
An Analysis of Selectional Restrictions
with Dependent Type Semantics

Eriko Kinoshita1(B), Koji Mineshima1,2, and Daisuke Bekki1,2

1 Ochanomizu University, Bunkyō, Japan
kinoshita.eriko@is.ocha.ac.jp

2 CREST, Japan Science and Technology Agency, Kawaguchi, Japan

Abstract. Predicates in natural languages impose selectional restric-
tions on their arguments. In this paper, we analyze selectional restric-
tions of predicates within the framework of Dependent Type Semantics,
a framework of natural language semantics based on dependent type the-
ory. We also introduce operators that shift the meanings of predicates
and analyze two phenomena, coercion and copredication for logical pol-
ysemous nouns, that present challenges to simple analysis of selectional
restrictions.

1 Introduction

Predicates in natural languages impose selectional restrictions on their argu-
ments. For example, the transitive verb marry expects its subject and object
to be expressions that denote humans. Thus, from the utterance of (1), we can
infer that Bob and Ann are both human.

(1) Bob married Ann.

One potential way to explain this inference is to treat selectional restrictions of
predicates as entailment. According to this analysis, the verb marry is assigned
the meaning in (2a) and the whole sentence in (1) has the interpretation in (2b).

(2) a. λyλx.marry(x, y) ∧ human(x) ∧ human(y)

b. marry(bob, ann) ∧ human(bob) ∧ human(ann)

A problem with this analysis is that it cannot handle the inference in (3).

(3) Bob didn’t marry Ann. ⇒ Bob and Ann are human.

From the negation of (1), one can also infer that Bob and Ann are human. If
selectional restrictions of predicates were part of entailment, we would assign
the interpretation (4) to the negative sentence in (3). This does not account for
the inference in (3).

(4) ¬(marry(bob, ann) ∧ human(bob) ∧ human(ann))

c© Springer International Publishing AG 2017
S. Kurahashi et al. (Eds.): JSAI-isAI 2016, LNAI 10247, pp. 19–32, 2017.
DOI: 10.1007/978-3-319-61572-1 2

20 E. Kinoshita et al.

In general, the contents of selectional restrictions project out of the scope of
negation, modals, and conditionals (Asher [2], Magidor [7]). This is a common
feature of inferences known as presupposition projection (see, e.g., Beaver [3] for
an overview).

The goal of this paper is to propose an analysis that treats selectional
restrictions as presupposition within the framework of Dependent Type Seman-
tics (DTS; Bekki [4], Bekki and Mineshima [5]). Using this framework, we also
present a formal analysis of two lexical phenomena related to selectional restric-
tion, namely, coercion and copredication for logical polysemy.

2 Selectional Restriction: Types vs. Predicates

Although the presuppositional analysis of selectional restriction goes back at
least as far as McCawley [9], it seems fair to say that its precise formulation has
been mostly neglected in the simply typed setting of standard formal semantics,
where only e (entity) and t (truth-value) are taken as base types.

Recently, some proposals in the literature have suggested ways to handle
selectional restrictions with extended type-theoretic frameworks (Asher [1], Luo
[6], Retoré [11]). There are two possible approaches here. One is to represent
selectional restrictions as types; as two examples, using animate and human
as base types, one can assign a type animate → prop to the predicate cry
and human → human → prop to the predicate marry. According to this
approach, violation of a selectional restriction is to be treated as a type mismatch.
One problem with this approach is the problem of subtyping. That is, to combine
the predicate cry of type animate → prop with the term john of type human,
one needs a subtyping relation human < animate and extra subtyping rules
(cf. Luo [6], Retoré [11]). One drawback is that with additional subtyping rules,
the resulting compositional semantics becomes complicated.

Alternatively, one can preserve the base type for entities and represent selec-
tional restrictions as predicates over entities. This view seems to be underdevel-
oped, but it has the advantage that it can dispense with subtyping and preserve
the clear, well-understood conception of syntax-semantics mapping. Our theory
is based on this second approach.

