans, could this be an example of duplication
and divergence of coding sequences of b-defensins between copies? Evidence
against this comes from firstly from comparative analyses across primates of the
CNV genes, which show that negative selection has conserved the coding sequence
of these genes, and there is no strong evidence for positive selection (Hollox and
Armour 2008). Secondly, analysis of the coding sequences within the human
population from exome sequencing data generated by the 1000 Genomes project
shows that non-synonymous substitutions are rare, but enriched at low frequencies
compared to synonymous substitutions, a hallmark of ongoing negative selection at
the coding sequence level (Forni et al. 2015). However, analysis of non-coding
variation shows that there is divergence between copies upstream of DEFB103,
which has been shown to result in functional differences in expression level and
differences in response to interferon-gamma (Hardwick et al. 2011).

Nevertheless, the evidence supports the fact that across all copies of the
b-defensin genes in the CNV, the coding sequences are the same, and variation in
the copy number of the gene could potentially alter the expression levels of the
same gene. There is good evidence that b-defensin gene CNV alters levels of the
mRNA (Hollox et al. 2003; Janssens et al. 2010) and also of the protein, at least for
DEFB4 and its protein product hbd2. This relationship between gene dosage and
protein expression has been shown in the serum of 70 healthy volunteers from the
Netherlands (Jansen et al. 2009), and 91 healthy volunteers and 136 volunteers with
chronic periodontitis from Germany (Jaradat et al. 2013). The genetic association

Speciation Speciation

Prediction: duplication will have the same
breakpoint in different species

Prediction: duplication will have the same
size in different species

Species 1 Species 1Species 2 Species 2

Prediction: duplication likely to have different
breakpoints in different species

Prediction: duplication likely to be different
sizes in different species

Recurrent mutation due to genome structure
Recurrent mutation independently occurs and 

variation maintained (convergent evolution)

Fig. 6 Two models of CNV evolution across species. The first model shows recurrent generation
of CNV due to a shared genomic structure that predisposes to formation of a particular CNV
within the region (Fawcett and Innan model, Fawcett and Innan 2013). The second model shows
convergent evolution: CNV occurring independently across a genomic region between different
lineages and maintained
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between b-defensin copy number and psoriasis suggests a functional link between
b-defensin copy number and inflammation, perhaps through variation in epidermal
signalling to T cells.

We have recently shown that variation of the CNV and resulting hbd-2 variation
affects antimicrobial killing activity, at least in the mucosa of the vagina and
possibly elsewhere (James et al. 2017). This provides a direct link between DEFB4
CNV and a phenotype, antimicrobial killing, that is or has been potentially under
natural selection. It seems most likely, therefore, that variation in antimicrobial
killing activity and/or immune signalling activity provides the phenotypic variation
for selection at this CNV.

8 Summary: From Antimicrobial Peptide
to “Jack of All Trades”?

Defensins were first characterised as antimicrobial proteins, and this function
continues to interest evolutionary biologists examining the evolution of the family
for signatures of natural selection. Indeed, particular defensin clades show strong
evidence of duplication and rapid divergence characteristic of natural selection
acting on the gene sequences. Any signatures observed are often interpreted in the
context of the protein evolving to adapt to a changing microbiota, and that this
divergence and duplication is the result of an evolutionary arms race—sometimes
characterised as a “red queen” model.

Table 2 b-defensin diploid copy number and allele frequency counts in northern Europeans

Copy number Observed diploid copy number counts Allele frequency

0 0 0.009

1 45 0.146

2 691 0.568

3 3477 0.233

4 8171 0.041

5 5710 0.001

6 2115 0.003

7 433 0

8 106 0

9+ 36 0

total 20,784 1.001

Data from Abujaber et al. (2017), Wain et al. (2014), Aldhous et al. (2010), Fode et al. (2011),
Hardwick et al. (2011), Stuart et al. (2012) and unpublished data from our laboratory. Allele
frequency and estimated counts using the software CNVice, implemented in the statistical
language R (Zuccherato et al. 2017). The CNVice analysis used 1000 repetitions, and 90% of
repetitions supported the frequencies shown
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However, functional analysis of defensins in vertebrates, particularly
b-defensins, has highlighted that these proteins can have many different functions.
For some functions, such as signalling, a model of co-option makes most sense—a
b-defensin whose expression is triggered by an infection can be co-opted as a signal
to other cells that an infection is occurring, if an interaction with an appropriate
receptor can evolve. Several functions, such as the role of b-defensins in hair colour
and reproduction, are more difficult to explain in this way and instead point to
complete changes in function. It is still the case that the majority of defensins have
no demonstrated function and are annotated as antimicrobial in databases only
because they are identified as a defensin, and it is likely that, in certain species,
certain defensins will have new, unexpected, functions.

Together with the fact that selection signals in defensins seem to vary between
genes and organisms, a simple unifying model of host–pathogen evolutionary arms
race may not be appropriate, and different evolutionary pressures at different times
are likely to explain the diversity of defensins seen in vertebrates today. It is not
possible to distinguish, for example, duplication and divergence driven by an
evolutionary arms race against bacteria with a similar pattern of natural selection
due to a defensin acquiring a new function. Reconstruction of ancestral defensins is
an approach that could dissect the evolution of a defensin’s interaction with a
receptor, but this approach is problematic when analysing evolution against bac-
teria, as the species and diversity of bacteria at distant points in the evolutionary
past are not known.

Carefully determining the variation of defensins within species, with the
awareness that defensins can be in regions that are poorly assembled and may be
missing particular genes, is useful for evolutionary inference. Comparative analysis
of this variation, for example the nature and extent of CNV across species, suggests
that some variation is not present simply as a transitory phase of gene duplication
and divergence but has itself been subject to natural selection.

Taken together, we believe there is much more to discover in the field of
defensins. In particular, we urge evolutionary thinking for functional studies of
defensins and functional thinking for evolutionary studies of defensins. A more
interdisciplinary approach will yield important insights for defensin function and
evolution alike.
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