Chapter 2

Real-Time Face Identification

via Multi-convolutional Neural Network
and Boosted Hashing Forest

Yury Vizilter, Vladimir Gorbatsevich, Andrey Vorotnikov and Nikita
Kostromov

Abstract The family of real-time face representations is obtained via Convolu-
tional Network with Hashing Forest (CNHF). We learn the CNN, then transform
CNN to the multiple convolution architecture and finally learn the output hashing
transform via new Boosted Hashing Forest (BHF) technique. This BHF generalizes
the Boosted Similarity Sensitive Coding (SSC) approach for hashing learning with
joint optimization of face verification and identification. CNHF is trained on CASIA-
WebFace dataset and evaluated on LFW dataset. We code the output of single CNN
with 97% on LFW. For Hamming embedding we get CBHF-200 bit (25 byte) code
with 96.3% and 2,000-bit code with 98.14% on LFW. CNHF with 2,000 x 7-bit hash-
ing trees achieves 93% rank-1 on LFW relative to basic CNN 89.9% rank-1. CNHF
generates templates at the rate of 40+ fps with CPU Core i7 and 1204 fps with GPU
GeForce GTX 650.

2.1 Introduction

Various face recognition applications presume different priorities of template size,
template generation speed, template matching speed, and recognition rates. We know
that the fastest search in a database is provided by binary templates with Hamming
distance [1, 7-10, 12, 14, 18, 20, 21, 30, 34]. On the other hand, the best face
recognition rates are achieved by deep convolutional neural networks (CNN) with
non-binary face representations [3, 5, 23-25, 27, 29, 31, 35]. These approaches can
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be fused in the special CNN architecture with binary output layer, which we refer as
Convolutional Network with Hashing Layer (CNHL). The most promising CNHL
is described in [6], where CNN and hashing layer are learned together via back
propagation technique. But now we need the family of face representations, which
continuously varies from small Hamming codes to coded features with larger size,
better metrics and higher recognition rates. So, in this chapter we propose to combine
the CNN and additional hashing transform based on Hashing Forest (HF). Our HF
forms the vector of features coded by binary trees. HF with different depth of trees and
different coding objectives allows obtaining the family of face representations based
on the same CNN. We refer such CNN+HF architecture as Convolutional Network
with Hashing Forrest (CNHF). In case of 1-bit coding trees CNHF degrades to CNHL
and provides the Hamming embedding.

The architecture of our CNHF is based on the Max-Feature-Map (MFM) CNN
architecture proposed by Xiang Wu [31]. For real-time implementation we accelerate
our CNN via transforming to the multiple convolution architecture.

We propose the new Boosted Hashing Forest (BHF) technique, which generalizes
the Boosted Similarity Sensitive Coding (Boosted SSC) [20, 21] for discriminative
data coding by forest hashing with direct optimization of objective function and
given properties of coded feature space. We also introduce and implement the new
biometric-specific objective function for joint optimization of face verification and
identification.

Proposed CNHF face representations are trained on CASIA-WebFace dataset
and evaluated on LFW dataset. Our experiments demonstrate both compact binary
face representations and increasing of face verification and identification rates. In
the Hamming embedding task BHF essentially outperforms the original Boosted
SSC. Our CNHF 200 bit (25 byte) hash achieves 96.3% on LFW with 70-time gain
in a matching speed. CNHF 2,000 bit hash provides 98.14% on LFW. CNHF with
2,000x 7-bit hashing trees achieves 93% rank-1 on LFW relative to basic CNN 89.9%
rank-1.

The remainder of this chapter is organized as follows. Section 2.2 briefly describes
the related work. Section2.3 describes the architecture and learning of our CNHF
with multiple convolutional layers. Section 2.4 contains the outline of proposed BHF
technique and its implementation for face hashing. Experimental results are presented
in Sect. 2.5. Conclusion and discussion are presented in Sect.2.6.

2.2 Related Work

A lot of face representation techniques were proposed [4, 16, 26], but all state-of-the-
art results are obtained now via deep CNN. One can learn CNN for multi-class face
identification with classes corresponding to persons [27, 35], or learn the similar-
ity metric by training two identical CNNs (Siamese Architecture [5, 29], or com-
bine these approaches [23, 25, 32]). Best modern results on LFW are obtained by
ensembles of deep nets learned on different parts (patches) of face [13, 23, 25].
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Nevertheless, some single nets can be efficient enough with essentially lower com-
putational cost [3, 31]. Most frequently the CNN-based face representation is formed
as an output of top hidden layer [5, 23, 27, 29, 31, 35]. Sometimes the PCA is applied
for size reduction [23, 24]. The L2-distance [4, 29] or cosine similarity [23, 27, 31]
are of use for matching of face representations.

