Chapter 3
Boolean Inverse Semigroups and Additive
Semigroup Homomorphisms

Tarski investigates in [109] partial commutative monoids constructed from partial
bijections on a given set. In Kudryavtseva et al. [71], this study is conveniently
formalized in the language of inverse semigroups. Further connections can be found
in works on K-theory of rings, such as Ara and Exel [7].

By definition, a partial bijection on a set €2 is a bijection from a subset of 2
onto another subset of 2. Partial bijections can be composed, by letting (g o f)(x)
be defined if f(x) is defined and belongs to the domain of g. Instead of forming a
group, the partial bijections on €2 form an inverse semigroup. Moreover, two partial
bijections f and g, with disjoint domains and ranges, can be added, by defining their
orthogonal join f @ g as the smallest common extension of f and g. This brings us
naturally to the widely studied concept of a Boolean inverse semigroup, in particular
Lawson [74, 75], Lawson and Lenz [76] (the original definition of a Boolean inverse
semigroup got subsequently extended by no longer assuming the existence of finite
meets; see Sect.3.1.2 for more detail). While the literature contains a number of
interesting weakenings of the concept of Boolean inverse semigroup, most notably
the one of distributive inverse semigroup (cf. Lawson [74], Lawson and Scott [77]),
Boolean inverse semigroups will take up most of our discussion, mostly due to our
ring-theoretical emphasis and the results of Sect. 6.1.

In Sect.3.1 we recall a few basic results on inverse semigroups and Boolean
inverse semigroups, in particular emphasizing with Proposition 3.1.9 that they are
distributive, and beginning the discussion of additivity in Sect. 3.1.3.

In Sect. 3.2, we prove that the category of all Boolean inverse semigroups, with
additive semigroup homomorphisms, is identical to a variety of algebras (in the
sense of universal algebra) that we call biases, with their homomorphisms.

In Sect. 3.3, we discuss the faithfulness of Exel’s regular representation, defined
for any inverse semigroup, with emphasis on the class of all Boolean inverse
semigroups. We also present a variant of this representation which is valid for all
distributive inverse semigroups, as a specialization of a duality theorem due to
Lawson and Lenz [76].
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In Sect. 3.4 we study the bias congruences of a given Boolean inverse semigroup,
in terms of the semigroup operations and the orthogonal join. We also describe the
congruence associated with an additive ideal.

Section 3.5 is of preparatory nature, and it introduces a minor extension of the
concept of generalized rook matrices introduced in Kudryavtseva et al. [71]. The
results of that section are applied in Sect.3.6 to an extension, to the class of all
Boolean inverse semigroups, of the ring-theoretical concept of crossed product.

Section 3.7 introduces some material on two subclasses of Boolean inverse
semigroups, called fundamental Boolean inverse semigroups and Boolean inverse
meet-semigroups.

Section 3.8 is devoted to a brief study of inner automorphisms of a Boolean
inverse semigroup, which can be defined even in the non-unital case.

Our main textbook references on inverse semigroups will be Howie [60] and
Lawson [73].

3.1 Boolean Inverse Semigroups

3.1.1 Arbitrary Inverse Semigroups

We first recall a few classical definitions. Let S be a semigroup (i.e., a set endowed
with an associative binary operation). For x,y € S, we say that y is a quasi-inverse
(resp., an inverse) of x if x = xyx (resp., x = xyx and y = yxy).

Recall (cf. Howie [60]) that S is

o a regular semigroup if every element of S has a quasi-inverse (this is consistent
with Definition 1.5.1),

e an inverse semigroup if every x € S has a unique inverse, then denoted by x~'.
The assignment x > x~! is the inversion map of S.

Every semigroup homomorphism between inverse semigroups is also a homo-
morphism of inverse semigroups. We denote by Idp S the set of all idempotent
elements of S. A regular semigroup S is an inverse semigroup iff all the idempotent
elements of S commute (cf. Howie [60, Theorem V.1.2]). In that case, (xy)™' =
y~'x7! forall x,y € S, and e idempotent implies that xex™" is also idempotent (cf.
Howie [60, Proposition V.1.4]).

For the remainder of this section we shall fix an inverse semigroup S. We set
XY = {xy| (x,y) € XxY},aX = {a} X, Xa = X{a}, and X~ = {x_l |x e X},
foralla € Sandall X,Y C S.

We set d(x) = x~'x (the domain of x) and r(x) = xx~! (the range of x), for any
x € S. Both d(x) and r(x) are idempotent.
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Recall that Green’s relations £, %, 9, 7€, and ¢ can be defined on S by

xZy if dix)=d@);
xZy if rkx)=r@),

9D =L oR =X o ¥ (cf. Howie [60, Proposition I1.1.3]), 77 = £ N Z, and
x Zy if Sx§=5yS.

Every congruence of S with respect to the semigroup structure is also a congruence
with respect to the inverse semigroup structure.

The following very useful lemma, contained in Schein [101], yields an alternate
characterization of inverse semigroups. We include a proof for convenience.

Lemma 3.1.1 Let (S,-) be a semigroup and let i:S — S be a map satisfying the
following conditions:

(1) x=x-i(x)-xforallx € S.

12) i(x-y) =i(y)-i(x)forallx,y € S.

I3) i(i(x)) = xforallx € S.

I4) i(x)-x-x-i(x) =x-i(x)-i(x) -xforall x € S.

Then S is an inverse semigroup, with inversion map 1.
Proof By applying (I1) to i(x), we obtain, by virtue of (I3),
i(x)-x-i(x) =i(x), forallxesS. 3.1.1)

By (I1) and (3.1.1), i(x) is an inverse of x.
We claim that i(e) = e, for every idempotent element e of S. Indeed, by
applying (I4), we obtain, by virtue of (I3),

ile)-e-e-i(e)=e-ile)-ile)-e,
hence, as ¢ and i(e) are both idempotent (use (12)),
ile)-e-i(e) =e-ile)-e.

By (I1) and (3.1.1), this means that i(¢) = e, thus proving our claim.

Since every element of S has an inverse [use (I1) and (3.1.1)], it suffices, in order
to reach the desired conclusion, to prove that any idempotent elements a and b of S
commute. By (I2) together with the claim above,

ila-b)y="b-a. (3.1.2)
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By applying (I1) to x = a - b, we thus obtain thata-b =a-b-b-a-a- b, that
is,a-b = a-b-a-b, which means that a - b is idempotent. By the claim above,
i(a-b) = a-b.By (3.1.2), it thus follows thata - b = b - a. O

Let x < y hold if x = yd(x), for all elements x and y in an inverse semigroup S.
This relation is a partial ordering on S, called the natural ordering of S. It is
compatible with the multiplication and the inversion operation on S (cf. Howie [60,
Proposition V.2.4], or Lemma 1.4.6 and Proposition 1.4.7 in Lawson [73]). Various
statements equivalent to x < y can be found in Howie [60, Proposition V.2.2] or
Lawson [73, Proposition 1.4.6]: x = r(x)y; x = ye for some idempotent e¢; x = ey
for some idempotent e; r(x) = yx~'; d(x) = y~'x; x = xy~'x. The set Idp S of all
idempotents of S is a lower subset of (S, <).

For x,y € S, let x ~ y hold (we say that x and y are compatible) if x"'y and xy™!
are both idempotent. Equivalently (cf. Lawson [73, Lemma 1.4.11]), the meet x Ay
exists in S, d(x A y) = d(x)d(y), and r(x A y) = r(x) r(y). In that case (see, for
example, Lawson [73, Lemma 1.4.12]),

xAy=rx)y=ydx) =xy 'x. (3.1.3)

If {x,y} is bounded above, then x ~ y; the converse fails for easy examples. A
subset A of S is compatible if any two elements of A are compatible.

Definition 3.1.2 Let S be an inverse semigroup with zero and let x, y € S.

(1) We say that x and y are left orthogonal, in notation x Ly y, if xy™! = 0;
equivalently, d(x) d(y) = 0.

(2) We say that x and y are right orthogonal, in notation x L y, if x"'y = 0;
equivalently, r(x) r(y) = 0.

(3) We say that x and y are orthogonal, in notationx L y,ifx Ly yandx Ly y.

A subset A of § is orthogonal if any two distinct elements of A are orthogonal.

In particular, x L y (orthogonality) implies that x ~ y (compatibility).

For a congruence relation  on S and elements x,y € S, let x <g y hold if
x =g yd(x). Equivalently, 6(x) < 6(y), where 0:S — §/6 denotes the canonical
projection. Observe, in particular, that since /6 is an inverse semigroup, x <g y
andy <p xiff x =¢ y, forall x,y € S.

Forany a € S,let A,:S — S, x +— ax and p,:S — S, x — xa. The following
lemma is well known but we could not trace it back to any particular source. It
enables us to reduce order properties of an inverse semigroup to its semilattice of
idempotents. We include a proof for convenience.

Lemma 3.1.3 (Folklore) The following statements hold, for any a € S.

(1) The maps A, and A,— restrict to mutually inverse, domain-preserving order-
isomorphisms, from S |, d(a) onto S | a and from S |, a onto S |, d(a), respectively.
The graphs of those maps are all contained in L.

(2) The maps p, and p,— restrict to mutually inverse, range-preserving order-
isomorphisms, from S | x(a) onto S | a and from S | a onto S | x(a), respectively.
The graphs of those maps are all contained in %.
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Furthermore, all the isomorphisms above preserve orthogonality, and also all
existing meets and joins, evaluated in S.

Proof 1tis clear that A,, A1, ps, p,—1 are all isotone.

(1) Any x € S | d(a) satisfies x = d(a)d(x) (so x is idempotent), thus
Aq(x) = ad(x) < a. Furthermore, A,—14,(x) = d(a)x = x, and further, by using
the idempotence of x, d(A,(x)) = x'a 'ax = x, so (x, A.(x)) € Z. This proves
that 4,[S | d(a)] € S| a, A;—1 A4l ya() = 1dsd()» and the graph of A, is contained
in Z.

Any y € S | a satisfies y = ad(y), thus 1,—1(y) = d(@)d(y) < d(a).
Furthermore, A A,—1(y) = aa 'ad(y) = ad(y) =y, and A1 (y) = a 'ad(y) =
d(y), so (y,4,-1(y)) € Z. This proves that A,~1[S | a] € S| d(a), AsAs—1 l5), =
idgy 4, and the graph of 1,1 is contained in .Z’. This completes the proof of (1).

The proof of (2) is symmetric.

For all x,y,z € S, if x L y, then (xz2) 'yz = z7'(x"'y)z = 0 and xz(y2) " =
xzz7 'y < xy7! = 0, thus xz L yz Symmetrically, zx L zy. In particular,
all maps A4, A,—1, ps, p,—1 preserve orthogonality. By virtue of Lawson [73,
Proposition 1.4.19], all those maps preserve all existing meets evaluated in S.

Letu € Sandlet X € S | d(a) such that u = \/ X within S. In particular,
u €S| d(a).Lety e Ssuchthat aX < y. Thenx = a 'ax < a~'y, foreach x € X.
It follows that X < a™ 'y, sou < a™'y, and so au < aa™'y < y. This proves that
au = \/(aX) within S.

Letu € Sandlet X C S| asuchthatu = \/ X. In particular,u € S | a.Lety € S
such that !X < y. Then x = aa~'x < ay, for each x € X. It follows that u < ay,
soa 'u < a'ay < y. This proves that a~'u = \/(a~'X) within S.

Therefore, both A, and A,—1 preserve all existing joins from S. The proofs for p,
and p,—1 are symmetric. O

In particular, since d(x) = a~'x and r(x) = xa~' whenever x € S | a, we obtain
the following result, contained in Schein [102, Lemma 1.12]; see also Lawson [73,
Proposition 1.4.17].

Lemma 3.1.4 The maps d and r both preserve all existing meets and joins in S.
Since the map d preserves all existing meets and joins, it follows that Idp S is
closed under all existing meets and joins in S.

3.1.2 Boolean Inverse Semigroups

Definition 3.1.5 (Orthogonal Join in an Inverse Semigroup with Zero) For
elements x, y, z in an inverse semigroup S with zero,letz =x @ yholdifz=xVvy
inSandx L y.

Definition 3.1.6 An inverse semigroup S is

— distributive if Idp S is a distributive lattice and x V y exists for all compatible
x,y eldpS;
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— Boolean if Idp S is a generalized Boolean lattice and x 'y exists for all compatible
x,y €ldpS.

Although distributive inverse semigroups will be met on an occasional basis
throughout the present work, Boolean inverse semigroups will be given the lion’s
share.