3 Dependent Type Semantics

The main challenge here is how to provide a presuppositional analysis of selec-
tional restrictions combined with the selectional-restriction-as-predicate view.
We use DTS (Bekki [4], Bekki and Mineshima [5]) as a theoretical framework,
which provides two crucial tools: dependent types (which are a generalization of
simple types) and underspecified terms. DTS is a proof-theoretic semantics of
natural language based on dependent type theory (Martin-Löf [8]). It character-
izes the meaning of a sentence from the perspective of inferences.

DTS uses two kinds of dependent types.

An Analysis of Selectional Restrictions with Dependent Type Semantics 21

(i) Π-type (dependent function type), written as (x : A) → B, is a generalized
form of a function type A → B; a term of type (x : A) → B is a function f
that takes a term a of type A and returns a term f(a) of type B(a).

(ii) Σ-type (dependent product type), written as (x : A) × B or
[
x : A
B

]
, is a

generalized form of a product type A×B; a term of type (x : A)×B is a pair
(t, u) such that t is of type A and u is of type B(t). The projection operators
π1 and π2 are defined in such a way that π1(t, u) = t and π2(t, u) = u.

Under the so-called propositions-as-types principle (Martin-Löf [8]), types
and propositions are identified; a term t having type A (i.e., t : A) serves as a
proof term for the proposition A.

In the dependently typed setting, Π-type and Σ-type correspond to universal
and existential quantifiers, respectively. For example, in DTS, the sentence in
(5a) is given the semantic representation (SR) in (5b):

(5) a. Every man entered.

b.
(

u :
[

x : entity
man(x)

])
→ enter(π1(u))

The term u here has a Σ-type: it consists of a term (let it be x) having type
entity and some proof term having type man(x) that depends on x. The term
π1(u) in enter(π1(u)) picks up the entity that is the first component of u. In
DTS, common nouns such as man are treated as predicates rather than as types.
In other words, that a term x has a property man is represented as a proposition
man(x), rather than as a judgement x : man. See Bekki and Mineshima [5] for
more discussions on the interpretation of common nouns in our framework.

For Π-types and Σ-types, we use the following formation rules (ΠF , ΣF),
introduction rules (ΠI, ΣI), and elimination rules (ΠE, ΣE).

A : s1

x : A
(i)

....
B : s2

(x : A) → B : s2
(ΠF), i

A : type

x : A
(i)

....
B : s[

x : A
B(x)

]
: s

(ΣF), i

(x : A) → B : s

x : A
(i)

....
M : B

λx.M : (x : A) → B
(ΠI), i

M : A N : B[M/x]

(M, N) :

[
x : A
B(x)

] (ΣI)

M : (x : A) → B N : A

MN : B[N/x]
(ΠE)

M :

[
x : A
B(x)

]

π1(M) : A
(ΣE)

M :

[
x : A
B(x)

]

π2(M) : B[π1(M)/x]
(ΣE)

Here, s, s1 and s2 are kind or type (see Bekki and Mineshima [5] for more details).
DTS has an underspecified term @ to handle anaphora and presupposition.

We use type annotation for underspecified terms; we write @ : A, where the
underspecified term @ is annotated with its type A. By using underspecified

22 E. Kinoshita et al.

terms, we can uniformly handle semantic phenomena that depend on the pre-
ceding contexts.

Presupposition and anaphora are resolved by constructing a proof term for
@ : A with type checking and then replacing @ : A by the constructed term.
Type checking ensures that an SR is well-formed (i.e., having type type). For
underspecified terms, we use the rule

A : s A true
(@ : A) : A

(@)

where s ∈ {kind, type}. The judgement A true triggers a proof search to construct
a term having the type A in a given context. The constructed term is to be
replaced with @ in the final representation. The annotated type A may contain
another underspecified term, for which the type checking is triggered by the
judgement A : s (e.g., A : type) in the @ rule.