Binary hashing means the assigning of binary code to each input feature vec-
tor. The review of classical hashing techniques is presented in [9]. The simplest
binary hashing idea is to use some dimensionality reduction transform and then
apply some quantization technique. The optimization-based hashing approach pre-
sumes the similarity-driven data embedding into the Hamming space. In [7] the
similarity search is proposed based on linear binary coders and vectors of weights
obtained by random rotations. The Iterative Quantization (ITQ) technique [8] con-
siders the hashing problem as a search of rotation, which minimizes the quantization
error. Kernel-Based Supervised Hashing (KSH) [14] utilizes a kernel formulation for
the target hash functions. The affinity-preserving algorithm [10] performs k-means
clustering and learns the binary indices of the quantized cells. The manifold hash-
ing techniques follow the ideas of manifold learning. The Spectral Hashing [30]
relaxes the hashing problem in the manner of Laplacian Eigenmaps [1]. Topology
Preserving Hashing (TPH) [34] performs the Hamming embedding with additional
preserving the neighbor ranks. Locally Linear Hashing (LLH) [12] presumes both
preserving distances and reconstructing the locally linear structures. The Semantic
Hashing (SH) [18] solves the hashing problem with the use of Restricted Boltzmann
Machines (RBM). Boosted Similarity Sensitive Coding (Boosted SSC) proposed by
Shaknarovich, Voila and Darrell [20, 21] performs the sequential bit-by-bit growing
of the hash code with reweighting of samples in the manner of AdaBoost and forming
the weighted Hamming space.

The idea of binary face coding based on deep learning is well implemented in [6].
The CNN and hashing layer are learned together via back propagation technique,
and 32-bit binary face representation is generated with 91% verification on LFW.
Unfortunately, the direct optimization of more complex face coding criterions is not
available in this one-step CNHL learning framework. In particular, it cannot provide
the immediate optimization of Cumulative Matching Curve (CMC). Due to this we
implement the two-step CNHF learning procedure: learning basic CNN first and
hashing transform second.

Our hashing transform is based on hashing forest. Look at some previous for-
est hashing techniques. Qiu, Sapiro, and Bronstein [17] propose the random forest
semantic hashing scheme with information-theoretic code aggregation for large-scale
data retrieval. The feature induction based on random forest for learning regression
and multi-label classification is proposed by Vens and Costa [28]. Yu and Yuan [33]
implement a forest hashing with special order-sensitive Hamming distance. The for-
est hashing by Springer et al. [22] combines kd-trees with hashing technique. The
Boosted Random Forest algorithm proposed by Mishina, Tsuchiya, and Fujiyoshi
[15] is out of the binary hashing topic. Our approach performs the feature space
coding via boosted forest hashing in the manner of Boosted SSC with optimizing
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of task-specific objective function. So, we mainly consider our BHF technique as a
generalization of Boosted SSC.

2.3 CNHF with Multiple Convolution CNN

Our CNHF contains the basic deep CNN and additional hashing transform based
on Hashing Forrest (HF). This hashing forest forms the output CNHF binary face
representation, which semantically corresponds to some objective vector of features
coded by these binary trees (Fig.2.1). For obtaining the family of optimized face rep-
resentations based on the same CNN we use the two-step CNHF learning procedure.
At the first step the CNN is formed and trained for multi-class face identification.
At the second step the hashing transform is trained for combined face verification
and identification. We start from learning the source CNN with softmax output layer
for face identification. Then we transform its convolutional layers to the multiple
convolution form. Finally we cut the output softmax layer and use the activations of
top hidden layer as a basic face representation for further hashing. In this chapter, we
use the Max-Feature-Map (MFM) CNN architecture proposed by Xiang Wu [31]. It
is based on the Max-Feature-Map activation function instead of ReLU. Reference
[31] demonstrates that Max-Feature-Map can get the compact and discriminative
feature vectors. The source network architecture contains four convolutional layers,
four layers of pooling + MFM pooling, one fully connected layer and the softmax
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Fig. 2.1 Architecture of CNHF: CNN + hashing transform based on hashing forest
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Fig. 2.2 Architecture of source MFM deep net [25]

layer (Fig.2.2). Following the approach of Xiang Wu [31] we start from learning this
source MFM deep net for multi-class face identification with classes corresponding
to persons in the manner [24, 31] using the backpropagation technique.

Unfortunately, we cannot directly implement the architecture (Fig.2.2) for the
real-time face identification with CPU. We need to optimize this architecture in
order to obtain essentially higher calculation speed. So, we propose and apply the
new approach for sequential transformation of deep network topology based on the
following tricks:

1. We use the small-sized filters instead of large-sized filters in the convolutional
layers. For example, we substitute one layer with 5 x 5 filters by the sequence of
two layers with 3 x 3 filters, which is 1.38 times faster on CPU.

2. We decrease the number of filters in each layer. For example, the first layer of
source net (Fig.2.2) contains 96 filters, but the first layer of our transformed net
contains 20 filters only, which is more than 4 times faster on CPU.

