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Abstract. Analogical proportions, i.e., statements of the form a is to b as
c is to d, are supposed to obey 3 axioms expressing reflexivity, symmetry,
and stability under central permutation. These axioms are not enough to
determine a single Boolean model, if a minimality condition is not added.
After an algebraic discussion of this minimal model and of related expres-
sions, another justification of this model is given in terms of Kolmogorov
complexity. It is shown that the 6 Boolean patterns that make an analogi-
cal proportion true have a minimal complexity with respect to an expres-
sion reflecting the intended meaning of the proportion.

1 Introduction

Despite the fact that conclusions obtained by analogical reasoning do no guaran-
tee to be valid from a classical logic viewpoint, this kind of reasoning is consid-
ered as a valuable and often creative way to solve real life problems. Analogical
proportions, i.e., relations between four items of the form a is to b as c is to
d, constitute a key notion formalizing analogical inference and relying on the
following principle: if such proportions hold on a noticeable subset of known fea-
tures used for describing the four items, the proportion may still hold on other
features as well, which may help guessing the unknown values of d on these other
features from their values on a, b, and c [11,19]. It is only quite recently that a
logical modeling of these proportions has been proposed [12,13], following sev-
eral attempts at formalizing them in other settings [7,10]. This logical modeling
makes clear that the analogical proportion holds if and only if a differs from b
as c differs from to d and vice-versa.

The paper investigates two new justifications of the Boolean expression of
an analogical proportion. First, starting from the core axioms supposed to be
satisfied by an analogical proportion, and agreed by everybody for a long time,
this paper exhibits the Boolean models compatible with these axioms. There are
several ones, but the smallest model is the standard Boolean expression of an
analogical proportion previously proposed. This smallest model is characterized
by six possible Boolean patterns (among sixteen candidates). In the second part
of the paper, we try to evaluate their cognitive significance in terms of algorithmic
complexity (i.e. Kolmogorov complexity) and show that they are also minimal
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among all Boolean patterns with respect to an algorithmic complexity-based def-
inition of analogy. Indeed algorithmic complexity measures a kind of universal
information content of a Boolean string. Despite its inherent uncomputability,
there exist powerful tool for computing good approximations. Kolmogorov com-
plexity has been proved to be of great value in diverse applications: for example,
in distance measures [1] and classification methods, plagiarism detection, net-
work intrusion detection [5], and in numerous other applications [9].

The paper is organized as follows. In Sect. 2, we provide a background on
the definition of an analogical proportion and its basic properties in a Boolean
setting. In Sect. 3, we start from the characteristic axioms of analogical propor-
tions, and we investigate the different compatible Boolean models. In Sect. 4, we
briefly review the main definition and theorems of Kolmogorov complexity. As
we have the main tools, we are in a position to give a Kolmogorov complexity-
based definition of analogy in Sect. 5. Section 6 is devoted to a set of experiments
that empirically validate our definition. Finally, we conclude in Sect. 7.

2 Background on Boolean Analogical Proportion

At the time of Aristotle, the idea of analogical proportion originated from
the notion of numerical proportion. In that respect the arithmetic proportion
between 4 integers a, b, c, d, which holds if a − b = c − d, is a good prototype
of the idea of analogical proportion, since we can read it as “a differs from b as
c differs from d”, which perfectly fits with “a is to b as c is to d”, denoted by
a : b :: c : d. When considering Boolean interpretation where a, b, c, d ∈ {0, 1}, it
is tempting to carry on with the same definition as {0, 1} ⊂ R, with the inevitable
drawback that difference is not an internal operator in B = {0, 1}. Nevertheless,
if we draw the truth table (16 lines) corresponding to this definition, we get
Table 1 highlighting that only 6 among 16 lines are valid proportions.

Table 1. Boolean valuations for a : b :: c : d

a b c d a : b :: c : d a b c d a : b :: c : d

0 0 0 0 1 1 0 0 0 0

0 0 0 1 0 1 0 0 1 0

0 0 1 0 0 1 0 1 0 1

0 0 1 1 1 1 0 1 1 0

0 1 0 0 0 1 1 0 0 1

0 1 0 1 1 1 1 0 1 0

0 1 1 0 0 1 1 1 0 0

0 1 1 1 0 1 1 1 1 1

Boolean Definition. Looking for a purely logical definition of a : b :: c : d,
we need to make use of the comparative indicators [14,15] that are naturally
associated with a pair of variable (a, b):
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– a∧b and ¬a∧¬b: they are positive similarity and negative similarity indicators
respectively; a ∧ b (resp. ¬a ∧ ¬b) is true iff only both a and b are true (resp.
false);

– a ∧ ¬b and ¬a ∧ b: they are dissimilarity indicators ; a ∧ ¬b (resp. ¬a ∧ b) is
true iff only a (resp. b) is true and b (resp. a) is false.