As an illustration, consider the sentence in (6a). For this sentence, one can
compositionally derive the SR in (6b).1

(6) a. He whistled.

b. whistle
(

π1

(
@ :

[
x : entity
man(x)

]))

The SR (6b) contains an underspecified term @ annotated with the Σ-type
corresponding to the proposition that there is an entity x such that x is a man.
For the SR in (6b), the type checking runs as follows.

whistle : entity → type
(CON)

entity : type (CON)
man : entity → type

(CON)
x : entity (1)

man(x) : type
(ΠE)

[
x : entity
man(x)

]
: type

(ΣF), 1

....[
x : entity
man(x)

]
true

(
@ :

[
x : entity
man(x)

])
:
[

x : entity
man(x)

] (@)

π1

(
@ :

[
x : entity
man(x)

])
: entity

(ΣE)

whistle
(

π1

(
@ :

[
x : entity
man(x)

]))
: type

(ΠE)

The application of the @ rule in this derivation triggers a proof search for the
judgement: [

x : entity
man(x)

]
true.

Assuming that we have john : entity and t : man(john) in the background
global context, we can construct a term (john, t) having the Σ-type in question,
i.e., a type annotated for the underspecified term @. This term serves as an
antecedent of the pronoun he. Replacing @ with the specific term (john, t),
the semantic representation in (6b) ends up with whistle(π1(john, t)), which
reduces to whistle(john). In this way, we can derive the interpretation for the
sentence containing a pronoun in (6a).
1 See Bekki [4] for details on the compositional derivations of SRs in DTS.

An Analysis of Selectional Restrictions with Dependent Type Semantics 23

4 Selectional Restriction in DTS

To handle selectional restrictions of predicates as presuppositions, we need to
calculate whether selectional restrictions are satisfied at the stage of type check-
ing. We propose that selectional restrictions of predicates are specified in the
lexicon. For instance, we can define lexical entries of intransitive and transitive
verbs as follows.

syntax semantic representation

cry S\NP λx.cry(x,@ : animate(x))

marry (S\NP)/NP λy.λx.marry(y,@i : human(y))(x,@j : human(x))

To be concrete, we use Combinatory Categorial Grammar (CCG; Steedman
[12]) as a syntactic framework. The types of the predicates cry and marry in
the above SRs are defined as follows.

cry :
[

x : entity
animate(x)

]
→ type

marry :
[

y : entity
human(y)

]
→

[
x : entity
human(x)

]
→ type

For example, the predicate cry takes a pair consisting of an entity x and a
proof term for the proposition animate(x) as an argument and returns a type
(as a proposition). In the lexical entry for the intransitive verb cry, the proof
term for the proposition animate(x) is underspecified; given that there is an
underspecified term @ : animate(x) in the SR, we have to prove animate(x)
during the stage of type checking in order to ensure that the subject of cry is
animate.

As an illustration, consider the sentence in (1). For this sentence, we can
derive the following SR in a compositional way.

(7) marry(ann,@1 : human(ann))(bob,@2 : human(bob))

The following is the compositional derivation of this SR.

Bob
NP
: bob

married
(S\NP)/NP

: λy.λx.marry(x,@1 : human(x))(y,@2 : human(y))

Ann
NP

: ann

S\NP
: λx.marry(ann,@1 : human(ann))(x,@2 : human(x))

>

marry(ann,@1 : human(ann))(bob,@2 : human(bob))
<

24 E. Kinoshita et al.

Now, type checking to ensure that the SR in (7) is well-formed runs as follows.

marry :
[

x : e
h(x)

]
→

[
y : e
h(y)

]
→ type

(Con)
a : e (Con)

....
(@1 : h(a)) : h(a)

(a,@1 : h(a)) :
[

x : e
h(x)

] (ΣI)

marry(a,@1 : h(a)) :
[

y : e
h(y)

]
→ type

(ΠE)
b : e

(Con)
....