It is well known that an inverse semigroup S is Boolean iff Idp S is a generalized
Boolean lattice and xVy exists for all orthogonal x,y € 1dp S (thus xvy = x@®y). The
original definition of a Boolean inverse semigroup (cf. Lawson [74]) assumed that
the natural ordering is a meet-semilattice. This definition got subsequently relaxed,
by dropping the meet-semilattice assumption (cf. Lawson [75]). In the latter paper,
inverse semigroups for which the natural ordering is a meet-semilattice are called
inverse A-semigroups (cf. Definition 3.7.7). Proposition 3.1.9 shows, in particular,
that our Boolean inverse semigroups are identical to Lawson’s Boolean inverse
semigroups from [75].

As the following example shows, those concepts are stronger than the eponymous
one introduced in Exel [41]. For further discussion about this, see Sect. 3.2.

Example 3.1.7 Table 3.1 describes a finite commutative inverse monoid S with zero,
such that Idp S is the Boolean semilattice with two atoms, but the atoms of S have
no join.

The atoms of S are 1 and 2. They are both idempotent, and they join to 4 in Idp S.
However, they do not have a join in S.

Another inverse monoid, which is Boolean in Exel’s sense but not in ours, is the
final example in Exel [41]. This will be discussed further in Sect. 3.2.

Example 3.1.8 The semigroup Jy, of all partial one-to-one functions between
subsets of a set X, is a Boolean inverse monoid, the so-called symmetric inverse
monoid on X. It has a zero element, namely the function with empty domain (and
range). Its unit element is the identity function on X. For u#, v € Jy, the inequality
u < v holds iff v extends u. Furthermore, u ~ v iff u and v agree on the intersection
of the domains of # and v, and u L v iff dom(x) N dom(v) = rng(x) Nrng(v) = <.
If X = [n] = {1,...,n}, for a nonnegative integer n, then we shall write J, instead
of j[n] .

The inverse monoid Jx has the additional property that every collection & of
elements of Jx has a meet (with respect to the natural ordering), whose domain is
the set of all elements of X on which all members of JF agree. In particular, Jy is an
inverse meet-semigroup as introduced further (cf. Definition 3.7.7).

Table 3.1 A non-Boolean
inverse monoid with zero,
with Boolean semilattice of
idempotents

AW N = O
S O O O o O
—_—_ 0 = O
NN NDO O N
W A N = O W
B WO = O B
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The monoid Jx can be viewed as a “skeleton” of X x X matrix rings. In particular,
for i,j € X, the unique function e;; with domain {;} and range {i} belongs to Jy.
Denoting by §,, the Kronecker symbol and interpreting 0 - f as the empty function
(which is the zero element of Jy), the e;; satisfy the following relations:

eijexs = Sjkeil, 3.1.4)
e = e, (3.1.5)

forall i,j, k, I € X. We call the ¢;; the matrix units of Jx.
The following result is at the basis of many calculations in distributive and
Boolean inverse semigroups.

Proposition 3.1.9 The following statements hold for any distributive inverse semi-
group S, with a zero element required in (2)—(4):

(1) For every nonempty finite compatible subset {1, . ..,b,} of S, the join \/'_, b;
exists and the following statements hold:

(@) a-\iZ b = \Vi_\(a- b)) and (\/'_, bi) - a = \/'_,(b; - a), for every
acs.

(i) For every a € S, a A \/l'.‘:l b; exists iff each a A b; exists, and then
an\—,bi=\'—,(aAb).

(2) The partial operation (x,y) +— x @ y endows S with a structure of a conical
partial refinement monoid.

(3) The results of (1) above extend to the orthogonal join @ in place of the join V.

@) Ifa®c=b&®cins, thena = b.

Proof (11) follows from the finite version of Lawson [73, Proposition 1.4.20].

(1ii) follows from the finite version of Resende [98].

(2)Letu = (x®y)@zin S. Fromx@y L zitfollows thatx L zandy L z. Since S
is distributive, it follows that y @ z is defined. By (lii), it follows that x L y & z.
Since S is distributive, x @ (y @ z) is defined, with value xV (yVz) = (xVy)Vz = u.
Hence, & is associative, so (S, @, 0) is a partial commutative monoid.

Letx® x' =y @y in S. Applying (1ii), we get the following refinement matrix:

/

y y
X XAy xAY within (S, ®) . (3.1.6)

XX Ayx Ay

Item (2) follows. If a® ¢ = b @ ¢, then, takingx =y = ¢, X' = a,and y = b yields
xAy =x'Ay=0,thus X’ = y'. Item (4) follows.
Finally, it is straightforward to obtain (3) from (1). ]
As an immediate application of Proposition 3.1.9(1ii), we record the following.
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Corollary 3.1.10 Let S be a distributive inverse semigroup, let m and n be positive
integers, and let ay, ... ,an, by,...,b, € S. Then (\/lm=1 a,-) A (\/;;1 bj) exists iff
each a; N b; exists, and then

m n

(Va)r (V)= V  @nby. (3.1.7)

i=1 =1 1<i<m, 1<j<n

Furthermore, if S has a zero element, then the analogue of (3.1.7), with V replaced
by @, also holds.

It is well known (see, for example, Lawson and Lenz [76, Lemma 3.27]) that for
any elements x and y in a Boolean inverse semigroup S, if x <y, then there exists a
unique z € S such that y = x @ z. Consequently, the natural ordering < of S is also
the algebraic ordering <® of the partial commutative monoid (S, @, 0).

Notation 3.1.11 For any elements x and y in a Boolean inverse semigroup S such
that x < y, we denote by y ~ x the unique z € S such that y = x @ z. The range of
this symbol is extended to all pairs (x, y) such that x A y exists, by defining x ~y =
x~@xAy).

A direct application of Proposition 3.1.9 yields the following result, whose easy
proof we omit.

Lemma 3.1.12 The following statements hold, for every Boolean inverse semi-
group S and all x,y,z € S such that x < y:

(1) z(y~x) = (zy) ~ (zx) and (y ~ x)z = (y2) ~ (x2).

(2) Ify A z exists, then x A z exists and (Y ~x) Az= (YA 2)~ (X A2).
We will repeatedly use the following easy fact.

Lemma 3.1.13 Let S be an inverse subsemigroup of a Boolean inverse semi-
group T. If S is closed under finite orthogonal joins and a ~ b € S whenever
a,b € IdpS with b < a, then S is a Boolean inverse semigroup, and x ~y € S
whenever x,y € S withy < x.

Proof 1Tt follows from our assumptions, together with the identity X~y = X~ Xy (in
generalized Boolean algebras), that Idp S is a subsemigroup of Idp 7, closed under
the operation (x,y) — x ~ y and under finite orthogonal joins. Since the latter is a
Boolean ring, so is the former.

By assumption, S contains the empty sum 0. Hence, the orthogonality relation
on S is the restriction to S of the orthogonality relation on 7. By our assumption,
x @ y exists in S whenever x and y are orthogonal elements of S. Therefore, § is
Boolean.

Letx,y € S withy < x. From y < x it follows that y = xd(y), whence x ~y =
x(d(x) ~ d(y)). By assumption, d(x) ~ d(y) € S; whencex ~y € S. O

The following example shows that the additional assumption, in Lemma 3.1.13,
that Idp S be closed under (x, y) — x ~ y, cannot be dropped.
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Example 3.1.14 The powerset algebra T of {0, 1}, endowed with set intersection,
is a Boolean inverse semigroup. The subset S = {@,{0},{0,1}} is an inverse
subsemigroup of 7, closed under finite orthogonal joins. However, S is not a Boolean
inverse semigroup.

3.1.3 Additivity in Boolean Inverse Semigroups

The definition of additivity given below is the restriction, to Boolean inverse
semigroups, of a definition by Lawson and Lenz [76].

Definition 3.1.15 Let S and T be Boolean inverse semigroups.

e A semigroup homomorphism f: S — T is additive if the equality f(x ® y) =
f(x) & f(y) holds whenever x and y are orthogonal elements in S.

e A one-to-one map f: S < T is a lower semigroup embedding if it is an additive
semigroup homomorphism and f[S] is a lower subset of T with respect to the
natural ordering.

In particular, every lower semigroup embedding is also a V-embedding (cf.
Definition 2.1.2). Further, it is well known, and an easy exercise, that any additive
semigroup homomorphism between Boolean inverse semigroups preserves finite
compatible joins. We postpone a more complete characterization of additive semi-
group homomorphisms until Theorem 3.2.5.

Definition 3.1.16 An inverse subsemigroup S of an inverse semigroup 7 is an ideal
of T (resp., a quasi-ideal of T) if TST C S (resp., STS < S).

It is easy to verify that every ideal is a quasi-ideal. Our concept of quasi-ideal
is the restriction, to inverse semigroups, of the classical one (cf. Lawson [72]),
defined for arbitrary semigroups. The five-element inverse semigroup 7 represented
in Table 3.2, with the subsemigroup S = {0, 1}, shows that the assumption that S is
an inverse subsemigroup of 7 is not redundant in Definition 3.1.16.

Definition 3.1.17 A subset S in a Boolean inverse semigroup 7 is

e an additive inverse subsemigroup of T if S is an inverse subsemigroup of 7, Idp S
is closed under the operation (x, y) — x~y, and S is closed under finite orthogonal
joins in T

Table 3.2 The subsemi-
group S = {0, 1} of T has
STS =SandS~! # S

A LD~ O N
S O © O o O
S = O O =
N OO W o N
S W NN OO W
A OO = O &
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o alower inverse subsemigroup of T if S is an additive inverse subsemigroup of T
and S is a lower subset of 7" with respect to the natural ordering;
e an additive ideal of T if S is an ideal of T and S is closed under finite orthogonal
joinsin 7.
Our additive ideals are called V-ideals in Kudryavtseva et al. [71]. The following
result shows that the concepts introduced above occur only between Boolean inverse
semigroups.

Proposition 3.1.18 The following implications hold, for any subset S in a Boolean
inverse semigroup T:

S additive ideal of T = S additive quasi-ideal of T =
S lower inverse subsemigroup of T = S additive inverse subsemigroup of T =

S Boolean inverse semigroup .

Proof 1t is trivial that any ideal of T is also a quasi-ideal of 7. Now suppose that S
is a quasi-ideal of 7 and let x € T and y € S such that x < y. Then x = r(y)xd(y) €
STS C S. Hence, S is a lower subset of 7. Now if S is a lower inverse subsemigroup
of T, then Idp S is a lower subset of Idp 7, thus it is closed under the operation
(x,y) = x ~ y. The final implication follows immediately from Lemma 3.1.13. O

Proposition 3.1.19 Every additive inverse subsemigroup S of a Boolean inverse
semigroup T is closed under finite compatible joins.

Proof Letx,y € S with x ~ y. Using (3.1.3), we get x Ay = yd(x) € S. Further, by
Lemma3.1.13, x~y = x~ (xAy) belongs to S. It follows that xVy = (x~y)®y € S.
O

Proposition 3.1.20 Let X be a subset in a Boolean inverse semigroup S. Then
(SXS)® is the smallest additive ideal of S containing X.

Proof For each x € X, x = r(x)xd(x) € SXS C (SXS)®; thus X C (SXS)®.
Moreover, SXS is an ideal of S, thus, using Proposition 3.1.9, it follows that (SXS)€B
is also an ideal of S. This ideal is obviously additive in S. O

Definition 3.1.21 A Boolean inverse semigroup 7T is an additive enlargement of a
quasi-ideal S if T = (TST)®.

Our concept of additive enlargement is obtained, from the one of enlargement
introduced in Lawson [72], by replacing the condition T = TST by the weaker
condition T = (TST)®. For an interpretation of additive enlargements in terms of
the type monoid introduced in Definition 4.1.3, see Theorem 4.2.2. An important
class of additive enlargements is given by the following result.

Proposition 3.1.22 Let e be an idempotent element in a Boolean inverse semi-
group S. Then eSe is an additive quasi-ideal of S, and (SeS)® is an additive
enlargement of eSe.
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Proof Set B = Idp S. It is trivial that eSe is an inverse subsemigroup of S. Clearly,
Idp(eSe) = B | e is Boolean. Furthermore, it follows from Proposition 3.1.9
that eSe is closed under finite orthogonal joins. Hence, eSe is an additive inverse
subsemigroup of S. It is trivial that (eSe)S(eSe) C eSe. Thus, eSe is an additive
quasi-ideal of S.