Then analogical proportion is defined by the two logically equivalent expres-
sions [13]:

a : b :: c : d = (a ∧ ¬b ≡ c ∧ ¬d) ∧ (¬a ∧ b ≡ ¬c ∧ d) (1)
a : b :: c : d = ((a ∧ d) ≡ (b ∧ c)) ∧ ((¬a ∧ ¬d) ≡ (¬b ∧ ¬c)) (2)

Expression (1) reads “a differs from b as c differs from d and b differs from a as d
differs from c”. This definition is equivalent to the previous one (it yields Table 1)
with the advantage of being an internal definition inside B. Expression (2) may
be viewed as the logical counterpart of the well-known property of arithmetical
proportions a − b = c − d ⇔ a + d = b + c. “a is to b as c is to d” can now
be read “what a and d have in common, b and c have it also (both positively
and negatively)”, which, however, is a less straightforward reading of the idea
of analogy than the one associated with (1). As can be checked on Table 1,
analogical proportions are independent with respect to the positive or negative
encoding of properties: (a : b :: c : d) ≡ (¬a : ¬b :: ¬c : ¬d).

For representing objects one generally needs vectors of Boolean values, rather
than single Boolean values, each component being the value of a binary attribute.
The previous definition directly extends to Boolean vectors in B

n of the form
−→a = (a1, · · · , an) as follows: −→a :

−→
b :: −→c :

−→
d iff ∀i ∈ [1, n], ai : bi :: ci : di.

Equation and Creativity. The equation a : b :: c : x has a unique solution
x = c ≡ (a ≡ b) provided that (a ≡ b)∨ (a ≡ c) holds. Indeed neither 0 : 1 :: 1 : 0
nor 1 : 0 :: 0 : 1 holds true. This process can be extended componenwise to
vectors. In that case, for instance, the following equation 010 : 100 : 011 : x has
for unique solution the vector (1, 0, 1) which is not among the 3 previous vectors
(0, 1, 0), (1, 0, 0), (0, 1, 1). Then analogical proportions for vectors are creative (an
informal quality usually associated with the idea of analogy) as they may involve
4 distinct vectors.

A Previous View of Analogical Proportion. In [6], S. Klein suggests that
an analogical proportion would hold as soon as a, b, c are completed by d taken as
d = c ≡ (a ≡ b). This amounts to define it as AK(a, b, c, d) � (a ≡ b) ≡ (c ≡ d).
Then 0 : 1 :: 1 : 0 and 1 : 0 :: 0 : 1 become valid analogical proportions and
leads to the model denoted Kl in the following section. The validity of such
patterns may be advocated on the basis of a functional view of analogy where
a : f(a) :: b : f(b) sounds indeed valid, taking the negation in B for f . But, this is
debatable since AK(a, b, c, d) ⇔ AK(b, a, c, d) (which does not fit with intuition).
It turns out that a : b :: c : d ⇒ AK(a, b, c, d).

Lower Approximations of Analogical Proportion. While AK(a, b, c, d) is
an upper approximation of a : b :: c : d true for 8 patterns, one may look for
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lower approximations that are true for 4 patterns only (taking into account code
independency). There are 3 such approximations, given below, followed by the
patterns they validate1:

(a ≡ b) ∧ (c ≡ d)

1 1 1 1
0 0 0 0
1 1 0 0
0 0 1 1

; (a ≡ c) ∧ (b ≡ d)

1 1 1 1
0 0 0 0
1 0 1 0
0 1 0 1

; (a �≡ d) ∧ (b �≡ c)

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

.

Note that only the last one remains creative.

The question addressed now is “Could an axiomatic view of analogical propor-
tions offer a kind of intrinsic justification that only the 6 patterns obeying (1)–(2)
are acceptable?”

3 Analogy and Its Lattice of Boolean Models

Analogy, viewed as a quaternary relation R, is supposed to obey 3 axioms
(e.g., [7,10]):

1. ∀a, b,R(a, b, a, b) (reflexivity);
2. ∀a, b, c, d,R(a, b, c, d) → R(c, d, a, b) (symmetry);
3. ∀a, b, c, d,R(a, b, c, d) → R(a, c, b, d) (central permutation).