3. The each layer is transformed and relearned separately. For this purpose we need
to provide the equal input and output dimensionalities for the source layer and
corresponding part of transformed net, which is used for its substitution. We do
this by adding the 1 x 1 x n layers to the transformed net, where # is the number
of filters in the substituted source layer. For example, we substitute the one 9 x
9 x 96 layer of source network (Fig.2.2) by the sequence of two layers 9 x 9 x
20and 1 x 1 x 96, which is still more than 4 times faster on CPU.

Thus, we simplify the network topology sequentially, layer by layer, without the
relearning of the whole CNN. In this process we represent the each convolution as a
combination of convolutions, so, we refer the resultant architecture of transformed
net as “multiple convolutional” or briefly “multiconv”. At the each step of one layer
substitution we use the Euclidean loss for minimization of difference between the
output response of this source layer and corresponding part of transformed net,
which is used for its substitution, for the same input values. Figure 2.3 illustrates
the proposed scheme for topology transformation and relearning. The training set at
this stage contains face images without pointing to persons. We use the open source
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framework Caffe for learning of transformed layers by standard back propagation
technique as well as for the whole network training (see Sect.2.5.1).

Finally, we could represent the proposed process for deep net architecture sequen-
tial transformation as the following informal Algorithm O.

Algorithm 0: CNN transform to multiconv net
Input data: conv net.
Output data: multiconv net.
Initialization:
multiconv net = conv net.
Repeat iterations:
Step 1. Find the slowest conv layer L in multiconv net;
Step 2. Replace L by sequence of layers S with less
summarized number of convolutions;
Step 3. Learn S using the Euclidean loss for imitating
the output of substituted layer L;
while speed grows and accuracy is still high enough
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Table 2.1 Iteration 1

Layer Convolutional | Convolutional | Convolutional | Convolutional | Convolutional
layer 2 layer 3 layer 4 layer 5 layer 6
(Fig.2.2) (Fig.2.4) (Fig.2.4) (Fig.2.4) (Fig.2.4)

Filter size 5x5x48 3 x3x48 1x1x24 3x3x32 1x1x32

Number of 192 24 32 32 192

filters

Number of 722,534,400 | 34,877,952 2,583,552 28,901,376 19,267,584

operations

(mult.)
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Fig. 2.4 Architecture of CNHF based on MFM net with multiple convolutions
Table 2.2 Iteration 2
Layer Convolutional Convolutional Convolutional Convolutional
layer 3 (Fig.2.2) |layer 7 (Fig.2.4) |layer 8 (Fig.2.4) |layer 9 (Fig.2.4)
Filter size 5x5x%x96 3x3x96 3x3x64 1 x1x128
Number of filters | 256 64 128 256
Number of 353,894,400 37,380,096 42,467,328 18,874,368
operations (mult.)

Actually, only three iterations of the Algorithm O were used.

Iteration 1: Convolutional layer 2 (Fig.2.2) was replaced by layers 3, 4, 5, 6 (see
the Table2.1):

The original layer (layer 2 in Fig.2.2) requires more than 700 million multipli-
cations and produces the output with the dimensions of 56 x 56 x 192, the layer
sequence (layers 3, 4, 5, 6 in Fig.2.4) requires about 90 million of multiplications
(about 7 times less than the original layer) with the same output size.

Iteration 2: Convolutional layer 3 (Fig. 2.2) was replaced by layers 7, 8,9 (Table 2.2):

The original layer (layer 3 in Fig.2.2) requires more than 350 million multipli-
cations and produces the output with the dimensions of 24 x 24 x 256, the layer
sequence (layers 7, 8, 9 in Fig. 2.4) requires about 100 million multiplications (about
3 times less than the original layer) with the same output size.
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Table 2.3 Iteration 3
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Layer

Convolutional layer 1
(Fig.2.2)

Convolutional layer 1
(Fig.2.4)

Convolutional layer 2
(Fig.2.4)

Filter size I9x9x1 I9x9x1 1x1x20
Number of filters 96 20 96
Number of operations | 111,974,400 23,328,000 27,648,000

(mult.)

Iteration 3: Convolutional layer 1 (Fig.2.2) was replaced by layers 1, 2 (Table2.3):

The original layer (layer 1 in Fig.2.2) requires more than 110 million multipli-
cations and produces the output with the dimensions of 120 x 120 x 96, the layer
sequence (layers 1, 2 in Fig.2.4) requires about 50 million multiplications (about 2
times less than the original layer) with the same output size.

Unfortunately, all our attempts to replace layer 4 from the original network led to
significant loss in accuracy (greater than 10%), but this layer requires relatively less
computations — about 90 million multiplications.

The main advantage of this approach is a relatively high speed of learning at the
steps of layer substitutions. We used the GTX 1080 card for this learning and trained
the one multiconv substitution approximately in 10—15min. This allows performing
the multiconv transformation of any source CNN architecture in the very convenient
and partially automated way.