By Proposition 3.1.20, (SeS)® is the additive ideal of S generated by e. Setting
S = eSeand T' = (SeS)®, it is straightforward to verify that (7'S'T")® = T'. O

The two following examples show that none of the converse implications in
Proposition 3.1.18 holds.

Example 3.1.23 Let T = J, (cf. Example 3.1.8). Then S = {@,id;} is an additive
quasi-ideal of T, but not an ideal of 7.

The following result gives a convenient characterization of lower inverse sub-
semigroups.

Proposition 3.1.24 An inverse subsemigroup S of a Boolean inverse semigroup T
is a lower inverse subsemigroup of T iff S is closed under finite orthogonal joins
and 1dp S is a lower subset of Idp T.

Proof It is sufficient to prove that if Idp S is a lower subset of Idp 7', then S is a lower
subset of 7. Lett < s where t € T and s € S. Since S is an inverse subsemigroup
of T, d(s) € S. Since d(#) < d(s) and by assumption, it follows that d(r) € S.
Therefore, t = sd(?) € S. O

In particular, Idp S is a lower inverse subsemigroup of S, for every Boolean
inverse semigroup S.

Example 3.1.25 Let T = J,. Then S = IdpT = {@,id{l},id{z},id{l,z}} is a lower
inverse subsemigroup of 7', but not a quasi-ideal. In fact, STS = T.

3.2 The Concept of Bias: An Equational Definition
of Boolean Inverse Semigroups

Due to their formulation in terms of the partial operation @, the original defining
axioms of the class of all Boolean inverse semigroups are not identities in the usual
sense of universal algebra. For example, the formula X(y & z) = (Xy) & (x2)
makes sense only in case Y @ z and (Xy) @ (Xz) are both defined. This causes
confusion when it comes to handling standard concepts of universal algebra, such
as homomorphisms, colimits, or free algebras.

In general, a similarity type is a set of “operation symbols” (or just, using a
standard abuse of language, “operations”), each one given a nonnegative natural
number called the arity. Operations with arity zero are usually called constants.
Formal compositions of operations, starting with variables, are called terms. An
identity is a formal expression of the form p = q, where p and q are terms. A
variety is the class of all algebras that satisfy a given set of identities. For more
detail, see McKenzie et al. [82].
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We shall provide in this section an alternative characterization of Boolean inverse
semigroups by a finite set of identities. This characterization will be formulated in
the language of inverse semigroups (i.e., a binary operation for the product, a unary
operation for the inversion, and a constant for the zero), enriched by two additional
binary operations © and V (cf. Definition 3.2.1). This will enable us to define natural
concepts such as homomorphisms, congruences, or free objects, within Boolean
inverse semigroups, and more generally, study that class from the vantage point of
universal algebra.

Our definition of the operations © and V is inspired by Leech [78, Exam-
ple 1.7(c)].

Definition 3.2.1 Let S be a Boolean inverse semigroup. We set

xQy = (r(x) ~r(y)x(d(x) ~d(y))andxVy= (xQy) by, forallx,yesS.
(3.2.1)

We shall call x Q y the skew difference and x V y the left skew join—from now on
skew join'! —of x and y.

Since B is a Boolean inverse semigroup and d(x), d(y), r(x), r(y) are all
idempotent, both differences d(x) ~ d(y) and r(x) ~ r(y) are always defined, thus
xQy is always defined. Furthermore, r(y)(xQy) = (xQy)d(y) = 0, thusxQy L y,
and thus x V y is also always defined.

Notation 3.2.2 We denote by Lis the similarity type of inverse semigroups. It is
thus defined as £15 = (0, - -), where 0 is a symbol of constant, “lisa symbol of
unary operation, and - is a symbol of binary operation.’

We also denote by Lgys the similarity type obtained by enriching £1s with two
binary operation symbols © and V.

As the sequel of the present section will involve relatively complicated identities,
we shall use a number of abbreviations, such as d(X) = x~!x, r(x) = xx~!, x> =
X - X, X < y instead of X = yd(X), X L y instead of X"y = xy~! = 0, and so on.
For instance, the identity X _'xy~!y = (xy)~'xy (which is not valid in all inverse
semigroups!) will be abbreviated by d(xy) = d(x) d(y).

The characterization of the class of all Boolean inverse semigroups by a set of
identities will be performed via the following concept.

Definition 3.2.3 A bias is a Lgis-structure (5,0, 7!, -,®, V), that is, a set S together
with a distinguished element 0 € S, a unary operation x — x~! on S, and binary
operations (x,y) — x-y, (x,y) = xOy, (x,y) — x Vyon S, subject to the following

I'The right skew join of x and y could of course be defined as x @ (y © x), that is, y V x.

2 Although strictly speaking, the operation symbols should not be denoted the same way as their
interpretations (in a given structure), that confusion is widespread and harmless.
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(finite) collection of identities:

(InvSem) Any set of identities defining inverse semigroups with zero. For example,
state that - is associative, 0 is a zero element with respect to -, X = xx~1x,
1™ = x, and d(x) d(y) = d(y) d(x).

(GBagy) All defining identities (1.4.3) of generalized Boolean algebras, with A
changed to the product operation -, ~ changed to ©, V changed to V, and X, Y,
z respectively replaced by d(x), d(y), d(z). For example, the identity d(X) =
(d(X) ©d(y)) V (d(x) d(y)), which is the translation of the identity X = (X ~
y) V (X AY), belongs to the list.

(Idpgy) (d(x) ©d(y))> = d(x) ©d(y) and (d(x) V d(y))> = d(x) V d(y). This
says that the set of all idempotents is closed under both operations © and V.
(Distrg,v) z((d(x) od(y)) v d(y)) = 2z(d(x) 9 d(y)) V zd(y). This states a

certain restricted distributivity of the product - on the skew join V.

(Majgy) XOYy <xVyandy <xVy.

(Domy) d(xVy)=d(xoy) Vd(y).

(Defs) XY = (r(¥) O r(y))x(d(x) O d(y)).

The equivalence between the concept of bias on the one hand, and the one of
Boolean inverse semigroup on the other hand, is achieved by the following result.

Theorem 3.2.4

(1) Every Boolean inverse semigroup (S,0,7',-) expands, via the operations ©
and V defined in (3.2.1), to a bias.

(2) For every bias (S,0,7",, V), the reduct (S,0,7,") to the similarity type L1s
is a Boolean inverse semigroup.

(3) Any two biases on S with the same inverse semigroup reduct are equal. In
particular, the two operations of expansion and reduction, defined in (1) and (2)
above, are mutually inverse.

Proof (1) The identities (InvSem) and (Majg v) are both satisfied by definition.
For all idempotents a,b € S,a-b =aAb,a®b =a~b,andaV b = aV b, thus,
since Idp S is a generalized Boolean algebra, the identities (GBag v) and (Idpg v)
are satisfied. It follows that (Defg) holds as well.

In order to verify (Distrg v), we just need to observe that z(a ® b) = (za) ® (zb),
forall z € S and all orthogonal a, b € Idp S. (Indeed, whenever x, y € S, the elements
a =d(x)9d(y) = d(x) ~d(y) and b = d(y) are orthogonal idempotents, thus
aVb=a®db.)

Now we verify (Domy). Observe first that whenever x, y € S, the elements X' =
xQy and y are orthogonal, thus X' Vy = x’®y. Further, d(x') and d(y) are orthogonal,
andd(¥’ ®y) = d() & d(y).

(2) It follows from (InvSem) that (S, O, -1 -) is an inverse semigroup. Further, it
follows from (GBag v) and (Idpg v) that Idp S, endowed with the restriction A of -,
the restriction ~ of ©, and the restriction Vv of V, is a generalized Boolean algebra.

Now let x,y € S be orthogonal elements. Since d(x) and d(y) are orthogonal
idempotents, d(x)  d(y) = d(x) ~ d(y) = d(x), and similarly, r(x) O r(y) = r(x).
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Further, it follows from (Defg) that x O y = r(x)xd(x) = x. By (Majg v), this

implies that < x Vy. By using (Domy), we getd(x V y) = d(x) V d(y).
y

Now let z € S such that * < z. We compute:
y

zd(x Vy) = z(d(x) V d(y)) (by the above)
= Z((d(x) Sd(y)) V d(y)) (because d(x) ©d(y) = d(x))
=z(d(x) ©d(y)) V zd(y) (by (Distrg,v))
=zd(x) V zd(y) (because d(x) ©d(y) = d(x))

=xVy (because x < zand y < 7),

so x Vy < z. This completes the proof that x V y is the orthogonal join of {x, y} in S.
Therefore, S is a Boolean inverse semigroup.

(3) We need to prove that in the presence of the bias identities, the operations ©
and V are necessarily given by (3.2.1). Observe from the start that by (2) above, S
is a Boolean inverse semigroup.

Due to (GBag v) and (Idpg v ), this certainly holds on Idp S: that is, a®b = a~b
anda V b = aVv b (within Idp S), for any a, b € Idp S. Due to (Defg), it follows that
the operation © is given by (3.2.1); thus it is uniquely determined.

Now let x,y € S. We must prove that x Vy = (xQ y) & y. Since S is a
Boolean inverse semigroup and by (Majgv), (x Oy) @ y < x V y. Further, it
follows from (Domy) that d(x Vy) = d(x O y) V d(y). Since xOy L y and
since the restriction of V to the idempotents is the join within Idp S, it follows that
d(xVy) =d(xOy) ® d(y). Therefore, we get

xOy)dy=xVyd((x0y) ®y) (because (xQy) @y <xVy)
=@xVydxVy)
=xVy,

so the operation V is given by (3.2.1).

The second statement of (3) follows immediately. O

In particular, given a Boolean inverse semigroup S, Theorem 3.2.4 enables us
to define the Boolean inverse subsemigroup of S generated by a subset X, as the
sub-bias of S generated by X.

The following result, crucial despite the easiness of its proof, identifies the
homomorphisms on Boolean inverse semigroups, with respect to the structure of
bias.
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Theorem 3.2.5 Let S and T be Boolean inverse semigroups and let f:S — T be a
semigroup homomorphism. The following are equivalent:

(i) f is a bias homomorphism.
(ii) The domain-range restriction of f from 1dp S to I1dp T is a homomorphism of
Boolean rings.
(iii)) ¢ = a @ b implies that f(c) = f(a) ® f(b), forall a, b, c € 1dp S.
(iv) f is additive.

Proof (i)=-(ii). Since f is a semigroup homomorphism, it sends Idp S into Idp 7.
Since the bias operations © and V restrict, on the idempotents, to the difference
(x,¥) > x ~ y and the join (x,y) - x V y, (ii) follows.

(i)=-(iii) is trivial.

(iii))=(iv) Let z = x @ y in S, we must prove that f(z) = f(x) & f(y) in T.
Since f is a homomorphism of inverse semigroups with zero, f(x) L f(y); whence
f&) ®fO) < f(z). It follows from Lemma 3.1.4 that d(z) = d(x) ® d(y), thus, by
assumption and since f is a homomorphism of inverse semigroups,

d(f(2)) =f(d(2)) =f(dx)) &f(d() = d(f(x) & d(f(y) = d(f(x) &S())-
Since f(x) ® f(y) < f(2), it follows that f(x) ® f(y) = f(2).

(iv)=(i) Suppose that f is an additive semigroup homomorphism from S to 7.
For all a,b € IdpS, it follows from the additivity of f together with the equation
a = (a~b)®abthatf(a) = f(a~b) ®f(ab) = f(a~ b) ® f(a)f (). It follows
that f(a ~ b) = f(a) ~ f(b). Since f is an inverse semigroup homomorphism, it
follows that f(xQy) = f(x) Sf(y), for all x, y € S. Since f is additive, it follows that
fxVy =fx) Vf(y),forallx,yesS. O

Corollary 3.2.6 Let S and T be Boolean inverse semigroups and let f:S — T be
an additive semigroup homomorphism. Then f[S] is a sub-bias of T. In particular it
is a Boolean inverse semigroup.

The following result relates Theorem 3.2.5 with the concept of additive inverse
subsemigroup introduced in Definition 3.1.17.

Corollary 3.2.7 An inverse subsemigroup S of a Boolean inverse semigroup T is a
sub-bias of T iff it is an additive inverse subsemigroup of T.