These axioms are clearly inspired by numerical proportions. From them, some
basic properties can be deduced by proper applications of symmetry and central
permutation:

– ∀a, b,R(a, a, b, b) (identity);
– ∀a, b, c, d,R(a, b, c, d) → R(b, a, d, c) (inside pair reversing);
– ∀a, b, c, d,R(a, b, c, d) → R(d, b, c, a)(extreme permutation).

In fact, another (less standard) axiom expected from a natural analogy is:

∀a, b,R(a, a, b, x) =⇒ x = b (unicity)

All these properties fit with our intuition of what may be an analogical propor-
tion. In this paper, we focus on B = {0, 1} as interpretation domain. In that case,
R should be interpreted as a subset of B4: removing the emptyset leaves 216 − 1
candidate models. It is straightforward to get a basic model. By applying reflex-
ivity, we see that 0101, 1010 should belong to the relation and 0000, 1111 as well
since we may have a = b, and central permutation then leads to add 0011 and
1100. Thus, we get the model Ω0 = {0000, 1111, 0101, 1010, 0011, 1100}, which is

1 There are 3 companion approximations that involve the two additional patterns of
AK :

(a ≡ d)∧(b ≡ c)

1 1 1 1

0 0 0 0

1 0 0 1

0 1 1 0

; (a �≡ b)∧(c �≡ d)

1 0 0 1

0 1 1 0

1 0 1 0

0 1 0 1

; (a �≡ c)∧(b �≡ d)

1 1 0 0

0 0 1 1

1 0 0 1

0 1 1 0

.
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stable under symmetry. Ω0 is the smallest model for analogical proportion over
B
2. However, one may ask about other models, and we can show the following:

Property 1. There are exactly 8 models of analogy (satisfying the 3 first
axioms) over B. There are exactly 2 models of analogy (satisfying the 3 first
axioms plus unicity).

Proof. Any model should include Ω0. Let us note that a bigger model should
necessarily have an even cardinality due to the following facts:

– To be bigger than Ω0, it should contain a string s containing both 0 and 1.
– Thanks to symmetry or central permutation axioms, it should contain the

symmetric cdab of s = abcd and the central permutation acbd of s: necessarily,
one of these 2 strings is different from s (otherwise, we get a = b = c = d).

So we have to look for models of cardinality 8, 10, 12, 14 and 16. Obviously B
4

of cardinality 16 is a model, the biggest one. Due to the axioms, we have to add
to Ω0 subsets of B

4 that are stable w.r.t. symmetry and central permutation.
We have exactly:

– one subset with 2 elements: S2 = {1001, 0110}
– two subsets with 4 elements: (i) S3 = {1110, 1101, 1011, 0111}; (ii) S4 =

{0001, 0010, 0100, 1000}.

Since every model has to be built by adding to Ω0 one of the previous subsets,
we get the following models for analogy in B:

(1) 1 model with 6 elements: Ω0 (the smallest one)
(2) 1 model with 8 elements: Kl = Ω0∪S2={0000, 1111, 0101, 1010, 0011, 1100,

0110, 1001}
As previously explained, this model is due to Klein [6].

(3) 2 model with 10 elements:
– M3 = Ω0∪S3={0000, 1111, 0101, 1010, 0011, 1100, 1110, 1101, 1011, 0111},
– M4 = Ω0∪S4={0000, 1111, 0101, 1010, 0011, 1100, 0001, 0010, 0100, 1000}

(4) 2 models with 12 elements:
– M5 = M3 ∪ S2={0000, 1111, 0101, 1010, 0011, 1100, 1110, 1101, 1011,

0111, 0110, 1001},
– M6 = M4 ∪ S2={0000, 1111, 0101, 1010, 0011, 1100, 0001, 0010, 0100,

1000, 0110, 1001},
(5) 1 model with 14 elements:

– M7 = M3 ∪ S4 = M4 ∪ S3 = Ω0 ∪ S3 ∪ S4 =
{0000, 1111, 0101, 1010, 0011, 1100, 1110, 1101, 1011, 0111, 0100, 1000,
0110, 1001},

(6) 1 model with exactly 16 elements: Ω = Ω0 ∪ S2 ∪ S3 ∪ S4 = B.