(@2 : h(b)) : h(b)

(b,@2 : h(b)) :
[

x : e
h(x)

] (ΣI)

marry(a,@1 : h(a))(b,@2 : h(b)) : type
(ΠE)

Here, we abbreviate entity as e, human as h, ann as a, and bob as b. There are
two open branches containing underspecified terms, @1 and @2, which show that
we must search the preceding context to construct proof terms for human(bob)
and human(ann). That is to say, for the semantic representation to be well-
formed, it is presupposed that x and y, which are, respectively, the subject
and the object of the verb marry, are both human. In this way, the selectional
restriction of a predicate is derived as a presupposition.

Similarly, the SR of the negative sentence in (3) is given as follows.

(8) ¬marry(ann,@2 : human(ann))(bob,@1 : human(bob))

According to the formation rule of negation, A and ¬A have the same well-
formedness condition.

A : type
¬A : type

(¬F)

That is, if we have A : type, then we have ¬A : type as well. Therefore, the type
checking for the negative SR in (8) ends up with the derivation that triggers
a proof search in the same way as the type checking for the SR in (6b) given
in Sect. 3. In this way, one can derive the inference pattern of presupposition
projection out of the scope of negation. A similar explanation applies to the case
of modals and conditionals.

Interestingly, a negative sentence of the form in (9) has two readings (cf.
McCawley [9]).

(9) The chair does not cry.

First, this sentence has a reading in which the selectional restriction projects
out of the scope of negation, hence resulting in a violation of selectional restric-
tion. In our terms, after composing the meaning of (9), one obtains the SR
¬cry(chair,@ : animate(chair)); according to the formation rule of negation,
the content of selectional restriction, that is, animate(chair), projects out of
the scope of negation. Thus, for the SR to be well-formed, one needs to con-
struct a proof term of animate(chair), which is not available in the standard
context. Hence, it is predicted that under this reading, a violation of selectional
restriction occurs in the sense that the derived SR is not well-formed.

Second, and more interesting, (9) can have a reading in which the selec-
tional restriction does not project and is therefore interpreted inside the scope
of negation. The presuppositional analysis correctly predicts this reading; by
local accommodation, we can derive the SR ¬(animate(chair) ∧ cry(chair))

An Analysis of Selectional Restrictions with Dependent Type Semantics 25

for (9). In this case, one does not have to construct a proof of animate(chair);
hence, it is correctly predicted that under this reading, the utterance of (9) is
meaningful and can be true. A detailed explanation of local accommodation in
the framework of DTS is beyond the scope of this paper.

5 Coercion and Copredication for Logical Polysemy

5.1 Coercion

There are two phenomena that are not explained by a simple analysis of selec-
tional restrictions of predicates. The first one is coercion (Nunberg [10]). For
example, if we have a context in which there is a man who ate the omelet in a
cafe, we can understand the meaning of (10a) as (10b).

(10) a. The omelet escaped.
b. The man who ate the omelet escaped.

To account for this phenomena, we define an operator, called argument opera-
tor, that transforms one predicate into another. The argument operators arg1 for
a one-place predicate and arg2 for a two-place predicate are defined as follows.

arg1 ≡ λP.λx.P

⎛
⎜⎜⎝π1π1

⎛
⎜⎜⎝@5 :

⎡
⎢⎢⎣

z :
[

x :e
@pr

2 (x)

]

(@4 :
[

x :e
@pr

1 (x)

]
→

[
x :e
@pr

2 (x)

]
→ type)(x, (@pr

3 (x)))(z)

⎤
⎥⎥⎦

⎞
⎟⎟⎠

⎞
⎟⎟⎠

arg2 ≡

λP.λy.λx.P

⎛
⎜⎜⎝π1π1

⎛
⎜⎜⎝@7 :

⎡
⎢⎢⎣

z :
[

x :e
@pr

3 (x)

]

(@6 :
[

x :e
@pr

1 (x)

]
→

[
x :e
@pr

2 (x)

]
→

[
x :e
@pr

3 (x)

]
→ type)(y, (@4 :@pr

1 (y)))(x, (@5 :@pr
2 (x)))(z)

⎤
⎥⎥⎦

⎞
⎟⎟⎠

⎞
⎟⎟⎠(x)

Here an underspecified term @pr
i is an abbreviation for @i : e → type.