Proof 1t is trivial that every sub-bias is an additive inverse subsemigroup. Suppose,
conversely, that § is an additive inverse subsemigroup of 7. By Lemma 3.1.13,
S is a Boolean inverse semigroup. The desired conclusion follows then from
Theorem 3.2.5. O

In particular, a Boolean inverse subsemigroup S of a Boolean inverse semi-
group 7T is an additive inverse subsemigroup iff S is a sub-bias of 7. Even more
particularly, an ideal I of S is a sub-bias of § iff it is an additive ideal of S.

By Theorems 3.2.4 and 3.2.5, the category of all Boolean inverse semigroups
and additive semigroup homomorphisms is identical to the category of all biases
and bias homomorphisms. In particular, this category is a variety of algebras (in the
sense of universal algebra).
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3.3 The Prime Spectrum Representation of a Distributive
Inverse Semigroup

Cayley’s Theorem states that every group embeds into some symmetric group, and
the Wagner3-Preston Theorem (cf. Lawson [73, Theorem 1.5.4]) states that every
inverse semigroup embeds into some symmetric inverse semigroup. As observed
in Exel [41], the implied embedding does not preserve finite joins as a rule, even
starting with a Boolean inverse semigroup.

The following theorem is an analogue of those results for distributive inverse
semigroups and embeddings preserving finite joins and meets. Although it is not
explicitly stated there, most of it can, in principle, deduced from results of Lawson
and Lenz [76] via elementary arguments: € being one-to-one is essentially contained
in the combination of Lemma 3.6, Propositions 3.12, and 3.19 in [76], and ¢
preserving existing meets can be deduced from Lemma 2.16 and Corollary 2.18
in [76]. Since the required translations involve the digestion of a fair number of
nontrivial definitions, we provide direct proofs for convenience.

Theorem 3.3.1 Let S be a distributive inverse semigroup with zero. Then there are
a set Q and a zero-preserving semigroup embedding .S — Jq such that the
following conditions hold for every positive integer n and all xi, ..., x, € S:

(1) iz, xi exists in S iff \/i—, e(x;) exists in T, and then

n n

\ eto) = 8(\/)@). (3.3.1)

i=1 i=1
(i) If Nz, x; exists in S, then

n n

N et) = s( x,-) . (3.3.2)

i=1 i=1

Note Remember that every subset of Jg has a meet (cf. Example 3.1.8).

Proof Let us recall the definition of the prime spectrum Gp(S) of S, as considered
in Lawson and Lenz [76]. By definition, a nonempty subset p of S is a filter of S if it
is a downward directed, upper subset of S, with respect to the natural ordering of S.
In addition, we say that p is prime if x V y € p implies that either x € pory € p,
for all x,y € S such that x V y is defined. By definition, = Gp(S) is* the set of all
prime filters of S. Set D = Idp S and Q, = {p € Q | ep C p}, forevery e € D.

30ften transliterated as “Vagner”.

“This set can be endowed with a well studied structure of topological groupoid, which will however
not be of concern in the present work.
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For all x € S and all p € Q4q(y), we define e(x)(p) = txp (where 1X is shorthand
for S 1 X). If p ¢ Qq(), let e(x)(p) be undefined.

Claim 1 Letx € Sandletp € Qq(. Then e(x)(p) is a prime filter of S. Moreover,
£(x)(p) € Qo and e(x™ ) (e(x)(p)) = p.

Proof of Claim. 1f is obvious that e(x)(p) is a proper filter of S. Let yo,y; € S be
compatible such that yo vV y; € e(x)(p), so xp < yo Vv y; for some p € p. Since
d(x)p C p, we may assume that p = d(x)p. Since S is distributive, it follows from
Proposition 3.1.9 that

xp=xpA@oVy)=@pAy)V @pAyl),

thus, by applying again Proposition 3.1.9, p = d(x)p = po V p; where each p; =
x'(xp A y;). Since p € p and p is prime, there is i € {0, 1} such that p; € p.
Since xp; = r(x)(xp A y;) <y, it follows that y; € txp, thus completing the proof
that e(x)(p) is prime.

The proofs of the relations £(x)(p) € Q) and s(x_l)(s(x)(p)) = p are routine
and we omit them. O Claim 1.

It follows from Claim 1 that ¢ takes its values in Jq.

Denote by €2 the prime spectrum of D. An argument, similar to the one of the
proof of Claim 1, yields the following claim.

Claim 2 Letp € Q. Then1p € 2,andp = D N 1p.

Claim 3 Leta,b € D. Then Qur, = 2, N R and L,y = Q, U Q. Furthermore,
Q, = Q implies that a = b.

Proof of Claim. The relation Q ., = 2, N R, follows immediately from the
distributivity of the multiplication on the meet in S, while the relation Q,, =
Q, U Q) follows immediately from Proposition 3.1.9.

Now suppose that 2, = €,. By Claim 2, it follows that a - (1p) C 1p iff
b-(Tp) € 1p, forevery p € Q; thatis, a € p iff b € p, for every p € Q. By
Proposition 1.4.1, this implies that a = b. O Claim 3.

The proof of the following claim is routine (and it does not require distributivity),
and we omit it.

Claim 4 The map ¢ is a semigroup homomorphism from S to Jx.
Claim 5 The map ¢ is one-to-one.

Proof of Claim. Let x,y € S such that e(x) = £(y). By equating the domains of the
two sides, we get Q) = Qa4(y), thus, by Claim 3, d(x) = d(y). Set e = d(x). The
filter 1p belongs to €2, for every p € Q2(e) (cf. Claim 2). Hence, it follows from our
assumption £(x) = e(y) that Txp = typ. This implies easily that forevery p € Q(e),
there exists p € p | e such that xp = yp. Setting A = {p € D | e | xp = yp}, this
means that

Qe clJ@p Ipen).
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Since €2(e) is compact and all 2 ( p) are open within €2 (cf. Theorem 1.4.2), there is
a finite subset X of A such that

Qe cJ(@mppex).

By Proposition 1.4.1, this means that ¢ < \/ X. Since xp = yp for every p € X, it
follows from the distributivity of S that xe = ye, thatis, x = y. O Claim 5.
Now we know that ¢ is a semigroup embedding. Trivially, this embedding maps 0
to the empty function.
Let us prove (i). Since S and Jq are both distributive inverse semigroups and
since compatibility can be expressed equationally, \/'_, e(x;) is defined iff \/}_ x;
is defined. Suppose that this holds and set y = \/'_, x;. Obviously,

n

\e@) <) (3.3.3)

i=1
Furthermore, by using Lemma 3.1.4 together with Claim 3, we obtain the relations

n

dome(y) = Qag) = U Qawy) = Udome(xi) = dom(\/ e(xi)) .

i=1 i=1 i=1

By (3.3.3), it follows that \/'_, &(x;) = &(y), thus completing the proof of (i).
Finally, suppose that z = /\'_, x; exists in S. Obviously,

n

£@) < &) (3.3.4)

i=1

Thus, in order to complete the proof of (ii), it suffices to prove that the domain of
the right hand side of (3.3.4) is contained in the domain of its left hand side. That
is, for every element p of the domain of \'_, £(x;), we must prove that d(z)p < p.
Letp € p. For all i,j € [n], e(x;)(p) = e(x;)(p), thus there is ¢;; € p | p such that
Xiqij < xjqi;. Pick ¢ € p such that g < g;; for all i,j € [n]; since d(x;)p < p,
we may assume that ¢ = d(x;)g. Then x;g = x;q for all i,j € [n], whence x1q =
/\'—, Xig = zq. From z < x; it follows that x7 'z = d(z). Therefore, ¢ = d(x1)g =
x7'x1qg = x7'2g = d(z2)g < d(z)p, so d(z)p € p, as desired. O

Specializing Theorem 3.3.1 to Boolean inverse semigroups, we obtain immedi-
ately the following result.

Corollary 3.3.2 Every Boolean inverse semigroup S has an additive semigroup
embedding into some symmetric inverse semigroup Jgq, preserving all existing
nonempty finite meets. In particular, S is a sub-bias of Jq.

Remark 3.3.3 The set Q2 of Corollary 3.3.2 is identical to the one of Theorem 3.3.1,
that is, it is the prime spectrum of S. In the context of Corollary 3.3.2 (i.e., S is
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Boolean), more can be said: the prime filters of S are exactly the wultrafilters of S,
that is, the maximal elements of the set of all filters of S with respect to set inclusion
(cf. Lawson and Lenz [76, Lemma 3.20]).

For an arbitrary inverse semigroup S, the canonical semigroup homomorphism
A:S — Jg introduced in Exel [41], where Q' is the set of all ultrafilters of S
(denoted by Gy (S) in Lawson and Lenz [76]), is tight in Exel’s sense. As in [41],
A will be called the regular representation of S. Although Exel’s concept of a
Boolean inverse semigroup is less restrictive than ours, it follows from Exel [41,
Proposition 6.2], together with Theorem 3.2.5, that his concept of a tight homomor-
phism extends our concept of an additive semigroup homomorphism. Moreover,
for a Boolean inverse semigroup S, Gy (S) = Gp(S) and the canonical embedding
£:8 < Jgp(s) of Theorem 3.3.1 is identical to Exel’s regular representation A.

On the other hand, Gpm(S) 2 Gp(S) for most distributive inverse semigroups S
(consider the three-element chain), so there are examples where ¢ # A.

Remark 3.3.4 Say that an inverse semigroup is Exel-Boolean if its semilattice of
idempotents is Boolean (not necessarily unital). The final example of Exel [41] is
an Exel-Boolean inverse semigroup with no additive semigroup embedding into
any symmetric inverse semigroup. Of course, by Corollary 3.3.2, such an inverse
semigroup cannot be Boolean. A much easier example, serving the same purpose,
is the one of Example 3.1.7: in that example, the ultrafilters of S are p; = {i, 3, 4},
fori € {1,2}; and 3p; = 4p; = p;, whenever i € {1, 2}. In particular, A(3) = A(4),
with 3 # 4.

We say that two elements x and y in an inverse semigroup S with zero essentially
coincide, in notation x = y, if d(x) = d(y) and for every nonzero idempotent
e < d(x) there exists a nonzero idempotent ¢ < e such that xa = ya. We say
that S is continuous if x = y implies that x = y, for all x,y € S. Exel proved in [41,
Theorem 7.5] that every continuous Exel-Boolean inverse semigroup embeds tightly
(in his sense) into some symmetric inverse monoid. He also asks, just before the
statement of [41, Theorem 7.5], whether x = y implies A(x) = A(y). The following
example, whose construction is inspired by the final counterexample of Exel [41],
shows that this is not the case as a rule. This example turns out to be Boolean.

Example 3.3.5 A Boolean inverse monoid S, with unit element 15 and an element x
such that 1g = x and A(15) # A(x). In particular, S is not continuous.

Proof We denote by B the Boolean algebra of all subsets of Z™ that are either finite
or cofinite, and we fix a nontrivial group G. For each x € B, we set N, = G if x is
finite, and N, = {1} if x is cofinite. The semigroup B X G is an inverse monoid, and
the binary relation ~ on S defined by the rule

(x,g) ~(y,h) if x=yandg=h (modN,), for any (x, g), (v, h) € BxG,
is a monoid congruence on S x G. The quotient monoid § = (B x G)/~ is an inverse

monoid with zero. Denoting by [x, g] the equivalence class of (x, g) modulo ~, the
zero element of S is [@,1] = [@, g] (for all g € G) and the unit element of S
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is 1g = [Z*, 1]. Easy calculations show that [x,g]™' = [x,g~!] and d([x.g]) =
r([x, g]) = [x, 1] whenever (x,g) € B x G. Two elements [xg, go] and [x;, g1] of S
are orthogonal if xoNx; = & (thus one of xy and x| needs to be finite), and then their
orthogonal sum is [xo U x;, g;—] if x; is finite. The semilattice of all idempotents of S
is B = {[x, 1] | x € B}, which is isomorphic to B. Therefore, S is a Boolean inverse
monoid.

Pick g € G\ {1} and set x = [Z™, g]. Every nonzero idempotent of S contains
an idempotent of the form e, = [{n}, 1], where n € Z*; and 15e, = xe, = e,. This
proves that 15 = x.

However, since S is Boolean, it follows from Corollary 3.3.2 that Exel’s regular
representation A of S (cf. Remark 3.3.3) is one-to-one; whence A(1s) # A(x). O

3.4 Additive Congruences of Boolean Inverse Semigroups

In this section we shall investigate in our context the crucial universal-algebraic
concept of a congruence, in particular by describing bias congruences in terms of
the semigroup operations and the orthogonal join operation .