Finally Ω0 and Kl satisfy unicity but M3 (containing 1100 and 1101) and
M4 (containing 0000 and 0001) do not satisfy. This achieves the proof. �
2 Note that lower approximations of analogical proportions miss at least one axiom.
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The set of models is a lattice with bottom element Ω0 and top element B, see
Fig. 1. As can be seen, 8 models fit with the axioms in the Boolean case, including
the 6-patterns model Ω0 and the 8-patterns model Kl due to Klein. However,
it is natural to privilege the smallest model, the minimal one that just accounts
for the axioms and nothing more.

Ω = B(16 elements)

M7(14 elements)

M6(12 elements)M5(12 elements)

M3(10 elements) M4(10 elements)

Ω0 = {0000, 1111, 0101, 1010, 0011, 1100}(6 elements)

Kl(8 elements)

Fig. 1. The lattice of Boolean models of analogy

We now investigate if another justification in favor of the minimal model Ω0

can be obtained by minimizing an expression reflecting the information content
of an analogical proportion in terms of Kolmogorov complexity. We now review
the fundamentals of Kolmogorov complexity theory, also known as Algorithmic
Complexity Theory.

4 Kolmogorov Complexity: A Brief Review

Kolmogorov complexity is not a new concept and the theory has been designed
many years ago: see for instance [9] for an in depth study. This theory has not
to be confused with Shannon information theory [16] despite the fact that they
share some links.

The Starting Point. We need the help of a universal Turing machine
denoted U . Then p denotes a program running on U . Two situations can hap-
pen: (i) either p does not stop for the input x, or (ii) p stops for the input x and
outputs a finite string y. In that case, we write U(p, x) = y. The Kolmogorov
complexity [9] of y w.r.t. x is then defined as:

KU (y/x) = min{|p|, U(p, x) = y}.

KU (y/x) is the size of the shortest program able to reconstruct y with the help
of x. The Kolmogorov complexity [9] of y is just obtained with the empty string ε:

KU (y) = min{|p|, U(p, ε) = y}.
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Given a string s, KU (s) is an integer which, in some sense, is a measure of
the information content of s: instead of sending s to somebody, we can send p
from which s can be recovered as soon as this somebody has the machine U .
KU enjoys a lot of properties among which a kind of universality: this complex-
ity is independent of the underlying Turing machine as we have the invariance
theorem [9]:

Theorem 1. If U1 and U2 are two universal Turing machines, there exists a
constant cU1U2 such that for all string s: |KU1(s) − KU2(s)| < cU1U2, where
KU1(s) and KU2(s) denote the algorithmic complexity of s w.r.t. U1 and U2
respectively.

This theorem guarantees that complexity values may only diverge by a constant
c (e.g. the length of a compiler or a translation program) and for huge complexity
strings, we can denote K without specifying the Turing machine U . It can also
be shown that [9]:

Theorem 2. ∀x, y,K(xy) = K(x) + K(y/x) + O(1).

Unfortunately K has been proved as a non-computable function [9]. But in
fact, K or an upper bound of K can be estimated in diverse ways that we
investigate now.

Complexity Estimation. The first well known option available to estimate
K is via lossless compression algorithm. For instance bzip approximates better
than gzip, and the PAQ family is still better than bzip2. Due to the invariance
theorem, when the size of s is huge, using compression will provide a relatively
stable approximation as the constant c in the theorem can be considered as
negligible. It is obviously not the case when the size of s becomes small. When
s is short, compression is not a valid option. On another side, the constant c
can prevent for providing stable approximations of K(s). Luckily, the works of
[3,4,17] give means of providing sensible values for the complexity of short strings
(i.e. less than 10bits). This job has been done by the Algorithmic Nature Group
(https://algorithmicnature.org/). They have developed a tool OACC (http://
www.complexitycalculator.com/) allowing to estimate the complexity of short
strings. The authors derived their approach from a theorem from Levin [4,8]
establishing the exact connection between m(s) and K(s), where m(s) is a semi-
measure known as the Universal Distribution defined as follows [18]: m(s) =
Σp:U(p,ε)=s2−|p|.

Theorem 3. There exists a constant c depending only of the underlying Turing
machine such that: ∀s, | − log2(m(s)) − K(s)| < c.

Rewriting the formula as K(s) = −log2(m(s)) + O(1), shows that estimating
K could also be done via estimating m(s). Estimating m(s) becomes realistic
when s is short as we have to estimate the probability for s to be the output
of a short program. Considering simple Turing machines as described in [17],
over a Boolean alphabet {0, 1} and a finite number n of states {1,. . . ,n} plus a

https://algorithmicnature.org/
http://www.complexitycalculator.com/
http://www.complexitycalculator.com/
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special Halt state denoted 0, there are exactly (4n+2)2n such Turing machines.
Using clever optimizations [17], running these machines for n = 4 and n = 5
becomes realistic and provides an estimation of m(s) and ultimately of K(s). In
the following, we denote K ′(s) this OACC estimation of K(s).