Let us first focus on the definition of the argument operator arg1 for one-place
predicates. In the definition of arg1, the underspecified terms @1 and @2 in @pr

1

and @pr
2 are annotated with type e → type; these are underspecified terms for

properties. Intuitively, given a one-place predicate P and its argument x of type
e, the argument operator arg1 produces a new predicate P ′ that existentially
introduces a new entity z having some relation R to x.

When one underspecified term appears inside a type annotated with another
underspecified term, the inside term must be resolved first. Specifically, the
underspecified terms contained in the argument operator arg1 are resolved in
the following way.

1. First, given the entity x (e.g., the omelet in (10a)), find a suitable property
F (e.g., edible) holding for x. This property F replaces @pr

1 .
2. Second, if there is a proof term for the proposition that x has the property

F (e.g., the omelet is edible), it replaces @pr
3 .

26 E. Kinoshita et al.

3. Also, a property G to be substituted for @pr
2 is needed. The property G

(e.g., animate) has to be chosen so that the newly introduced entity (the first
element of the term z) satisfies G.

4. Next, find a relation R that is to be substituted for @pr
4 . In our example,

a relation (e.g., eat) that has selectional restrictions specified by predicates
edible(x) and animate(y) is needed. This relation R replaces @4.

5. Finally, construct a term to be substituted for @5. This is a tuple consisting
of an entity z whose first element satisfies the property G and a proof term
for the proposition that the relation R holds between x and z.

In this way, arg1 transforms the predicate escape into a predicate whose argu-
ment is an animate entity that has the eating relation to the omelet.

Let us explain the derivation in more detail. To begin with, we can derive
the SR of the sentence (10a) as follows.

The omelet
NP
: o

escaped
S\NP

: λx.escape(x ,@5 : animate(x))

ε
(S\NP)\(S\NP)

: arg1

S\NP
: arg1(λx.escape(x,@6 : animate(x)))

<

S
: arg1(λx.escape(x,@6 : animate(x)))(o)

<

By unfolding the definition of arg1, the sentence in (10a) is assigned the SR in
(11).

(11) escape(Z1,@6 : animate(Z1))

Here, Z1 abbreviates

π1π1

⎛
⎜⎜⎝@5 :

⎡
⎢⎢⎣

z :
[

x : e
@pr

2 (x)

]

(@4 :
[

x : e
@pr

1 (x)

]
→

[
x : e
@pr

2 (x)

]
→ type)(o, (@3 : @pr

1 (o)))(z)

⎤
⎥⎥⎦

⎞
⎟⎟⎠.

Let us suppose that we have the following information in the global context K1:

K1 ≡ type : kind, e : type,
j : e, o : e,
animate : e → type, edible : e → type,

eat :
[

y : e
edible(y)

]
→

[
x : e
animate(x)

]
→ type,

escape :
[

x : e
animate(x)

]
→ type,

p1 : animate(j), p2 : edible(o), p3 : eat(o, p2)(j, p1).

An Analysis of Selectional Restrictions with Dependent Type Semantics 27

Now type checking is triggered to determine whether the SR (10) is well-
formed. This is an example of nested presupposition, and underspecified terms
are resolved outward from the most deeply embedded. Here, we focus on the step
to find a relation R that is substituted for the following underspecified term:

@4 :
[

x : e
@pr

1 (x)

]
→

[
x : e
@pr

2 (x)

]
→ type.