Proposition 3.4.1 Let S be a Boolean inverse semigroup. An equivalence relation 6
on S is a bias congruence iff 0 is a semigroup congruence and the following
condition holds:

Forallx € Sand all a,b € 1dp S orthogonal,
(xa=¢ aandxb =¢ b) => x(a®b) =g a®b. (3.4.1)

Proof We prove the non-trivial direction. Let 6 be a semigroup congruence of S
(thus also an inverse semigroup congruence) satisfying (3.4.1).
The assumption (3.4.1) means that for all orthogonal idempotents a and b, from

Z <p x it follows that a @ b <¢ x, for each x € S. (Recall that x <g y is shorthand

for x =¢ yd(x).) Denoting by 6: S — S§/0 the canonical projection, this means that
0(a ® b) = 0(a) ® 0(b) within S/6.

Claim 1 6(aVb) is the join of {0 (a), 8(b)} within /0, for any idempotents a and b
of S. Hence, 6 is compatible with the operations A, V, and ~ on idempotents.

Proof of Claim. Any upper bound, within S/8, of {f(a),0(b)} is also an upper
bound of the set {#(a ~ b), 8(b)}, thus, by (3.4.1), it is an upper bound of 8 ((a~b) ®
b) = 6(aVvb).Hence, 6(aV b) is the join of {A(a), 8(b)} within §/0, and hence 0 is
compatible with the Vv operation on Idp S. Since @ is also a congruence with respect
to the product operation, its restriction to the generalized Boolean algebra Idp S is a
congruence with respect to join and meet, thus it is also a congruence with respect
to the difference operation ~ . O Claim 1.
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Claim 2 The equivalence relation 6 is compatible with the operation © on S.

Proof of Claim. Since 6 is compatible with the product operation, it is also
compatible with the operations d and r, thus, by Claim 1, it is also compatible with
the operations (x, y) — r(x) ~ r(y) and (x,y) — d(x) ~ d(y). Since it is compatible
with the product operation, the desired conclusion follows. O Claim 2.

Claim 3 Let xg, yo,x1,y1 € S such that xo =9 yo, X1 =¢ y1, X0 L X1, and yo L y;.
Then xo ® x1 =4 yo B y1.

Proof of Claim. Setx = xo @ x; andy = yo @ y;. Then
d(x) = xi_lxi =x"lx; = x_lyi <y x_ly, foreachi € {0,1} .

Thus, by our assumption (3.4.1), d(x) @ d(x;) <¢ x_ly, that is, d(x) <g x_ly, and
thus x = xd(x) <¢ xx~'y, and so x <g y. Symmetrically, y <¢ x, and therefore,
since @ is an inverse semigroup congruence, x =g . O Claim 3.

Let xo,x1, Y0, y1 € S such that x) =¢ yo and x; =¢ y;. It follows from Claim 2
that xo ©Q x; =¢ yo Qy;. Since xo O x1 L x1, yoOy1 L y1, and yp =g y1, it follows
from Claim 3 that (xo O x1) ® x; =¢ (Yo O y1) @ y1, that is, xo V x; =4 yo V y1.
Therefore, @ is compatible with the operation V. O

Define an additive congruence of a Boolean inverse semigroup S as a semigroup
congruence satisfying (3.4.1). Proposition 3.4.1 says that the concepts of additive
congruence and bias congruence are equivalent.

It would be nicer if, within the statement of Proposition 3.4.1, the assump-
tion (3.4.1) could be replaced by the weaker assumption that the restriction of 6
to Idp S is a ring congruence. The following example shows that this cannot be done,
even for idempotent-separating congruences. (A congruence 8 of S is idempotent-
separating if a =¢ b implies that a = b, for all a,b € IdpS. By Howie [60,
Proposition 11.4.8], this is equivalent to saying that § C JZ.)

Example 3.4.2 Denote the two-element group G = Z /27 multiplicatively, so G =
{1, u} with u> = 1. The inverse semigroup S = G x {0, 1} is a Boolean inverse
monoid. The equivalence relation 6 on S, defined as the union of the diagonal of S
with the set {((«, 0), (1,0)), ((1,0), (1, 0))}, is an idempotent-separating semigroup
congruence of S.

This congruence is not additive, for (#,0) =g (1,0) while (u, 1) #£4 (1, 1), the
latter meaning that (u, 0) @ (0, 1) #£4 (1,0) & (0, 1).

Observe the contrast between Example 3.4.2 and Theorem 3.2.5. The point is
that the quotient inverse semigroup S/, in Example 3.4.2, is not Boolean.

Notation 3.4.3 We set

x(y) = xyx ', forall x, y in any inverse semigroup. (3.4.2)
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Recall that if y is idempotent, then so is x (y). The following observation will be
used repeatedly without mentioning, throughout this work.

Lemma 3.4.4 Let x, u, v be elements in an inverse semigroup, with either u or v
idempotent. Then x (uv) = x (u) - x (v).

Proof If, for example, u is idempotent, then u and x1x commute (they are both
idempotent), thus x (uv) = xx™ lxuvx™" = xux"'xvx™ = x (u) - x (v). O

As our next result shows, the somewhat irregular-looking behavior witnessed by
Example 3.4.2 does not occur for the largest idempotent-separating congruence of a

Boolean inverse semigroup.

Proposition 3.4.5 Let S be a Boolean inverse semigroup. Then the largest idem-
potent-separating congruence . of S is an additive congruence of S. In particular,
S/w is a Boolean inverse semigroup and the canonical projection S — S/ is an
additive semigroup homomorphism.

Proof Recall (cf. Howie [60, Theorem V.3.2]) that u can be described by
p={(xy) € SxS[ (Ve eldpS)(x(e) =y(e))} (3.4.3)

(cf. Notation 3.4.3). Now let a, b € Idp S be orthogonal and let x € § with xa =, a
and xb =, b. By (3.4.3), this means that x (ae) = ae and x (be) = be for every
e € Idp S. Now for every e € Idp S,

x{(a ® b)e) = x(ae @ be) = x (ae) ® x (be) = ae ® be = (a @ b)e,

so x(a ® b) =, a ® b. By Proposition 3.4.1, it follows that p is a bias congruence.
The last part of Proposition 3.4.5 follows immediately. O

Proposition 3.4.6 Let I be an additive ideal in a Boolean inverse semigroup S.
Then the binary relation =; on S, defined by the rule

x=/y4 (F)(z<xandz<yand {x~z,y~z} CI), forallx,y€S,
(3.44)

is the least additive congruence of S for which the equivalence class of 0 contains I.
Moreover, 0/=; = L

Proof Itis obvious that 0/=; = I and that every additive congruence of S, for which
the equivalence class of O contains /, contains =;. Hence, it suffices to prove that =;
is an additive congruence of S. It is trivial that =; is both reflexive and symmetric.
Letx,y,z € Ssuchthatx =; yandy =; z. There are u, v € S withu < x, v < z,and

“ <y, suchthatx ~u,y~u,y~v,and z~ v all belong to I. From “ < yit follows
v v

that u ~ v and y~u ~ y~v. The latter relation implies that (y~u)V (y~v) existsin S.
Since {y ~ u,y ~ v} € I, it follows that (y~u) vV (y~v) € I (cf. Proposition 3.1.19),
thatis, y ~ (u A v) € I. (All statements, suchas y~ (u Av) = (y~u) vV (y ~v),
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can easily be proved by reduction to the idempotent case, via Lemma 3.1.3.) By
meeting that relation with u, we get u ~ (1 A v) € I and v ~ (u A v) € I. Therefore,
x~wAv)=(x~u)® U~ @mAv)) €l and, similarly,z~ (u Av) € I, 50 x =/ z.

Let x,y,z € § with x =; y. There exists u € § such that u < * and
y

{x~u,y~u} € I. By Lemma 3.1.12 and since [ is an ideal of S, it follows that
{xz~uz,yz~uz} € I and {zx ~zu,zy ~zu} C I, thus xz =; yz and zx =; zy.
Therefore, =, is a semigroup congruence of .

In order to verify that =; is an additive congruence, it suffices to verify (3.4.1).
Let a,b € Idp S be orthogonal idempotents and let x € S such that xa =; a and

xa xb
xb =; b. There are u < and v < b such that xa ~ u, a ~u, xb ~v,and b ~v
a

all belong to I. From u < a and v < b it follows that # and v are both idempotent.

Further,u @ v < xa®b) , and
a®b

a®b)~udv)=(@~u)db~v)el,
x(@®db)~udv)=@adxb)~udv)=@a~u)d xb~v)el,

so x(a ® b) =; a & b. Therefore, =, is an additive congruence of S. By virtue of
Theorem 3.2.4 and Proposition 3.4.1, the final statement of Proposition 3.4.6 follows
immediately. O

For an additive ideal I in a Boolean inverse semigroup S, we will denote by x//
the equivalence class of x with respect to =y, for each x € S. Observe that 0/1 = I.

In the context of Proposition 3.4.6, =; is a bias congruence of S (cf. Proposi-
tion 3.4.1), thus the quotient structure S/I = S/=; is a Boolean inverse semigroup.

Our next group of results introduces an alternate way to view additive ideals of S,
by focusing attention on the idempotents of S.

Definition 3.4.7 Let S be a Boolean inverse semigroup. An ideal / of the Boolean

ring Idp S is Z-closed if for all a,b € Idp S, a s b and a € I implies that b € .
Our next result shows that additive ideals (of Boolean inverse semigroups) are

essentially the same concept as Z-closed ideals (in Boolean rings of idempotents).

Proposition 3.4.8 Let S be a Boolean inverse semigroup and set B = 1dp S. The
following statements hold:

(1) For any additive ideal J of S, the intersection J N B is a 9-closed ideal of B.

(2) For any P-closed ideal I of the Boolean ring B, the equality d~'[I] = r~'[I]
holds. Furthermore, this set is the ideal of S generated by I, and it is also an
additive ideal.

(3) The two transformations described in (1) and (2) above are mutually inverse.

Proof (1) From 0 € J it follows that 0 € J N B. Leta € Band b € J N B with
a<b.Thena=abe SJ] CJ,soa €JNB,and soJ N Bis alower subset of B.
Since J is closed under finite orthogonal joins, so is J N B. Hence J N B is an ideal of
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B.Now leta,b € BwithaZb. Pick x € S withd(x) = a and r(x) = b. In particular,
b = xax~', hence a € I implies that b € 1.

(2) Since d(x) Z r(x) for all x € S, the equality d~'[/] = r~![I] is obvious. It is
then easy to verify, in particular by using Lemma 3.1.4, that this set is an additive
ideal of S. It obviously contains /. Let J be an ideal of S containing /. For any
x € d™![1], the element d(x) belongs to I, thus to J, thus x = xd(x) € J; whence
d'[cyJ.

(3) Let J be an additive ideal of S and set I = J N B. We claim that J = d~'[]].
For each x € J, d(x) = x~'x € J, thus d(x) € I, that is, x € d~'[I]. Conversely, let
x € d7'[I]. Then d(x) € J as well, so x = xd(x) € J, thus completing the proof of
our claim.

Finally, it is trivial that I = d~'[] N B, for any Z-closed ideal I of B. O

Proposition 3.4.9 Let S and T be Boolean inverse semigroups and let f: S — T be
an additive map. Then the set kerf = f~' {0} is an additive ideal of S. Furthermore,
denoting by p:S — S/kerf the canonical projection, there is a unique additive
semigroup homomorphism f: S/kerf — T such thatf = f o p.

Note The set kerf = f~! {0}, which is a subset of the domain of f, should not be
confused with the kernel Ker f of f, which is an equivalence relation on the domain
of f (cf. Sect. 1.3).

Proof 1t is straightforward to verify that the subset I = kerf is an additive ideal
of S.

Since biases form a variety of algebras, the standard concepts of universal algebra
apply to the category of biases and bias homomorphisms. This is the case, in
particular, for the First Isomorphism Theorem. Since bias homomorphisms and
additive semigroup homomorphisms are the same concept (cf. Theorem 3.2.5),
in order to prove the final statement of Proposition 3.4.9, it suffices to prove that
p(x) = p(y) (i.e.,x =; y) implies that f(x) = f(y), forall x,y € S. Let z € S witness

x =; y, thatis, z < * and {x ~ z,y ~z} € I. Since x = (x ~ z) ® z and f is additive,
y

we get f(x) = f(x ~2) ®f(z) =f(2). Similarly, f(y) = f(2), so f(x) =f(y). DO

Say that a congruence @ of S is ideal-induced if 0 is equal to =; for some additive
ideal I of S. As the following example shows, a Boolean inverse semigroup may have
many additive congruences that are not ideal-induced. This example also shows that
the map f of the statement of Proposition 3.4.9 may not be one-to-one.