After all simplifying substitutions, the transformed CNN is trained again for multi-
class face identification with classes corresponding to persons in the manner [24, 31]
using the backpropagation technique. Finally the output softmax layer of transformed
MFM net is replaced by hashing forest, and we obtain the CNHF based on MFM with
multiple convolutional layers (Fig. 2.4). In result our CNHF contains 10 convolutional
layers, four layers of MEM+-pooling, fully connected layer and hashing forest. This
CNHF generates face templates at the rate of 404 fps with CPU Core i7 and 120+
fps with GPU GeForce GTX 650. Thus, we can conclude that the proposed multiconv
approach makes our CNHF 5 times faster on CPU than source CNN. It is enough for
the real-time operation.

2.4 Learning Face Representation via Boosted Hashing
Forest

2.4.1 Boosted SSC, Forest Hashing and Boosted Hashing
Forest

We learn our hashing transform via the new Boosted Hashing Forest (BHF) technique,
which combines the algorithmic structure of Boosted SSC [20, 21] and the binary
code structure of forest hashing [15, 17, 22, 28, 33].
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Boosted SSC algorithms optimize the performance of L1 distance in the embed-
ding space as a proxy for the pairwise similarity function, which is conveyed by a
set of examples of positive (similar) and negative (dissimilar) pairs. The SSC algo-
rithm takes pairs labeled by similarity and produces a binary embedding space. The
embedding is learned by independent collecting thresholded projections of the input
data. The threshold is selected by optimal splitting the projections of negative pairs
and non-splitting the projections of positive pairs. Boosted SSC algorithm collects
the embedding dimensions greedily with adaptive weighting of samples and dimen-
sions in the manner of AdaBoost. BoostPro algorithm uses a soft thresholding for
gradient-based learning of projections.

The differences of proposed BHF w.r.t. Boosted SSC are the following:

1. BHF performs the binary coding of output feature space, which is not binary in
general, but can be binary Hamming, if required.

2. BHF performs the direct optimization of any given objective function of output
features.

3. BHF learns the objective-driven data projections via RANSAC algorithm without
gradient-based optimization.

4. BHF performs the recursive coding by binary trees and forms the hashing forest,
while Boosted SSC performs the iterative feature coding and forms hashing vector.

5. BHF performs the adaptive reweighting of training pairs based on their contribu-
tion to the objective function, unlike the AdaBoost-style reweighting of Boosted
SSC.

6. Boosted SSC forms the weighted Hamming space. Our BHF forms the any given
metric space, including non-weighted Hamming space for fastest data search.

Algorithm 1: Greedy ORC
Input data: X, 7, norc.
Output data: h(x): xeR" — ye {0,1}"*, h(x)eH.
Initialization:
Step 0. k:=0; h® := ().
Repeat iterations:
k= k+1;
Learn k-th elementary coder:
h®(x, h*D):= Learn1BitHash(J, X, h*D);
Add £-th elementary coder to the hashing function:
h¥(x) := (h*(x), A9(x, h*D));
while k<norc. // stop if the given size of coder is got

The main differences of proposed BHF w.r.t. other forest hashing techniques:
we obtain the hashing forest via RANSAC projections and boosting process in the
manner of Boosted SSC; we optimize the task-specific objective function in the coded
feature space, but not the similarity in the binary code space.

BHF implementation for face recognition has some additional original features:
new biometric-specific objective function with joint optimization of face verification
and identification; selection and processing of subvectors of the input feature vector;
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creation of ensemble of independent hash codes for overcoming the limitations of
greedy learning. In the next subsections we describe our BHF algorithms in detail.

2.4.2 BHF: Objective-Driven Recurrent Coding

Let the training set X = {x;€R™},—; _n contains N objects described by
m-dimensional feature vectors. Map X to the n-dimensional binary space: X =
{xi € R"}iz1..v — B={b; € {0, 1}"};=1...~. This mapping is an n-bit coder:

h(x):x e R" — b € {0, 1}" (2.1)
The elementary coder is called the 1-bit hashing function

h(x):xe R"— be{0,1} 2.2)

Let some objective function (coding criterion) is given and required to be mini-
mized

J (X, h) — min(h). 2.3)

Algorithm 2: RANSAC LearnlProjectionHash
Input data: 7 X, h(k'l), kransac.
Output data: i(w, £, x).
Initialization:
Step 0. £:=0; Fpin:=+00.
Repeat iterations:
k:=k+1;
Step 1. Take the random dissimilar pair (x; ,X;) in X.

Step 2. Get vector (X,,X;) as a vector of hyperplane
direction: wi=x; — X;.

Step 3. Calculate the threshold # minimizing 7(6) by
t with w=wy: t:=argmin, X, D, wy, 7).

