Replica Placement on Bounded Treewidth
Graphs

Anshul Aggarwal!, Venkatesan T. Chakaravarthy?, Neelima Gupta!, Yogish
Sabharwal?, Sachin Sharma!, and Sonika Thakral*

! University of Delhi, India ngupta@cs.du.ac.in, sonika.ta@gmail.com
2 IBM Research, India {vechakra,ysabharwal}@in.ibm.com

Abstract. We consider the replica placement problem: given a graph
and a set of clients, place replicas on a minimum set of nodes of the
graph to serve all the clients; each client is associated with a request and
maximum distance that it can travel to get served; there is a maximum
limit (capacity) on the amount of request a replica can serve. The prob-
lem falls under the general framework of capacitated set cover. It admits
an O(logn)-approximation and it is NP-hard to approximate within a
factor of o(logn). We study the problem in terms of the treewidth ¢ of
the graph and present an O(t)-approximation algorithm.

1 Introduction

We study a form of capacitated set cover problem [5] called replica placement
(RP) that finds applications in settings such as data distribution by internet
service providers (ISPs) and video on demand service delivery (e.g., [6,8]). In
this problem, we are given a graph representing a network of servers and a set
of clients. The clients are connected to the network by attaching each client to
a specific server. The clients need access to a database. We wish to serve the
clients by placing replicas (copies) of the database on a selected set of servers
and clients. While the selected clients get served by the dedicated replicas (i.e.,
cached copies) placed on themselves, we serve the other clients by assigning
them to the replicas on the servers. The assignments must be done taking into
account Quality of Service (QoS) and capacity constraints. The QoS constraint
stipulates a maximum distance between each client and the replica serving it.
The clients may have different demands (the volume of database requests they
make) and the capacity constraint specifies the maximum demand that a replica
can handle. The objective is to minimize the number of replicas opened. The
problem can be formally defined as follows.

Problem Definition (RP): The input consists of a graph G = (V, E), a set
of clients A and a capacity W. Each client a is attached to a node u € V, denoted
att(a). For each client a € A, the input specifies a request r(a) and a distance
dmax(a). For a client a € A and a node u € V, let d(a,u) denote the length
of the shortest path between u and att(a), the node to which a is attached

* Corresponding author

© Springer International Publishing AG 2017 13
F. Ellen et al. (Eds.): WADS 2017, LNCS 10389, pp. 13-24, 2017.
DOI: 10.1007/978-3-319-62127-2_2

14 A. Aggarwal et al.

- the length is measured by the number of edges and we take d(a,u) = 0, if
u = att(a). We say that a client a € A can access a node u € V, if d(a,u)
is at most dyax(a). A feasible solution consists of two parts: (i) it identifies a
subset of nodes S C V where a replica is placed at each node in S; (ii) for each
client a € A, it either opens a dedicated replica at a itself for serving the client’s
request or assigns the request to the replica at some node u € S accessible to
a. The solution must satisfy the constraint that for each node v € S, the sum
of requests assigned to the replica at u does not exceed W. The cost of the
solution is the number of replicas opened, i.e., cardinality of S plus the number
of dedicated replicas opened at the clients. The goal is to compute a solution
of minimum cost. In order to ensure feasibility, without loss of generality, we
assume r(a) < W,V a € A. O

The RP problem falls under the framework of the capacitated set cover prob-
lem, the generalization of the classical set cover problem wherein each set is
associated with a capacity specifying the number of elements it can cover. The
latter problem is known to have an O(log n)-approximation algorithm [5]. Using
the above result, we can derive an O(logn)-approximation algorithm for the RP
problem as well. On the other hand, we can easily reduce the classical dominat-
ing set problem to RP: given a graph representing an instance of the dominating
set problem, we create a new client for each vertex and attach it to the vertex;
then, we set dpax(-) = 1 for all the clients and W = oco. Since it is NP-hard to
approximate the dominating set problem within a factor of o(logn) [7], by the
above reduction, we get the same hardness result for the RP problem as well.