Example 3.4.10 For any group G, the inverse semigroup G- is a Boolean inverse
semigroup, where x L y iff either x = 0 or y = 0. If an additive congruence 6
of G0 identifies 0 with some nonzero element, then § = GY0 x G0 is the
largest congruence. If @ does not identify 0 with any nonzero element, then @ is the
congruence 6 g associated with a normal subgroup H of G, in the sense that x =¢ y
iff either x = y = O orx,y # 0 and x~'y € H. Observe that 8  is ideal-induced iff
H = {1}.
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It follows, in particular, that the lattice of all additive congruences of G is
isomorphic to the normal subgroup lattice NSub G of G, with a top element added. In
particular, taking for G the Klein group (Z/27Z) x (Z,/27), the lattice of all additive
congruences of GV is the five-element modular non distributive lattice M5, with a
top element added. Thus we get the following observation: The lattice of all additive
congruences of a Boolean inverse semigroup may not be distributive.

On the other hand, it is well know that the lattice NSub G is modular, for any
group G. Hence, the lattice of all additive congruences of G- is modular. We shall
now see that this observation can be extended to any Boolean inverse semigroup.

To this end, let us introduce the following ternary term m, in the similarity
type Lpis of all biases (cf. Notation 3.2.2; recall that d(X) and r(z) are shorthand
for x"'x and xx~!, respectively):

m(x,y,z) = (x(d(x) od(y)) Vv xy“z) V (r(z) or(y))z. (3.4.5)

It is worthwhile noticing that the right hand side of (3.4.5) contains, as a subterm,
the group-theoretical term Xy ™'z, which is the standard Mal’cev term for groups.

Recall that a variety V of algebras is congruence-permutableif « o f = o«
for any congruences « and § of any algebra in V. We also say that V is congruence-
modular if the lattice of all congruences of any algebra A € V is modular, that is,
aNBVv@ny)) = (@npP)V(xnNy)forany congruences o, B, y of A. It is well
known that every congruence-permutable variety is congruence-modular (for every
lattice of pairwise commuting equivalence relations is modular, and even Arguesian;
this originates in Jonsson [63], see also Gritzer [53, Theorem 410]).

Theorem 3.4.11 The term m is a Mal’cev term for the variety of all biases; that is,
the equations m(X, X,y) = m(y, X, X) = Y hold identically in every bias. Therefore,
the variety of all biases is congruence-permutable, thus also congruence-modular.

Proof Let S be a bias. It is straightforward to verify that x V0O = 0 V x = x, for
every x € S. Since the operations © and ~ agree on the idempotents of S, while V
and @ agree on orthogonal pairs, we can compute

m(x, x,y) = (x(d(x) ~d(v) v xx_ly) Y (r() ~r(x)y
=r@)y @ (r(y) ~r(x))y
= (r(x) vr)y
—y,

and
m(y, x,x) = (y(d(y) ~ d(x)) \Y yx_lx) \Y (r(x) ~ r(x))x

- y(d(y) ~ d(x)) V yd(x)
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=y(d() v d©)
=y.

Hence m is a Mal’cev term for biases. It is well known since Mal’cev [80] (cf.
McKenzie et al. [82, Theorem 4.141]) that this implies the congruence-permutability
result, whence the congruence-modularity result. O

Theorem 3.4.11 marks a crucial difference between Boolean inverse semigroups
on the one hand, and inverse semigroups on the other hand. Indeed, it is well known
that there is no lattice identity satisfied by the congruence lattices of all semilattices
(cf. Freese and Nation [48]), thus, a fortiori, by the congruence lattices of all inverse
semigroups.

3.5 Generalized Rook Matrices over Boolean Inverse
Semigroups

The following concept is taken from Wallis [116, § 4.5], see also Kudryavtseva et
al. [71]. It extends the one of a rook matrix introduced in Solomon [103]. Solomon’s
rook matrices are identical to generalized rook matrices taken over the two-element
inverse semigroup.

Recall that left and right orthogonality are both introduced in Definition 3.1.2.

Definition 3.5.1 Let S be an inverse semigroup with zero and let €2 be a (possibly
infinite) set. A square matrix a = (aiJ- | (i,)) € 2 x Q), withalla;; € S,isa 2 x Q
generalized rook matrix over S if any two distinct rows (resp., columns) of S are left
orthogonal (resp., right orthogonal). In formula,

aij Ly aixranda;; Ly ar;, foralli,j ke Q withj # k,
or, equivalently,
a;'aix = ajiai; =0, foralli,j k € Q withj # k.
We denote by Rg (S) the set of all 2 x Q generalized rook matrices over S. We also

consider the following subsets of Rg 8):

e the set BS(S) of all generalized rook matrices a that are both row-finite (i.e., for
each i € Q, a;; = 0 for all but finitely many j € ) and column-finite (i.e., for
eachj € Q, a;; = 0 for all but finitely many i € );

e the set M (S) of all generalized rook matrices a such that a;; = 0 for all but
finitely many (i,j) € Q x Q.

If @ = [n], for n € N, we will write MP(S) = B2(S) = R¥(S) = R{(S).
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The basic properties of generalized rook matrices over S are summed up in Wallis
[116, § 4.5], Kudryavtseva et al. [71, Proposition 3.5]. Since we are dealing with a
slightly more general context (due to the possibility that 2 be infinite), we include
proofs for convenience.

In what follows, for any family (a; | i € I) of elements in a Boolean inverse
semigroup S, we say that the orthogonal join €D,¢; a; is defined if the a; are pairwise
orthogonal and a; = 0 for all but finitely many i € I.

Lemma 3.5.2 Let S be an inverse semigroup with zero and let Q be a
set. The following statements hold, for any generalized rook matrices a =
(a,-zj | (i,)) € 2 x Q) and b = (b,-zj | (i,j) € Q2 x Q) overS:

(1) Foranyi,j € Q, the elements a; by ;, where k € Q, are pairwise orthogonal.

(2) If S is Boolean inverse and all elements c¢;; = @yeq airbij, for i,j € Q,
are defined (in which case we say that the matrix ab is defined), then ¢ =
(c,-zj | (i,)) € 2 x Q) is a generalized rook matrix over S.

(3) If S is Boolean inverse, a, b € Rg (S), and either a is row-finite or b is column-
finite, then ab is defined. Furthermore, if a is row-finite and b is column-finite,
then ab is both row-finite and column-finite.

(4) If S is Boolean inverse, then MS(S) is an ideal ofBg(S).

In the context of Lemma 3.5.2(2), we say that c is the product of a and b, and we
write ¢ = ab.

Proof (1) For any distinct k, [ € €2, from by J-bl_].l = 0 it follows that

-1 1 -1
aikbrj(aiibi)”" = aixbi;b;ja;; =0,

s0 a;xbrj Ly aibyj. Similarly, from a;klai,z = 0 it follows that

-1 -1 _—1
(aixbij) " aiibij = byja;aiiby = 0.

SO Cl,"kbk‘j J_r[ a,"lblz,'. HGHCC, Cl,"kbk‘j 1 a,"lblz,'.

(2) Suppose that the matrix ¢ = ab is defined. Let i,j,k € Q withj # k. We
claim that ¢;; Ly ¢;x and ¢j; Ly cx;. In order to verify the first statement, it suffices
to verify that a;,bp; Ln aigbgk, that is, b la; la; by = 0, forall p,g € Q. If

pd “ip
p # g, then this follows from a; Jai, = 0.1f p = g, then a; }aiy, = d(a;,) is
idempotent, thus, since b1

pJ

ip
b, =0, we get

-1 _—1 —1 —
pr a;, a,-,qbq,k < pr bp’k =0,

thus b;\}aa} ajqbyx = 0, as desired. The proof of the relation ¢;; Ly cy; is similar.
(3) Suppose first that a is row-finite and let i,j € 2. By assumption, the set
X = {k e Q | a; k 7é 0} is finite. It follows that @kEQ Cl,"kbk‘j = @kex Cl,"kbkzj is

defined. Hence ab is defined. The argument is similar in case b is column-finite.
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Now suppose that a is row-finite and b is column-finite. By the paragraph above,
¢ = ab is defined. Let i € Q. Since a is row-finite, the set X = {k € Q | a;; # 0}
is finite. Since b is column-finite, the set ¥ = {j € Q | (3k € X)(by; # 0)} is finite.
We shall prove that a;by; = 0, forany j € Q \ Y and any k € Q. If k ¢ X, then
aix = 0 and we are done. If k € X, then, since j ¢ Y, we get by; = 0. In any case,
we are done. This proves that ¢;; = 0 whenever j € Q \ Y, thus completing the
proof that c is row-finite. The proof that ¢ is column-finite is symmetric.

A similar type of argument yields (4). O

Proposition 3.5.3 The following statements hold, for any Boolean inverse semi-
group S and every set Q2.

(1) The multiplication, (a,b) > ab, defined in the statement of Lemma 3.5.2,
endows BS(S) with a structure of an inverse semigroup, for which the inverse of

a matrix a = (a,-zj | (i,j) € Q x Q) is given by a=! = (aj:.l | (i,j) € Q2 % Q)

The idempotent elements of BS(S) are the diagonal matrices with idempotent
entries.

(2) Leta,b € BS(S). Thena < biffa;j < b;jforalli,j e Q.

(3) Two matrices a,b € Bg(S) are left orthogonal (resp., right orthogonal) iff any
row of a is left orthogonal to any row of b (resp., any column of a is right
orthogonal to any column of b). Furthermore, if a and b are orthogonal, then
their orthogonal join a @ b is defined, and

a@b:(aiJ‘@biJ|(i,j)€QXQ) .

4) Bg(S) is a Boolean inverse semigroup, in which Mg (S) is an additive ideal.

Proof (1) The proof of the associativity of the matrix multiplication on BS(S),
given in the statement of Lemma 3.5.2, is identical, mutatis mutandis (and using
Proposition 3.1.9), to the one of the associativity of the matrix multiplication over
any ring, so we omit it.
_ _l . . .
Now set t(a) = (aj!i | (i,j) € Q % Q), for any generalized rook matrix a over S.

A straightforward calculation yields that a-t(a) is the diagonal matrix with diagonal
entries EBjeQ r(a;;), for i € Q. A further easy calculation yields a - i(a) - a = a.
In particular, any matrix of the form a - ((a) is diagonal with idempotent diagonal
entries. Hence, any two such matrices commute. Since the map ¢ is obviously
involutive, it follows from Lemma 3.1.1 that BS(S) is an inverse semigroup, with
inversion map t. Further, the zero matrix is the zero element of BS(S).

(2) As observed in the proof of (1), r(a) is the diagonal matrix with entries ¢; =
Djecq r(ai;), fori € Q. Hence, r(a)b = (b;\i | (i,j) € 2 x Q) where we set b} ; =
e;b;j whenever i,j € Q. In particular, if a < b, thatis, a = r(a)b, then a;; < b;; for
alli,j € Q. Suppose, conversely, that a;; < b;; foralli,j € Q. Letk € Q\ {j}. From
r(bi,k)biJ = 0 and aip = bi,k it follows that I'(Lli’k)bi.j = 0. Since r(aiJ)biJ- = 4,
a direct application of Proposition 3.1.9 yields that e;b;; = a;;. Hence, a = r(a)b,
thatis, a < b.
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(3) For all i,j € Q, the (i, )-th entry of ab™" is P, q a: kb « - Hence, ab™ =0
iff a;, kbj . = 0 foreach k € Q, that is, any row of a is left orthogonal to any row
of b. The proof of the statement about right orthogonality is similar.

Now suppose that a L b. Let i,j,k € Q with j # k. Since a and b are both
generalized rook matrices over S, a;; Ly a;x and b;; 1y b;x. Moreover, by the
paragraph above, a;; Ly b;x and b;; Ly a;x. Therefore, a;; ® b;j Ly aix @ bix.
The proof of the relation a;; @ b;; Ly ar; ® by, is similar. It follows that the
matrix ¢ = (ai i®bij| (i,)) e 2x Q) is a generalized rook matrix over S. An easy
application of (2) yields then that c is the orthogonal join of {a, b}.