The type checking tree for the relevant part looks as follows:

D1[
x : e
@pr

1 (x)

]
: t

D2[
x : e
@pr

2 (x)

]
→ t : k

[
x : e
@pr

1 (x)

]
→

[
x : e
@pr

2 (x)

]
→ t : k

(ΠF)

(
@4 :

[
x : e
@pr

1 (x)

]
→

[
x : e
@pr

2 (x)

]
→ t

)
:
[

x : e
@pr

1 (x)

]
→

[
x : e
@pr

2 (x)

]
→ t

(@)

where we use the abbreviations k for kind and t for type. The type checking for
D1 runs as follows.

e : t (CON)

e : t (CON)
t : k

(CON)

e → t : k
(ΠF)

....
e → t true

@pr
1 : e → t

(@)
x : e (1)

@pr
1 (x) : t

(ΠE)

[
x : e
@pr

1 (x)

]
: t

(ΣF), 1

Similarly, the type checking for D2 runs as follows.

e : t (CON)

e : t (CON)
t : k

(CON)

e → t : k
(ΠF)

....
e → t true

@pr
2 : e → t

(@)
x : e (1)

@pr
2 (x) : t

(ΠE)

[
x : e
@pr

2 (x)

]
: t

(ΣF), 1

t : k
(CON)

[
x : e
@pr

2 (x)

]
→ t : k

(ΠF)

The judgements e → t true in D1 and D2 trigger a proof search; given a suitable
global context, we can find the antecedents edible of type e → t for @sr

1 , and
animate of type e → t for @sr

2 . Replacing each underspecified term with its
antecedent predicate, the above type checking tree is transformed as follows.

D1[
x : e
edible(x)

]
: t

D2[
x : e
animate(x)

]
→ t : k

[
x : e
edible(x)

]
→

[
x : e
animate(x)

]
→ t : k

(ΠF)
....[

x : e
edible(x)

]
→

[
x : e
animate(x)

]
→ t true

(
@4 :

[
x : e
edible(x)

]
→

[
x : e
animate(x)

]
→ t

)
:
[

x : e
edible(x)

]
→

[
x : e
animate(x)

]
→ t

(@)

28 E. Kinoshita et al.

Then, we can find an antecedent eat for @4 that has a type
[

x : e
edible(x)

]
→

[
x : e
animate(x)

]
→ t

in the context K1. In a similar way, we can find a proof term for other @-terms:
p2 for @3, ((j, p1), p3) for @5, and p1 for @6. By eliminating each @-term in
(11) and reducing β-redexes, we obtain the SR espace(j, p1) as a fully specified
semantic representation for the sentence (10a).

5.2 Copredication for Logical Polysemy

The second phenomenon we consider is copredication of logically polysemous
nouns. There are nouns having multiple meanings in natural language; the occur-
rences can be classified into accidental and logical polysemy (Asher [1]). For
example, the noun bank in (12a) is accidentally polysemous, and the noun book
in (12b) is logically polysemous.

(12) a. # The bank is closed and is muddy.
b. Mary memorized and burned the book.

The sentence (12b) shows that the logically polysemous noun book allows copred-
ication, despite the fact that memorize and burn require different objects (i.e.,
informational objects and physical objects, respectively) as their object argu-
ment. To account for this fact, we can apply argument operators to the verbs
memorize and burn, thereby avoiding the violation of selection restrictions.

We introduce the logical polysemies of nouns as functions. For example, we
assign the following functions to the noun book.

bookinfoOf :(x : e) → (book(x) →
[

y : e
infoOf(x)(y)

]
)

bookphyObjOf :(x : e) → (book(x) →
[

y : e
phyObjOf(x)(y)

]
)

The function bookinfoOf (resp., bookphyObjOf) takes an entity x and a proof
of book(x) and returns an entity y that is the informational aspect (resp., the
physical aspect) of x.

Now we can derive the SR of the sentence (12b) as follows.

An Analysis of Selectional Restrictions with Dependent Type Semantics 29

Mary
NP
: m

memorized
S\NP/NP
: MEM

ε
(S\NP/NP)\(S\NP/NP)

: arg2

S\NP/NP
: arg2(MEM)

<
and

CONJ

: λp.λq.λy.λx.