The RP problem is NP-hard even on the highly restricted special case where
the graph is simply a path, as can be seen via the following reduction from the
bin packing problem. Given K bins of capacity W and a set of items of sizes
S1,82,..., Sy, for each item i, we create a client a with demand r(a) = s;. We
then construct a path of nodes of length K and attach all the clients to one end
of the path and take W to be the capacity of the nodes.

Prior Results: Prior work has studied a variant of the RP problem where
the network is a directed acyclic graph (DAG), and a client a can access a node
w only if there is a directed path from a to w of the length at most dpax(a).
Under this setting, Benoit et al. [3] considered the special case of rooted trees
and presented a greedy algorithm with an approximation ratio of O(A), where
A is the maximum degree of the tree. For the same problem, Arora et al. [2]
(overlapping set of authors) devised a constant factor approximation algorithm
via LP rounding.

Progress has been made on generalizing the above result to the case of
bounded treewidth DAGs. Recall that treewidth [4] is a classical parameter
used for measuring how close a given graph is to being a tree. For a DAG,
the treewidth refers to the treewidth ¢ of the underlying undirected graph. No-
tice that the reduction from the bin-packing problem shows that the problem is
NP-hard even for trees (i.e., t = 1) and rules out the possibility of designing an
exact algorithm running in time n°® (say via dynamic programming) or FPT
algorithms with parameter ¢.

Replica Placement on Bounded Treewidth Graphs 15

Arora et al. [1] made progress towards handling DAGs of bounded treewidth
and designed an algorithm for the case of bounded-degree, bounded-treewidth
graphs. Their algorithm achieves an approximation ratio of O(A + t), where A
is the maximum degree and t is the treewidth of the DAG. Their result also ex-
tends for networks comprising of bounded-degree bounded-treewidth subgraphs
connected in a tree like fashion.

Our Result and Discussion: We study the RP problem on undirected
graphs of bounded treewidth. Our main result is an O(t)-approximation algo-
rithm running in polynomial time (the polynomial is independent of ¢ and the
approximation guarantee). In contrast to prior work, the approximation ratio
depends only on the treewidth and is independent of parameters such as the
maximum degree.

Our algorithm is based on rounding solutions to a natural LP formulation, as
in the case of prior work [2, 1]. However, the prior algorithms exploit the acyclic
nature of the graphs and the bounded degree assumption to transform a given
LP solution to a solution wherein each client is assigned to at most two replicas.
In other words, they reduce the problem to a capacitated vertex cover setting,
for which constant factor rounding algorithms are known [10].

The above reduction does not extend to the case of general bounded treewidth
graphs. Our algorithm is based on an entirely different approach. We introduce
the notion of “clustered solutions”, wherein the partially open nodes are grouped
into clusters and each client gets served only within a cluster. We show how
to transform a given LP solution to a new solution in which a partially-open
node participates in at most (¢ + 1) clusters. This allows us to derive an overall
approximation ratio O(t). The notion of clustered solutions may be applicable
in other capacitated set cover settings as well.

Other Related Work: The RP problem falls under the framework of the
capacitated set cover problem (CSC), which admits an O(logn)-approximation
[5]. Two versions of the CSC problem have been studied: soft capacity and hard
capacity settings. Our work falls under the more challenging hard capacity set-
ting, wherein a set can be picked at most once. The capacitated versions of the
vertex cover problem (e.g., [10]) and dominating set problem (e.g., [9]) have also
been studied. Our result applies to the capacitated dominating problem with
uniform capacities and yields O(t)-approximation.

Full Version: Due to space constraints, some of the proofs and details of
analysis could not be included in this version. A full version of the paper is
available as an Arxiv preprint (https://arxiv.org/abs/1705.00145).

2 Overview of the Algorithm

Our O(t)-approximation algorithm is based on rounding solution to a natural LP
formulation. In this section, we present an outline of the algorithm highlighting
its main features, deferring a detailed description to subsequent sections. We
assume that the input includes a decomposition T of treewidth ¢ of the input
network G = (V, E).