(4) By (1) above, Idp BS(S) is isomorphic to (IdpS)** endowed with the
componentwise ordering. By (3) above, it follows that Idp BS(S) is Boolean.
Hence, BS(S) is a Boolean inverse semigroup. The subset MS(S) is an ideal (cf.
Lemma 3.5.2), closed under finite orthogonal sum by (3) above, so it is an additive
ideal. O

For a Boolean inverse semigroup S and a set €2, denote by x;; the matrix with
(i,7)-th entry x and all other entries O, for all x € S and all (i, j) € 2 x Q. It follows
from Proposition 3.5.3 that every element of Mg (S) is a finite orthogonal join of
elements of the form x; ;. The x(; j, behave essentially like matrix units:

X@ij) " Ykl = Sj,k . (xy)(i,l) s for all X,y € S and all i,j, k,l e Q s (351)
(x(iJ-))_l = (x_l)(j,i) , forallx € Sandall i,j € 2, 3.5.2)

where §;; denotes the Kronecker symbol. In particular,

€@ = eiJ'(E(iJ))_l and ey = (E(iJ))_IE(Lj) s forall e € IdpS and all i,j e Q s
(3.5.3)

SO €(i,i) 9 €(jj) within Mg (S).

Corollary 3.5.4 Let S be a Boolean inverse semigroup, let Q be a set, and let
o € Q. Then the map n:S — Mg (S), X = X(0,0) is a lower semigroup embedding
and Mg (S) is an additive enlargement of 1[S].

Proof 1t is straightforward to verify from Proposition 3.5.3 that 5 is an additive
semigroup embedding. Set S = n[S]and T = Mg (S). Then S consists of all matrices
with all entries, with the possible exception of the (o0, 0)-th, zero. By the definition

of the multiplication in 7, we obtain easily that ST S = §. Since S =y , it follows
that S is an additive quasi-ideal of 7.

Finally, it follows from Proposition 3.5.3(3) that the orthogonal joins in T are
evaluated componentwise, thus every element of T is a finite orthogonal join of
elements of the form x;;, where x € § and (i,j) € Q x Q. From x;; =
X(i.0)X(0.0)X (o) it fOllows that x(;;) € T S T. Therefore, T = (T ST)®. O

It is interesting to compare the results of this section, especially Proposition 3.5.3,
to the corresponding results in ring theory. A unital ring R is an exchange ring if for
every x € R, there is an idempotent ¢ € R such that eR C xR and (1—e)R C (1—x)R.
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Every von Neumann regular ring is an exchange ring, but the converse fails. A C*-
algebra is an exchange ring iff it has real rank zero (cf. Ara et al. [13, Theorem 7.2]).
O’Meara proves in [91] that the ring B (R), of all countably infinite, row-finite, and
column-finite matrices over a regular ring R, is an exchange ring. He also observes
there that for an arbitrary exchange ring R, B(R) may not be an exchange ring. On
the other hand, it is well known that the ring B(R) is not regular unless R is trivial
(if s is the matrix of the shift operator, then 1 — s has no quasi-inverse in B(R)).

3.6 Crossed Product of a Boolean Inverse Semigroup
by a Group Action

The goal of this section is to extend, to Boolean inverse semigroups, the classical
construction of the crossed product of a ring by a group action (cf. Sect. 2.8).

Let a group G act by automorphisms on a Boolean inverse semigroup S. We
denote the group action by (g,x) — g(x). We setx - g = (81,,gqp_1(x) | (p.q) €
G x G), for any (x, g) € S x G, where §,, denotes the Kronecker symbol. The set
S-G ={x-g| (x,g) €S x G} is asubset of the Boolean inverse semigroup BGGB(S)
of row-finite and column-finite G x G generalized rook matrices over S (cf.
Proposition 3.5.3). The following lemma records a few elementary properties of
the elements x - g. Its proof is straightforward and we leave it to the reader.

Lemma 3.6.1 The following statements hold, for any x,y € S and g,h € G:

(1) x-g=y-hiffx =yand either g = horx = 0;

@) (- )-h) = (xg(v)) - ghs

B g l=g 'l

) d(x-g) =g @) 1;

S r(x-g)=rkx)-1.

In particular, S-G is an inverse subsemigroup of Bga (S), and the idempotent elements
of S-Garethee- 1, where e € 1dp S.

Definition 3.6.2 The crossed product of S by (the action of) G, denoted by § x G,
is the closure of S - G under finite orthogonal joins, within BE‘? (S).
Hence the elements of S x G are the orthogonal joins of the form

x=@P(xi-g). whereneZ" andeach (xi.8) € SxG. (3.6.1)

i=1

The orthogonality, within BQGB (S), of the finite sequence (x;-g;|i € [n]) is, by
Lemma 3.6.1, equivalent to the orthogonality, within Idp S, of both finite sequences

(¢7'(d(x)) | i € [n]) and (r(x;) | i € [n]).
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Proposition 3.6.3 Let a group G act by automorphisms on a Boolean inverse
semigroup S. Then SXG is an additive inverse subsemigroup of BQGB (S). In particular,
it is a Boolean inverse semigroup. Furthermore, Idp(S x G) = (IdpS) - 1, and the
canonical map €:S — S X G, x +— x - 1 is a lower semigroup embedding.

Proof Tt follows from the definition of S x G, together with Lemma 3.6.1 and
Proposition 3.1.9, that S x G is an inverse subsemigroup of B?(S), closed under
finite orthogonal sums. Any element x € S x G can be written in the form (3.6.1),
and then, using Lemma 3.6.1, we get r(x) = e- 1 where e = @_, r(x;). It follows
that Idp(S x G) = (Idp S) - 1. Since Idp S is Boolean, so is Idp(S x 1). In particular,
Idp(S x 1) is closed under the operation (x,y) — x ~y. By Lemma 3.1.13, S x G is
a Boolean inverse semigroup.

Letx € S x G, written as in (3.6.1), and let y € S such that x < y- 1 within S X G.
Foreachi € [n], x;-g; = r(x;-g)(y-1) = (r(x,-) . 1)(y-1) =r(x)y-1, thusx; = r(x;)y
(i.e.,x; <y) and either g; = 1 or x; = 0. In any case, x; - g; = x; - 1. Then it follows
from Lemma 3.6.1 that the x; are pairwise orthogonal in S; whence x = (P}, x;)-1
belongs to the range of €. Therefore, ¢ is a lower semigroup embedding. O

Our next encounter with crossed products of Boolean inverse semigroups,
involving type monoids, will occur in Theorem 4.1.10.

3.7 Fundamental Boolean Inverse Semigroups
and Boolean Inverse Meet-Semigroups

Two important subclasses of the class of all Boolean inverse semigroups will come
up repeatedly in our work, namely fundamental Boolean inverse semigroups and
Boolean inverse meet-semigroups. This will also motivate the introduction of a
definition of semisimplicity for Boolean inverse semigroups, close in spirit to the
eponymous ring-theoretical concept.

We start by recalling the following definition.

Definition 3.7.1 An inverse semigroup S is fundamental (cf. Howie [60],
Munn [87])° if the identity is the only idempotent-separating congruence of S.
Equivalently, every element of S, which commutes with all idempotent elements
of §, is idempotent.

Denote by u the largest idempotent-separating congruence of an inverse semi-
group S. By Howie [60, Theorem V.3.4], the quotient S/ p is then fundamental and
Idp(S/p) = Idp S.

The following lemma records a useful basic property of fundamental inverse
semigroups.

SIn Wagner [112, 113], Zhitomirskiy [126, 127], such semigroups are called antigroups.
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Lemma 3.7.2 Let S be a fundamental inverse semigroup and let p and q be atoms
of Idp S. Then there is at most one element x € S such that d(x) = p and r(x) = q.

Proof We first deal with the case where p = ¢. Let x € S such thatd(x) = r(x) = p.
In particular, x = pxp. Since p is an atom, every e € Idp S satisfies either p < e or
pe = 0. In the first case, xe = ex = x. In the second case, xe = ex = 0. In either
case, xe = ex, so x commutes with every idempotent of S. Since S is fundamental, x
is idempotent, so x = p.

Now we deal with the general case. Let x,y € S such that d(x) = d(y) = p and
r(x) = r(y) = q. It follows that d(x™'y) = r(x~'y) = p, thus, by the paragraph
above, x~'y = p. It follows that y = gy = xx™ 'y = xp = x. O

Example 3.7.3 For any set X, the symmetric inverse monoid Jx (cf. Example 3.1.8)
is a fundamental Boolean inverse semigroup.

Example 3.7.4 For a group G, the monoid G“° (cf. Definition 1.5.1) is a Boolean
inverse semigroup, with the same unit as G. It is fundamental iff G is trivial.

Let 7,:G — G, x > gx, for all g € G. Then the assignment 7: G*° — Jg
(cf. Example 3.1.8), defined by 0 — &, g + 1, is a semigroup embedding
from G° into J;. The orthogonality relation on the range of t is trivial, hence
the range of 7 is closed under finite orthogonal joins. Therefore, GY° is isomorphic
to an inverse subsemigroup of Jg, closed under finite orthogonal joins. More
generally, recall from Corollary 3.3.2 that every Boolean inverse semigroup has
an additive semigroup embedding into some symmetric inverse monoid, thus into
some fundamental Boolean inverse semigroup. This shows that Lemma 3.1.13 does
not extend to fundamental Boolean inverse semigroups.

Definition 3.7.5 The pedestal of a Boolean inverse semigroup S is defined as the
set PedS = {x € S| § | x s finite}. We say that S is semisimple if Ped S = S.

The terminology in Definition 3.7.5 is consistent with the one, introduced in Ara
and Goodearl [10, Definition 2.3], for conical refinement monoids. With an eye on
ring theory, it would seem reasonable to call the subset defined above the socle
of S. However, the concept of the (left or right) socle, of a semigroup with zero (cf.
Clifford and Preston [30, § 6.4]), is related, but not equivalent, to our concept of a
pedestal, even in the particular case of Boolean inverse semigroups.

It is not hard to verify that an element x, in a Boolean inverse semigroup S,
belongs to Ped S iff d(x) (equivalently, r(x)) is a finite join of atoms of the Boolean
ring Idp S, iff x is a finite orthogonal join of atoms of S. Further, Ped S is an additive
ideal of S. Observe also that every finite Boolean inverse semigroup is semisimple.

Proposition 3.7.6 Every additive congruence 0 of a fundamental semisimple
Boolean inverse semigroup S is ideal-induced, and S/ 0 is a fundamental semisimple
Boolean inverse semigroup.

Proof By applying Proposition 3.4.9 to the canonical projection 6: S — S/6, we
obtain that the subset I = 0/ is an additive ideal of S. In order to prove that 8 is
induced by that ideal, it suffices to prove that the additive semigroup homomorphism
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0:S/1 — S/ given by Proposition 3.4.9 is one-to-one, that is, 8(x) = 6(y) implies
thatx =; y, forallx,y € S.

We first settle the case where x,y € ¢Sp, for atoms p and g of B. Since § is
fundamental and by Lemma 3.7.2, either x = y or 0 € {x, y}. In the first case, x =; y
trivially. In the second case, say x = 0, then 8(y) = 0, thatis, y € I, so x =; y.

Now we settle the general case. Since S is semisimple, there is a finite set P
of atoms of Idp S whose (orthogonal) join contains d(x), r(x), d(y), r(y). For any
p.q € P,0(gxp) = 6(qyp), thus, by the paragraph above, gxp =; gyp. By evaluating
the orthogonal join, over p € P, of both sides of that equation, we obtain, since =;
is an additive congruence (cf. Proposition 3.4.6), the relation

PBaer= Pap.

PpEP PEP

thus, using Proposition 3.1.9, gx =; gy. By the same token, now summing up over g
instead of p, we obtain x =, y. This completes the proof that 8 is one-to-one.

Observe that x/@ is either zero or an atom, for every atom x of S, according to
whether x € I or x ¢ I, respectively. Since every element of S is a finite join of
atoms, it follows that every element of S/# is a finite join of atoms, that is, S/ is
semisimple.