Step 4. If AX, h%D, wy, #) < Juin, then

Tmin= I, hED Wi 1), W= Wi =t
while k<kransac. // stop if the given number of RANSAC
iterations is achieved

Denote h®(x) = (hV(x),...,h®(x)). The operation of coders concatenation
is h®(x) := (W* VY (x), ¥ (x)). The Greedy Objective-driven Recurrent Coding
(Greedy ORC) algorithm (Algorithm 1) sequentially forms the bits of our coder
in a recurrent manner: 2®(x) = h® (x,h*~1). The proper procedure for learning the
each kth bit is described in the next subsections.
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2.4.3 BHF: Learning Elementary Projection via RANSAC
Algorithm

At the kth step of coder growing

JX,h®)y = 7(X, h* D h®) > min{h® € H}, (2.4)

Algorithm 3: Optimal threshold selection
Input data: 7 X, h®D w, N,
Output data: 7.
Operations:
Step 1. For all x;€ X calculate projections #; = (X;,W);
Step 2. Arrange samples X; and projections # by in-
creasing of #. For all arranged indices i=1..N do:
A= 0;
Step 3. For all pairs (x;,X;) with # < ¢ do:
// increment the step values at projection points
Ay = A+ Gy,
Afy= A+ 3 = 3
A= A+ Jy 00— g
Step 4. Recover the stepwise objective function and
find the optimal threshold
IX, WD w, 1) = 0; // recover the first value
=05 Jin:=1o0.
Repeat iterations:
i=itl;
X, hED w, 1) = X, h%D w, t,1) + AF;
/I accumulate step values from left to right
If 3X, h*D, w, #;) < Fin, then
Tmin= X, RED w1 6= (6+ t1)/2;
while i<N-1. // stop if all step points are tested

where H is a class of coders. Consider the class of elementary coders based on
thresholded linear projections

(a)

Fig. 2.5 RANSAC LearnlProjectionHash: a Step 1, b Steps 2, ¢ Steps 3 of Algorithm 2
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h(w,t,x) = sgn(Q,_; , WiXp +1), (2.5)

where w — vector of weights, ¢ — threshold of hashing function, sgn(u) = {1, if u>
0; 0 - otherwise}. In case of (2.5) function (2.4) takes the form

TJX, W4 p®y = 7(X, h* D w, 1) —> min{w € R",t € R}. (2.6)

We use the RANSAC algorithm for approximate solving (2.6). RANSAC hypothe-
ses about w parameters are generated based on the random choice of dissimilar pairs
in a training set (Algorithm 2, Fig.2.5).

In general case the determination of optimal threshold at the step 3 of this Algo-
rithm 2 could require a lot of time. But in important particular case, the objective
function can be represented as a sum of some values corresponded to all pairs of
samples from the training set. If these values for each pair depend only on the fact,
whether the threshold separates the projections of these samples, or not, then the
objective function will be a stepwise function

j(Xa h(k71)7 w, t) = Z[:] N Zj:] N \71] (h(k71)5 w, t)’ (27)

..........

_ T 1€ [(xi, W), (X, W]
lh(k l),W,t — i ’ 1 ’ ] ’
Jis( ) Jl.;"“'), otherwise;
and the procedure for optimal threshold search can be implemented more effi-
ciently. For this case (2.7) we propose the special algorithm (Algorithm 3, Fig.2.6),
which requires O (N?) computations, and the number of computations for each pair
from the training set is low enough. For the fixed hypothesis w = w;, we arrange

Fig. 2.6 Optimal threshold 7.(t) M
selection (Algorithm 3): ~Y
stepwise objective function 9
recovering via accumulation i
of step values from left to Jour
right
—~
1.’ 4 [4
ATy
jﬂ”f

[y TR
4 ! 5' ?

.Il,mu-“lﬂ'n |
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projections t®; = (x;, wy) by increasing and test them as possible threshold values
via calculating the 7 (X, h*~D w;, t®,). The idea of this algorithm is to calculate the
step values at each projection point and then recover the stepwise objective function
via accumulation of step values from left to right.

2.4.4 BHF: Boosted Hashing Forest

Our LearnlBitHash procedure (see Algorithm 1) contains the recursive call of
Learn1ProjectionHash procedure (Algorithm 2). Consider the tessellation of X by
n-bit coder: Xz = {Xb, bE{O,l }n }, Xy = {XGX: h(x) = b}, X = Ube{(),l}nxb.
The process of recursive coding is a dichotomy splitting of training set with finding
the optimized elementary coder for each subset at each level of tessellation. So, the
recursive coder for kth bit

h® (x, A D) = h(wh* P (x)), 1 (WD (x)), x), (2.8)

Algorithm 4: Boosted Hashing Forest
Input data: X, 7, norc, ngur.
Output data: h(x): xeR"” — ye{0,1}".
Initialization:
[:=0; h{-0:= (),
Repeat iterations:
[=1+1;
Form the objective as a function of /-th coding tree:
00X, hU) = (X, I, RO
Learn /-th coding tree:
h*11 := GreedyORC(M, X, norc);
Add /-th coding tree to the hashing forest:
(%) = (h1(x), hE(x)):;
while [<norc. // stop if the given size of coder is got

is a combination of 2~ thresholded projections

h® (x, h*=D) = Learn1BitHash(7, X,h*=D)
= {Learn1ProjectionHash(7, X (h*=D b), h*=D) b e {0, 1}* D}, (2.9)

Such recursive n-bit coder h(x) is a tree of thresholded projections (Fig.2.7),
which has much more recognition power relative to the n-bit sequence of thresholded
projections.