Short Chains Complexity Estimation. Some properties are expected
from a complexity calculator machinery to be in accordance with a cognitive
process:

1. There is no way to distinguish strings of length 1 and it is absolutely clear
that K(0) = K(1) should hold whatever the considered universal Turing
machine.

2. An important point is to be able to distinguish the 4 strings of length 2:
00, 11, 10, 01 and we expect the following properties: K(00) = K(11) <
K(01) = K(10);

3. In terms of n bits strings, we expect 0 . . . 0 and 1 . . . 1 to be the simplest ones
and to have the same complexity.

Observing the tables in [4], it appears that the properties above are satisfied,
namely:

– Whatever the number of states of a 2-symbols Turing machine, K ′(0) =
K ′(1).

– Whatever the number of states of a 2-symbols Turing machine, K ′(00) =
K ′(11) = a, K ′(01) = K ′(10) = b and a < b.

– Whatever the number of states of a 2-symbols Turing machine, and for strings
of length less than or equal to 10 (short strings) K ′(0 . . . 0) = K ′(1 . . . 1) = a
and a is the minimum value among the set of values.

Then the estimation of K via K ′ coming from the OACC estimator is a
suitable candidate for our purpose. But before going further, we have first to
check that OACC validate the above conditions. As we can check by examining
Table 2 and column 4 of the final table in Sect. 6, these basic cognitive evidences
are confirmed with the OACC tool. So we can start from OACC to check the
properties required to validate the analogical hypothesis that we propose in the
next section.

Table 2. Complexity of 1 bit and 2 bits chains with OACC

x K(x)

0 3.5473880692782100
1 3.5473880692782100

x1x2 K(x1x2)

00 5.4141012345247104 = a
01 5.4141040197301500 = b
10 5.4141040197301500 = b
11 5.4141012345247104 = a
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5 An Algorithmic Complexity View of Analogical
Proportions

As described in our introduction, several attempts have been done to formalize
analogy or analogical reasoning with mitigate success. In this paper, as it has
been the case in the works of [2], we adopt a machine learning viewpoint. Our
aim is to integrate analogical reasoning in the global landscape of predicting
values from observable examples.

When stated in a machine learning perspective, the problem of analogical
inference is as follows: for a given x3, predict x4 such that the target pair (x3, x4)
is in the same relation that another given source pair (x1, x2) considered as an
example. The pair (x3, x4) is the target pair which is partially known. In the
case of classification where the 2nd element in a pair is the label, it amounts to
predict the label of x3 having only one classified example (x1, x2) at hand.

A functional view amounts to considering a hidden function f such that
x2 = f(x1) and we have to guess x4 = f(x3). This functional view is the one
developed in [2]: the problem of analogical inference strictly fits with a regres-
sion problem but with only one example. Ruling out any statistical models, this
approach needs a brand new formalization that the authors extract from algo-
rithmic complexity theory. Instead of trying to find regularities among a large
set of observations (statistical approach), they consider the very meaning of each
of the 3 observables x1, x2 = f(x1) and x3. We start from this philosophy, but
we depart from it as below:

– We focus on the Boolean case where the 3 objects under consideration are
Boolean vectors. So we do not have to care about the change between the
source domain representation and the target domain representation: these 2
domains are identical. The cost of this representation change is null in terms
of algorithmic complexity.

– To be in line with the machine learning minimal assumption that there exists
some unknown probability distribution P from which the data are drawn,
we do not consider that x2 is a (hidden) function of x1. We just have a
probability of observing x2 having already observed x1 which is more general
than associating a fixed x2 with every given x1. It could be the case that for
another x′

2 we still have x1 : x′
2 :: x3 : x4.