Finally we prove that S/0 is fundamental. This amounts to proving that for every
x € S, if xe =¢ ex for all e € 1dp S, then x/6 is idempotent in S/6. Since 0 is
one-to-one, we get xe =; ex, for all e € Idp S. The latter relation means that there

is z, € S such that z, < e and {xe ~ z,,ex~z.} € I. Set v = d(x) V r(x) (any
ex

larger idempotent would do). Since S is semisimple, the set P = (Idp S) | v is finite.
Since [ is an additive ideal of S, the idempotent element

u=\/(d(xe ~z) v d(ex~z))

eEP

belongs to /; moreover, u < v. Observe that xe ~ z, = (xe ~ z.)u for each e € P.
Hence, from z, < xe it follows that xe(v ~ u) = z,(v ~ u). Likewise, ex(v ~ u) =
Ze(v ~ u), so xe(v ~ u) = ex(v ~ u). It follows that x(v ~ u) commutes with every
element of P, thus with every idempotent below v. Since it also commutes with
every idempotent e orthogonal to v (for in that case, xe = ex = 0), it follows that
x(v ~ u) commutes with every idempotent of S. Since S is fundamental, x ~ xu =
x(v ~ u) is idempotent in S, thus x/0 = x(v ~ u)/0 is idempotentin S/8. O

Definition 3.7.7 An inverse semigroup S is an inverse meet-semigroup (cf.
Leech [79], also Lawson [75]) if it is a meet-semilattice under <, that is, the
meet x Ay exists for all x,y € S.
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As witnessed by Example 3.1.7, not every finite inverse monoid with zero is

. . . 1 3 .
an inverse meet-semigroup: in that example, ) < 4’ but there is no x such that

1

3 . . . .
) <x< 4 For Boolean inverse semigroups, this strange behavior does not occur.

Proposition 3.7.8 Let S be a Boolean inverse semigroup, let x € Ped S, and let y €
S. Then x Ay exists in S. In particular, every semisimple Boolean inverse semigroup S
is an inverse meet-semigroup.

Proof The set X, of all common lower bounds of x and y, is a compatible subset of
the finite set S | x. Since S is Boolean, X has a join in S, which is necessarily the
meet of {a, b}. O

The following example shows that not every fundamental Boolean inverse
semigroup is an inverse meet-semigroup. By Proposition 3.7.8, any such example is
infinite.

Example 3.7.9 Define S as the inverse subsemigroup of the symmetric inverse
semigroup J,+ (cf. Example 3.1.8) consisting of all functions whose domain
is either finite or cofinite. Then S is a fundamental Boolean inverse semigroup.
However, for any permutation o of Z* whose fixed point set consists of all even
numbers, o A idz+ does not exist in S. Hence S is not an inverse meet-semigroup.

It is well known that any compatible elements x and y in an inverse semigroup S
have a meet, given (among many other expressions) by (3.1.3). In particular, every
semigroup homomorphism preserves compatible meets. On the other hand, we
will see shortly that additive semigroup homomorphisms between Boolean inverse
meet-semigroups may not preserve meets (cf. Example 3.7.12). Nevertheless, the
following result shows that under certain conditions, additive semigroup homomor-
phisms may preserve all meets.

Proposition 3.7.10 Let S be a fundamental Boolean inverse semigroup, let T
be a Boolean inverse semigroup, and let f:S — T be an additive semigroup
homomorphism. Then f(x Ay) = f(x) Af(y), forall x e PedS and all y € S.

Note Although, by Proposition 3.7.8, the meet x Ay exists in S, we are not assuming
that 7 is an inverse meet-semigroup.

Proof Set B = Idp S. The set P, of all atoms of B below d(x) V r(x), is finite. Let

fx)
)

and f(gq) on the left side, we obtain

z € T suchthatz < . By multiplying those inequalities by f( p) on the right side

F@)f (p) <1@P)

< , foranyp,qeP. 3.7.1)
f(qyp)
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It follows from Lawson [73, Proposition 1.4.19] that (gxp) A (gyp) = q(x A y)p.
Further, by Lemma 3.7.2, either gxp = gyp or 0 € {gxp, gyp}. Hence, in any case,

flgxp) Af(qyp) = flq(x AY)p) = f(@f x AY)f(p),

and hence, by (3.7.1), we get f(q)zf (p) < f(q)f (x Ay)f(p). This holds for all p, g €
P, thus, since z < @pePf(p) and by using the additivity of f, we get z < f(x A y).
O
The following two examples show that the assumption in Proposition 3.7.6,
that x € PedS, cannot be dropped. Moreover, Example 3.7.11 witnesses that
Proposition 3.7.10 cannot be extended to arbitrary finite Boolean inverse semi-
groups S, and Example 3.7.12 witnesses that the finiteness assumption is necessary
in Proposition 3.7.10, even for inverse meet-semigroups S.

Example 3.7.11 Finite Boolean inverse monoids S and 7', together with a surjective,
non one-to-one additive semigroup homomorphismf: S — T such thatkerf = {0}.

Proof Let G be any non-trivial group. Set S = G"? and T = {0, 0o} (the two-
element join-semilattice), and let f:S —> T the map that sends O to 0 and any
element of G to co. Then f is an additive semigroup homomorphism and kerf =
{0}. Since G is non-trivial, f is not one-to-one. O

Example 3.7.12 Fundamental, unital, Boolean inverse meet-semigroups S and 7,
together with a surjective additive semigroup homomorphism f: S — T, with an
invertible element o € S\ {1} such that f(a A 1) < f(e) = f(1) and @ Fyers 1. In
particular, f is not ideal-induced.

Proof Define S as the inverse submonoid of the symmetric inverse monoid J,+ (cf.
Example 3.1.8) consisting of all bijections x: A — B, where A and B are both either
finite or cofinite subsets of Z1, and such that if A is cofinite, then there exists n € Z
such that x(k) = n + k for all large enough k € A (this condition is put there in
order to ensure that S is an inverse meet-semigroup). Further, define T as the two-
element join-semilattice {0, co}, and define f: S — T by letting f(x) = oo iff the
domain of x is cofinite, whenever x € S. Then S and T are both fundamental unital
Boolean inverse meet-semigroups and f is an additive semigroup homomorphism
from Sto 7.

Now let a be any permutation of Z* without fixed points (e.g., let a inter-
change 2n and 2n + 1, for any n € Z%). Then f(a) = f(id) = oo and
fla Aid) = f(0) = 0. If @ =iy id, then o and id would need to agree on some
cofinite subset of Z1, which is not the case. O

The following example shows that an additive homomorphic image of a funda-
mental unital Boolean inverse meet-semigroup may not be fundamental.

Example 3.7.13 A fundamental unital Boolean inverse meet-semigroup S, a unital
Boolean inverse meet-semigroup 7, and a surjective additive semigroup homomor-
phism f: S — T, such that T is not fundamental.
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Proof We use the same monoid S as in Example 3.7.12 together with the larger
T = Z"°. For every x € S, we set f(x) = 0 in case the domain of x is finite. If x
is infinite, we define f(x) as the unique n € Z such that x(k) = n + k for all large
enough k. Observe that T is not fundamental (cf. Example 3.7.4). O

We will need later the following preservation result for fundamental Boolean
inverse semigroups and Boolean inverse meet-semigroups.

Proposition 3.7.14 Let T be a Boolean inverse semigroup. If T is fundamental
(resp., a Boolean inverse meet-semigroup), then so is any additive quasi-ideal of T,
and so is Mg(T), for any set Q.

Proof Let S be any additive quasi-ideal of T. It follows from Proposition 3.1.18
that S is a lower inverse subsemigroup of 7.

Set T = ME(7).

Suppose first that 7' is fundamental and let x € S commute with all idempotents
of S. Since x commutes with both d(x) and r(x), we get d(x) = r(x). Denote
by a this element. Since S is a lower subset of 7, T | a is contained in Idp S. By
assumption, it follows that x commutes with all elements of 7 | a. On the other
hand, xe = ex = 0 for any e € Idp T orthogonal to a. Since e = ea @ (e~ a) for any
e € Idp T and by Proposition 3.1.9, it follows that x commutes with all idempotent
elements of 7. Since T is fundamental, x is idempotent. Therefore, S is fundamental.

Any element x € T that commutes with all idempotents must commute with all
ey, where e € Idp S and i € [n]. It follows easily that x must be a diagonal matrix,
each of whose diagonal entries commutes with all idempotents of 7. Since T is
fundamental, it follows that x is a diagonal matrix with idempotent entries; hence x
is idempotent. Therefore, T is fundamental.

Finally, we only assume that 7 is an inverse meet-semigroup. Since S is a lower
subset of 7, it is a meet-subsemilattice of 7, thus it is also a fundamental unital
Boolean inverse meet-semigroup. Furthermore, since 7' is an inverse meet-semi-
group and by Proposition 3.5.3(2), T is an inverse meet-semigroup and the meets
in T are evaluated componentwise. O

3.8 Inner Endomorphisms and Automorphisms
of a Boolean Inverse Semigroup

We set ad,(x) = g (x) = gxg~', for all elements g and x in an inverse semigroup S.
We call ad, the inner endomorphism determined by g. If S is unital, then inner
endomorphisms with respect to invertible elements are automorphisms, called inner
automorphisms of S.

In order to extend this definition to the case where S is not unital, we add
the assumption that S is Boolean, then we need to drop the assumption that g
be invertible but we keep the assumption that d(g) = r(g). Then we replace g
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by g @ e, for large enough idempotents e ranging through the ideal gt =
{ecldpS|el g} ={eecldpS|ge = eg =0} of the Boolean ring Idp S. As the
following lemma shows, for large enough e € g*, the value of (g @ e) (x) depends
only on g and x.

Lemma 3.8.1 Let S be a Boolean inverse semigroup and let g,x € S. Then the
value of (g & e) (x), where e € gt and d(x) v r(x) < (d(g) Vv r(g)) & e, depends
only on g and x.

Proof Both elements x = d(x) Vv r(x) and g = d(g) V r(g) are idempotent. Let
e; € IdpSsuchthate; 1 gandx < g@ ¢, fori € {0,1}. Frome; = (g D e;) ~ g
it follows, by multiplying on the left by x, that xe; = x ~ xg is independent of i.
Symmetrically, e;x = x ~ gx is also independent of i. It follows that e;xe; = xe; ~
gxe; = (x ~ xg) ~ g(x ~ xg) is also independent of i. Therefore,

(@e)(x) = (g@exg™ De) = gxg ™ ®gre Bepng ' @ epxe;

is independent of i. O

Notation 3.8.2 We shall denote by inn,(x) the constant value of (g ® e) (x), for
large enough e € gt.

Hence, inny is the directed union, over all e € gJ', of all maps ad,g..

We will be interested in situations where inn, is an automorphism of S. We wish
to identify those g € S such that inn, defines an automorphism of aSa for any large
idempotent a. Accordingly, we define a subset of § as follows.

Notation 3.8.3 We set Self S = {g € S| d(g) =r(g)}, for any Boolean inverse
semigroup S.
Observe that Self S is usually not a subsemigroup of S.

Lemma 3.8.4 The following statements hold, for any Boolean inverse semigroup S:

(1) innyg, = inn,, for any g € S and any e € gt. In particular, inn, = idg
whenever e is idempotent.

(2) inng = inngoinny, for any f, g € Self S with d(f) = d(g).

(3) inn, is an automorphism of S, for any g € Self S. We call the automorphisms of
that form the inner automorphisms of S.

(4) x 2 inng(x), for any x € S and any g € Self S.

(5) The inner automorphisms of S form a subgroup of the automorphism group of S.

Proof (1) is trivial.

(2) Seta = d(f) = d(g). For all x € S and all large enough ¢ € a*,

(inngoinny)(x) = (f D e) (gD e) (x)) = (f D e)(g B e)) (x)
= (fg D e)(x)

= inng(x) .

(3) follows trivially from (1) and (2).
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(4) Since x 2 d(x) for every x, a direct application of (3) reduces the problem
to the case where x is idempotent. Set @ = d(g) = r(g) and let ¢ € a' such that
dx) vr(x) <a®e.Settingh = g ® e, we get d(h) = r(h) = a & e. It follows
from Lemma 3.8.1 that inn, (x) = & (x); thus inn, (x) = (hx) (hx)™". Moreover,

()" hx=x'"h T hx=xNa®e)x =x"'x =x.

Hence x Z inng(x).

(5) Let f,g € SelfS, with respective domains a and b. We must prove that
inny o inn, is an inner automorphism of S. By (1), we may replace f by f @ (b ~ a)
and g by g & (a ~ b), and thus suppose that d(f) = d(g). The conclusion follows
then immediately from (2). O

Observe that every inner automorphism of  fixes all elements in some a*, where
a € S:if g € Self S and d(g) = r(g) = a, then inn,(x) = x for every x € at.

Notation 3.8.5 We denote by Inn S the group of all inner automorphisms of S.

Of course, if S has a unit, then Inn§ = {adg | g invertible element of S }
However, InnS is also defined if S has no unit. In fact, it can be proved that
Inn§ =~ Inn?Si where S is the Boolean inverse monoid, introduced in Sect. 6.6, which
we will call the Boolean unitization of S.
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