[
p(y)(x)
q(y)(x)

]

burned
S\NP/NP
: BURN

ε
(S\NP/NP)\(S\NP/NP)

: arg2

S\NP/NP
: arg2(BURN)

<

S\NP/NP

: λy.λx.

[
arg2(MEM)(y)(x)
arg2(BURN)(y)(x)

]
〈Φ〉

the book
NP
: b

S\NP
: λx.

[
arg2(MEM)(b)(x)
arg2(BURN)(b)(x)

]
>

S

:
[

arg2(MEM)(b)(m)
arg2(BURN)(b)(m)

]
<

where

MEM ≡ λy.λx.memorize(y,@i :
[

w :e
infoOf(w)(y)

]
)(x,@j :animate(x)),

and

BURN ≡ λy.λx.burn(y,@i :
[

w :e
phyObjOf(w)(y)

]
)(x,@j :animate(x)).

Thus, the sentence in (12b) is assigned the following SR.

(13)

⎡
⎢⎢⎣
memorize(Z2,@15 :

[
x : e
infoOf(x)(Z2)

]
)(m,@16 : animate(m))

burn(Z3,@17 :
[

x : e
phyObjOf(x)(Z3)

]
)(m,@18 : animate(m))

⎤
⎥⎥⎦

where Z2 abbreviates

π1π1

⎛
⎜⎜⎝@7 :

⎡
⎢⎢⎣

z :
[

x : e
@pr

2 (x)

]

(@6 :
[

x : e
@pr

1 (x)

]
→

[
x : e
@pr

2 (x)

]
→

[
x : e
@pr

3 (x)

]
→ t)(b, (@4 : @pr

1 (b)))(m, (@5 : @pr
2 (m)))(z)

⎤
⎥⎥⎦

⎞
⎟⎟⎠,

and Z3 abbreviates

π1π1

⎛
⎜⎜⎝@14 :

⎡
⎢⎢⎣

z :
[

x : e
@pr

9 (x)

]

(@13 :
[

x : e
@pr

8 (x)

]
→

[
x : e
@pr

9 (x)

]
→

[
x : e
@pr

10(x)

]
→ t)(b, (@11 : @pr

8 (b)))(m, (@12 : @pr
9 (m)))(z)

⎤
⎥⎥⎦

⎞
⎟⎟⎠.

Let us suppose that we have the following information in the global context K2:

K2 ≡ t : k, e : t,
m : e, b : e, ib : e, pb : e,
animate : e → t, book : e → t,

infoOf : e → e → t, phyObjOf : e → e → t,

30 E. Kinoshita et al.

memorize :

⎡
⎣y : e[

w : e
infoOf(w)(y)

]
⎤
⎦ →

[
x : e
animate(x)

]
→ t,

burn :

⎡
⎣y : e[

w : e
phyObjOf(w)(y)

]
⎤
⎦ →

[
x : e
animate(x)

]
→ t,

bookinfoOf : (x : e) → (book(x) →
[

y : e
infoOf(x)(y)

]
),

bookphyObjOf : (x : e) → (book(x) →
[

y : e
phyObjOf(x)(y)

]
),

p1 : animate(m), p2 : book(o),
p3 : infoOf(b)(ib), p4 : phyObjOd(b)(pb).

Then we can find a proof term for each @-term in SR Z2 as follows. Here @i 	−→ T
means that the underspecified term @i is replaced with a term T .

@1 	−→ book,

@2 	−→ animate,

@3 	−→ infoOf(b),

@4 	−→ p2,

@5 	−→ p1,

@6 	−→ λy.λx.λz.

[
u : book(y)
bookinfoOf (y)(u) =e z

]
,

@7 	−→
((ib , p3), (λy.λx.λz.

[
u : book(y)
bookinfoOf (y)(u) =e z

]
)(b, p2)(m, p1)(ib, p3)).