We know that one coding tree cannot provide the fine recognition rate. Besides, the
number of projections in a tree grows exponentially with tree depth. So, the training
set of some fixed size allows learning the trees with some limited depth only. Due to
this, we form the hashing forest via the boosting of hashing trees with optimization
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Fig. 2.7 The scheme of recursive coding by binary trees
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of joint objective function for all trees. We call such approach as Boosted Hashing
Forest (BHF) (Algorithm 4, Fig.2.8).

Here we use the following notation: npgrc = p is a depth of coding tree;
ngur = nlp is anumber of trees; ht"-!! = (h(V(x),...,h"" (x)), h 11 = (nD(x),...,
h(lp—p)(x)), ht1 = (h(lp—p-%l)(x)’“.,h(lp)(x)).

2.4.5 BHF: Hashing Forest as a Metric Space

We call the metric space (Y, dy) with dy: YxY —R™ as n-bit binary coded,
if the each yeY corresponds to unique be{0,1}", and two decoding functions
are given: feature decoder f(b): {0,1}" — Y and distance decoder f,(b;,by):
{0,1}"x{0,1}* — R*, fu(bi,by) =dy(fy(b1),fy(by)). This allows define the
distance-based objective function (DBOF) for coder h(x) of the form

(X,h) = minth) & J(Dy) — min(Dy),

Dy = {d; = fah(x), h(x)). x..%; € X.h®) € B}y oy, 210
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Fig. 2.9 Search index distance as a geodesic distance between codes as corresponding leaves on a
coding tree

Such objective function depends on the set of coded distances d;; only. In our
current implementation of BHF we match p-bit binary trees via the search index
distance (Fig.2.9). It is a geodesic distance between codes as corresponding leaves
on a coding tree

— Tl 40 = 187 = 5.
(2.11)
Finally, we form a matching distance for total n-dimensional forest containing
q = n/p trees as a sum of distances between individual p-bit trees

dr(yi, y2) = far(bi, b)) =23, _,

.....

dij =Xy Jar @I (x), W (x;). (2.12)

.....

2.4.6 BHF: Objective Function for Face Verification
and Identification

Let the similarity function s describes positive (authentic) and negative (imposter)
pairs

] 1, ifclass (x;) = class (x]) i
Sij [0, otherwise. (2.13)
The “ideal” distance for k-bit binary code, is
® ) i ,
g Y [ dmax (k) ) OtherWiSC, (214)

where d,,,,, (k) is a maximal possible distance. So, the distance supervision objective
function can be formed as

N Viildij — gij)2 — min(Dy = {d;;}i j=1,...n),

..........
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where v;; are the different weights for authentic and imposter pairs. This objective
function (2.15) controls the verification performance (FAR and FRR).

In the identification-targeted biometric applications we need to control both dis-
tances and ordering of distances. Let d L = max;{dy: sy = 1} is a distance to the
most far authentic and d° = min; {dy: sy = 0} is a distance to the closest imposter
for the query h(x;). Then the ordering error ¢;; for a pair (X;,X;) can be expressed as

1, if (sij = Oand h;j < max(d}, d}))
ejj = or (s;j = land h;; > min(dio, d?)) (2.16)
0, otherwise

The ordering error occurs if imposter is closer than authentic or authentic is more
far than imposter. So, the distance order supervision objective function can be formed
as

..........

Here we penalize the difference between d;; and objective distance g;; like in
(2.15), but only in case that the ordering error (2.16) occurs for this pair. So, criterion
(2.17) directly controls the face identification characteristics (CMC).

Finally, for obtaining both verification and identification we combine the (2.15)
and (2.17) resulting in

(Dy) = a Ipist(Dy) + (1 — &) Jo,a(Dy)
= Dict N e, Vil dij = 8i) (e + ol = e;)) (2.18)

— min(Dy = {d;j}i j=1,..n),

seeey

where a € [0,1] is a tuning parameter.

2.4.7 BHF Implementation for Learning Face
Representation

For enhancement of our face representation learning we use some additional semi-
heuristic modifications of described scheme. The goal distance (2.14) is modified

(k)”_ 0, lf Sij=1,
9710 = ) m*=D | 4 364D, otherwise, (2.19)

(k=1) (k=1)

where m 1 and o 1 are the mean value and standard deviation of authentic
coded distances. Such goal distance (2.19) excludes the penalizing of imposter pairs,
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which could not be treated as authentic. In (2.18) we use the adaptive weighting of
pairs at each kth step of boosting

® if g =
W, _ | v/a®, if s =1,
VU T 1/b®), otherwise, (2.20)
a(k) = 21=1 ..... N Zj—l ..... N sij(dij - gij)z(e,-j + 0((1 — eij)), (221)

,,,,,,,,,,

where a® and b® provide the basic equal weight for all authentic and imposter
pairs, and tuning parameter ¥ > 1 gives the slightly larger weights to authentic pairs.