As a consequence, we start from the following intuitions:

1. For x1 : x2 ::x3 : x4 to be accepted as a valid analogy, it is clear that the way
we go from x1 to x2 should not be very different from the way we go from x3 to
x4 (but it has not to be a functional link). We suggest to measure this expected
proximity with the difference |K(x2/x1) − K(x4/x3)|. Considering K(x2/x1)
as the difficulty to build x2 from x1, the previous expression |K(x2/x1) −
K(x4/x3)|, when small, tells us that it is not more difficult to build x4 from
x3 than to build x2 from x1, and vice versa. This is what we call the atomic
view of analogy. But this is obviously not enough.
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2. In fact, the previous formula does not tell anything about the link between
the pair (x1, x2) and the pair (x3, x4). For x1 : x2 :: x3 : x4 to be accepted as
a valid analogy, the difficulty to apprehend the string x1x2 from the string
x3x4 should be close to the difficulty to apprehend x3x4 from x1x2. We sug-
gest to measure this expected proximity with the difference |K(x1x2/x3x4)−
K(x3x4/x1x2)|. This difference is obviously symmetric and is linked to the
symmetry of an analogy.

3. Above all, the global picture has to be “simple” i.e. telling that x1 : x2 :: x3 :
x4 is a valid analogy should not be too disturbing, at least from a cognitive
viewpoint. This means that the occurrence of the string x1x2x3x4 in this
order should be highly plausible. We suggest to measure this plausibility with
K(x1x2x3x4) which is the size of the shortest program producing the binary
string x1x2x3x4 from a universal Turing machine.

Following the ideas of [2], we use the sum as aggregator operator and denote
k(x1x2x3x4) the following formula measuring, in some sense, the quality of an
analogy:

|K(x2/x1) − K(x4/x3)| + |K(x1x2/x3x4) − K(x3x/x1x2)| + K(x1x2x3x4)

This leads us to postulate that the “best” x4 we are looking for to build
a valid analogy x1 : x2 ::x3 : x4 is the one minimizing this expression. So, we
have: x4 = argminuk(x1x2x3u). Let us see if we can, at least from an empirical
viewpoint, validate this model.

6 Validation in the Boolean Setting

As we are not in a position to prove something at this stage, let us just investigate
now the empirical evidence for our formula. One point to start with is to check
if this formula holds in the very basic Boolean case. Considering x1, x2, x3, x4

as Boolean values, we have to check how the 6 cases of valid analogical propor-
tions actually behave w.r.t. the formula k(x1x2x3x4). Thus, we have to estimate
formula k(x1x2x3x4) for every x1x2x3x4 ∈ B

4. The point is that our strings are
very short: only 4 bits. So, as explained in Sect. 4, we have to rely on OACC
instead of a compression estimation.

The Less Complex Analogical Chains. On top of that, we have to consider,
not only pure Kolmogorov complexity K but also complexity w.r.t. a given string
as in K(x3x4/x1x2). Generally, it is quite clear that K(xy) ≤ K(x) + K(y/x):
roughly speaking, we can build a program whose output is xy by concatenating
a program whose output is x to a program taking x as input and providing y
as output. It is more difficult to get a more precise bound. Thanks to Theorem
2: K(xy) = K(x) + K(y/x) + O(1), which shows that we can approximate
K(y/x) with K(xy)−K(x). As we now have all the tools needed to approximate
formula k, it remains to use OACC to compute the estimation. The following
table reports the results of this computation:
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As can be seen for the 6 patterns of the model Ω0 of analogical proportion,
the unique solution of equation a : b :: c : x always corresponds to a string
abcx that minimizes expression k wrt the other option abcx (where x = ¬x),
e.g. k(1111) < k(1110). Besides 0101 is simpler than 0110 despite the fact that
in the second case there is also an underlying function such that x2 = f(x1)
and x4 = f(x3): the negation. Note that 0110 and 1001 exhibit the highest
complexity as estimated by OACC. It eliminates Kl. As there is no known
convergence result regarding K and that we cannot estimate the constant in the
formula K(s) = −log2(m(s))+O(1), these experiences should only be considered
as adding a bit of credibility to the smallest model.

7 Conclusion

We have given a complete description of the Boolean models of analogy. To
choose the most relevant one among the possible 8 models beyond the mini-
mality argument, we have proposed a complexity-based definition for Boolean
analogical proportion. Using a set of calculations with OACC, the tool devel-
oped by the Algorithmic Nature Group (https://algorithmicnature.org/), we
have checked that the truth table of the Boolean analogy fits with the fact
that the corresponding combinations minimize the given complexity formula. It
remains to consider the formula in a more general setting than the Boolean one.
This would in particular allow to establish a link between transfer learning and
Kolmogorov complexity. Another point would be of interest: to be able to solve
the minimization problem associated to the formula. Doing so would be to solve
the analogical equation a : b :: c : x. This might be the basis of a constructive
process.

https://algorithmicnature.org/
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