And we can also find a proof term for each @-term in SR Z3:

@8 	−→ book,

@9 	−→ animate,

@10 	−→ phyObjOf(b),

@11 	−→ p2,

@12 	−→ p1,

@13 	−→ λy.λx.λz.

[
u : book(y)
bookphyObjOf (y)(u) =e z

]
,

@14 	−→
((pb, p3), (λy.λx.λz.

[
u : book(y)
bookphyObjOf (y)(u) =e z

]
)(b, p2)(m, p1)(pb, p4)).

An Analysis of Selectional Restrictions with Dependent Type Semantics 31

The rest of the underspecified terms can also be replaced with specific terms as
follows.

@15 	−→ p3,

@16 	−→ p1,

@17 	−→ p4,

@18 	−→ p1.

By eliminating each @-term in (13) and reducing β-redexes, we obtain the fol-
lowing as a fully specified semantic representation for the sentence (12b).

(14)
[
memorize(ib, p3)(m, p1)
burn(pb, p4)(m, p1)

]

6 Conclusion

In this paper, we proposed an analysis that treats the selectional restrictions of
predicates as presuppositions. In addition, using argument operators, we gave
a unified analysis of lexical phenomena that are not accounted for by simple
analyses of selectional restrictions. Future work includes extending our analysis
to phenomena such as metaphors, which Asher [1] opened up a way to analyze
in type theoretical settings.

Acknowledgements. We thank the two anonymous reviewers for helpful comments
and suggestions. We also thank the audience of LENLS13 for their valuable comments
and discussions. This work was supported by CREST, Japan Science and Technology
Agency.

References

1. Asher, N.: Lexical Meaning in Context: A Web of Words. Cambridge University
Press, Cambridge (2011)

2. Asher, N.: Selectional restrictions, types and categories. J. Appl. Logic 12(1), 75–87
(2014)

3. Beaver, D.I.: Presupposition and Assertion in Dynamic Semantics. Studies in Logic,
Language and Information. CSLI Publications & FoLLI, Stanford (2001)

4. Bekki, D.: Representing anaphora with dependent types. In: Asher, N., Soloviev,
S. (eds.) LACL 2014. LNCS, vol. 8535, pp. 14–29. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-43742-1 2

5. Bekki, D., Mineshima, K.: Context-passing and underspecification in dependent
type semantics. In: Chatzikyriakidis, S., Luo, Z. (eds.) Modern Perspectives in
Type-Theoretical Semantics. SLP, vol. 98, pp. 11–41. Springer, Cham (2017).
doi:10.1007/978-3-319-50422-3 2

6. Luo, Z.: Formal semantics in modern type theories with coercive subtyping. Lin-
guist. Philos. 35(6), 491–513 (2012)

7. Magidor, O.: Categiry Mistakes. Oxford University Press, Oxford (2013)

http://dx.doi.org/10.1007/978-3-662-43742-1_2
http://dx.doi.org/10.1007/978-3-319-50422-3_2

32 E. Kinoshita et al.

8. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, Naples (1984)
9. McCawley, J.D.: Concerning the base component of a transformational grammar.

Found. Lang. 4(3), 243–269 (1968)
10. Nunberg, G.: Transfers of meaning. J. Semant. 12(2), 109–132 (1995)
11. Retoré, C.: The montagovian generative lexicon lambda tyn: a type theoretical

framework for natural language semantics. In: 19th International Conference on
Types for Proofs and Programs (TYPES 2013), pp. 202–229 (2014)

12. Steedman, M.: Surface Structure and Interpretation. The MIT Press, Cambridge
(1996)

http://www.springer.com/978-3-319-61571-4

	An Analysis of Selectional Restrictions with Dependent Type Semantics
	1 Introduction
	2 Selectional Restriction: Types vs. Predicates
	3 Dependent Type Semantics
	4 Selectional Restriction in DTS
	5 Coercion and Copredication for Logical Polysemy
	5.1 Coercion
	5.2 Copredication for Logical Polysemy

	6 Conclusion
	References