We split the input m-dimensional feature vector to the set of independently coded
subvectors with fixed sizes from the set m = {mpip,....mMmax }. At the each step of
boosting we get the subvector with corresponding BHF elementary coder providing
the best contribution to the objective function. The output binary vector of size n
consists of some independently grown parts of size n g r <n. Such learning strategy
prevents the premature saturation of objective function.

So, our binary face hashing is implemented with the following set of free para-
meters: m, norc, "puF, kransac, @ and V. The type of coded metrics is a free
parameter of our approach too.

2.5 Experiments

In this section, we describe our methodology for learning and testing CNHF, report
our results in Hamming embedding task, compare proposed BHF to original Boosted
SSC, explore the CNHF performance w.r.t. depth of coding trees and compare CNHL
and CNHF to best methods on LFW. We test the verification accuracy by the standard
LFW unrestricted with outside labeled data protocol. Our CMC and rank-1 tests
follow the methodology described in [2].

2.5.1 Methodology: Learning and Testing CNHF

The basic CNN is trained on CASIA-WebFace dataset. Face images are aligned by
rotation of eye points to horizontal position with fixed eye-to-eye distance and crop
to 128 x 128 size. The open source deep learning framework Caffe (http://caffe.
berkeleyvision.org/) is used for training the basic CNN for multi-class face identifi-
cation in the manner [24, 31]. The hashing forest is trained on the dataset containing
1,000 authentic pairs and correspondingly 999,000 imposter pairs of Faces in the
Wild images (not from the testing LFW set). Finally, the family of CNHF coders is
formed by proposed BHF: Hamming embedding coders 2,000 x 1 bit (250 byte),
200 x 1bit (25 byte) and 32 x 1 bit (4 byte) of size; Hashing forest coders containing


http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
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Fig. 2.10 Example of npy r parameter selection

2,000 trees with 2—7 bits depth (0.5-1.75 Kbyte of size). We used the common setting
of BHF parameters: m = {8, 16, 32}, kransac = 50, a = 0.25, ¥ = 1.1. But we
set npyp = 200 for CNN+BHF-200 x 1, npyp = 500 for CNN+BHF-2,000 x 1
and ngyr = 100 for CNHF-2,000 x 7. Such n gy parameter values are determined
experimentally based on the analysis of the speed of identification rate growing w.r.t.
number of code bits in the hashing process. We determine the minimal number of
generated code bits, which provides the best identification rate on training database
in the hashing process. Figure2.10 demonstrates the example of npyr parameter
selection. Graphs for identification score w.r.t. number of coding trees are shown
both for training and for testing set. One can see that on the training set the identi-
fication stabilizes approximately at the level of 150 coding trees. Correspondingly
in testing the identification rate for ngyr = 150 (600 coding trees are divided into
four independent coding forests) outperforms the identification rate for ngyrp = 00
(600 coding trees are not divided to independent parts) by ~2%. The evaluation is
performed on the Labeled Faces in the Wild (LFW) dataset. All the images in LFW
dataset are processed by the same pipeline as in [11] and normalized to 128 x 128.

2.5.2 Hamming Embedding: CNHL Versus CNN, BHF
Versus Boosted SSC

In this subsection, we test our approach in Hamming embedding task, so, CNHF
degrades to CNHL. We compare CNHL to basic CNN on LFW via verification
accuracy and ROC curve (Table2.4 and Fig.2.11a). The CNN face representation is
formed like in [34] as a vector of activations of 256 top hidden layer neurons. The
cosine similarity (CNN+CS) and L2-distance (CNN+L2) are applied for match-
ing. CNHL coders 2,000 and 200 bit of size are trained by BHF and matched by
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Table 2.4 Verification accuracy on LFW, code size, and matching speed of CNN and CNHL
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Solution Accuracy Template size Matches in sec
CNN+L2 0.947 8,192 bit 2,713,222
CNN+BHF-200x1 | 0.963 200 bit 194,986,071
CNN+CS 0.975 8,192 bit 2,787,632
CNN+BHF-2000x1 |0.9814 2,000 bit 27,855,153

Hamming distance (CNN+BHF-2,000 x 1 and CNN+BHF-200 x 1 correspond-
ingly). Our solution CNN+BHF-2,000 x 1 achieves verification accuracy 98.14%
on LFW, which outperforms all other CNN-based solutions. Moreover, our 25-byte
length solution CNN+BHF-200 x 1 outperforms CNN+L2. Table 2.4 additionally
demonstrates the gain in template size and matching speed.

We compare CNHL trained by BHF to CNHL trained by original Boosted SSC.
Figure2.11c demonstrates that proposed BHF essentially outperforms Boosted SSC
in identification (rank-1) on LFW for all binary template sizes. The maximal rank-1
is 0.91 for BHF-2,000 x 1 and 0.865 for BoostSSC-2,000 x 1 (relative to 0.899
for CNN+CS). The ROC graph for CNN+BHF is monotonously better than for
CNN+BoostSSC with same template size (Fig.2.11a). Figure2.11b contains the
CMC graphs (ranks 1-10), which demonstrate that BHF outperforms Boosted SSC
with same template size (additionally note that CNN+BHF-2,000 x 1 outperforms
CNN+CS).

2.5.3 CNHF: Performance w.r.t. Depth of Trees

CNHF with 2,000 output features formed by 7-bit coding trees (CNHF-2,000 x 7)
achieves 98.59% on LFW. The identification result of CNHF-2,000 x 7 is 93% rank-
1 on LFW relative to 89.9% rank-1 for CNN+CS. Figure 2.11f presents the ROC
curves for CNHF with different depth coding trees. The forest with 7-bit coding
trees is the best by ROC, but 6-bit and 5-bit depth solutions are very close. We
suppose that the reason of this result is a limited amount of hashing forest training
set. Figure 2.11d, e demonstrates that CNHF-2,000 x 7 outperforms basic CNN+CS
and CNHF-2,000 x 1 both in verification (ROC) and in identification (CMC). So,
we can conclude that the adding of hashing forest on the top of CNN allows both
generating the compact binary face representation and increasing the face verification
and especially identification rates.
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Table 2.5 Verification accuracy on LFW
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Method Accuracy
‘WebFace [24] 0.9613
CNHL-200x1 0.963 £ 0.00494
DeepFace-ensemble [21] 0.9730 %+ 0.0025
DeepID [19] 0.9745 + 0.0026
MFM Net [25] 0.9777
CNHL-2000x 1 0.9814
CNHF-2000x7 0.9859

DeepID2 [17] 0.9915 + 0.0013
DeepID3 [18] 0.9953 + 0.0010
Baidu [11] 0.9977 + 0.0006

2.5.4 CNHL and CNHF Versus Best Methods on LFW

We compare our CNHF solutions to state-of-the-art methods (best on LFW) via
verification accuracy (Table 2.5). CNHF-2,000 x 1 outperforms DeepFace-ensemble
[30], DeeplD [27], WebFace [35] and MFM Net [34]. The DeepID2 [24], DeepID3
[26] and Baidu [14] multi-patch CNNs outperform our CNHF-2,000 x 1 based on
single net.

Note that our CNHF-200 x 1 (25 byte) hash demonstrates 96.3% on LFW. Com-
pare this result to previous best CNHL result [6]. On the one hand, the extreme-short
32-bit binary face representation [6] achieves 91% verification on LFW. Our CNHF
32 x 1 provides 90% only. On the other hand, face representation [6] requires 1000
bit for achieving the 96% verification on LFW. So, our CNHF-200 x 1 solution
improves this face packing result in 5 times.

The identification result (rank-1) of our real-time coder CNHF-2,000 x 7 is
0.93 on LFW. It is close enough to best reported identification result of essentially
deeper and slower multi-patch DeepID3 CNN [25] (0.96 rank-1 on LFW). Baidu
[13] declares even better result (0.98 rank-1 on LFW), but they use the training set
1.2 million images of size w.r.t. 400 thousand images in our case.

2.6 Conclusion and Discussion

We develop the family of CNN-based binary face representations for real-time face
identification. Our Convolutional Network with Hashing Forest (CNHF) generates
binary face templates at the rate of 404 fps with CPU Core i7 and 120+ fps with GPU
GeForce GTX 650. Our 2,000 x 1-bit face coder provides the compact face coding
(250 byte) with simultaneous increasing of verification (98.14%) and identification
(91% rank-1) on LFW. Our 200 x 1-bit face coder provides the 40-time gain in
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template size and 70-time gain in a matching speed with 1% decreasing of verification
accuracy relative to basic CNN (96.3% on LFW). Our CNHF with 2000 output 7-bit
coding trees (CNHF-2,000 x 7) achieves 98.59% verification accuracy and 93%
rank-1 on LFW (add 3% to rank-1 of basic CNN).

We use the multiple convolution deep network architecture for acceleration of
source Max-Feature-Map (MFM) CNN architecture [31]. We propose and imple-
ment the new binary hashing technique, which forms the output feature space with
given metric properties via joint optimization of face verification and identification.
This Boosted Hashing Forest (BHF) technique combines the algorithmic structure
of Boosted SSC approach and the binary code structure of forest hashing. Our exper-
iments demonstrate that BHF essentially outperforms the original Boosted SSC in
face identification test.

In the future we will try to achieve the better recognition rates via CNHF based on
multi-patch CNN, which we can use for nonreal-time applications. We will evolve
and apply the proposed BHF technique for different data coding and dimension
reduction problems (supervised, semi-supervised and unsupervised). Additionally,
we will investigate the influence of the output metric space properties in the process
of hashing forest learning.
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