16 A. Aggarwal et al.

LP Formulation: For each node u € V, we introduce a variable y(u) to
represent the extent to which a replica is opened at w and similarly, for each
client a € A, we add a variable y(a) to represent the extent to which a dedicated
replica is opened at «a itself. For each client a € A and each node u € V accessible
to a, we use a variable z(a,u) to represent the extent to which a is assigned to
u. For a client a € A and a node u € V, we use the shorthand “a ~ u” to mean
that a can access u.

min Y yla) + Y ylu)

acA u€ey
yla)+ > w(a,u)>1 for all a € A (1)
u€V : a~u
Z z(a,u) -r(a) <y(u) - W forallueV (2)
a€A : a~u

z(a,u) <
0 < ylu)yle) <

y(u) foralla € Aand u € V witha ~u (3)
1 foralueVandac A (4)

Constraint (3) stipulates that a client a cannot be serviced at a node u for an
amount exceeding the extent to which u is open. For an LP solution o = (z, y),
let cost(o) denote the objective value of o.

The following simple notations will be useful in our discussion. With respect
to an LP solution o, we classify the nodes into three categories based on the
extent to which they are open. A node w is said to be fully-open, if y(u) = 1;
partially-open, if 0 < y(u) < 1; and fully-closed, if y(u) = 0. A client a is said to
be assigned to a node wu, if x(a,u) > 0. For a set of nodes U, let y(U) denote the
extent to which the vertices in U are open, i.e., y(U) = >_ oy y(u).

Outline: The major part of the rounding procedure involves transforming
a given LP solution oy, = (i, yin) into an integrally open solution: wherein
which each node u € V is either fully open or closed. Such a solution differs
from an integral solution as a client may be assigned to multiple nodes (possibly
to its own dedicated replica as well). We address the issue easily via a cycle
cancellation procedure to get an integral solution.

The procedure for obtaining an integrally open solution works in two stages.
First it transforms the input solution into a “clustered” solution, which is then
transformed into an integrally open solution. The notion of clustered solution
lies at the heart of the rounding algorithm. Intuitively, in a clustered solution,
the set of partially open (and closed) nodes are partitioned into a collection of
clusters C and the clients can be partitioned into a set of corresponding groups
satisfying three useful properties, as discussed below.

Let 0 = (z,y) be an LP solution. It will be convenient to express the three
properties using the notion of linkage: we say that a node w is linked to a node
v, if there exists a client a assigned to both u and v. For constants a and ¢, the
solution o is said to be (a, £)-clustered, if the set of partially-open nodes can be
partitioned into a collection of clusters, C = {C,Cy, ..., Cy} (for some k), such
that the the following properties are true:

Replica Placement on Bounded Treewidth Graphs 17

Fully-open
nodes

Clients

Partially-
open
nodes

' . L
Cluster Cy Cluster C, Cluster Cy

(a)

Fig. 1. (a) Illustration for clustered solution. Three clusters are shown C1,C5 and Cs,
open to an extent of 0.4, 0.4 and 0.5; the clusters are linked to the sets of fully-open
nodes {v1,v2,v4}, {v1,v2,v3,v4}, and {va, v4, vs, ve}. The solution is (0.5, 4)-clustered.
(b) Ilustration for regions. The figure shows an example tree decomposition. The bags
filled solidly represent already identified boundary bags. All checkered bags belong to
the region headed by P.

— Localization: assignments from clients to the partially-open nodes is local-
ized, i.e., two partially-open nodes are linked only if they belong to the same
cluster.

— Distributivity: assignments from the clients to fully-open nodes are restricted,
i.e., for any C, there are at most ¢ fully-open nodes that are linked to the
nodes in Cj.

— Bounded opening: clusters are tiny, i.e., the total extent to which any cluster
is open is at most «, i.e., y(C;) < a.

Figure 1 (a) provides an illustration. In the first stage of the rounding algorithm,
we transform the input solution oy, into an (o, t 4 1)-clustered solution with the
additional guarantee that the number of clusters is at most a constant factor of
cost(oin), where o € [0,1/2] is a tunable parameter. The lemma below specifies
the transformation performed by the first stage.

Lemma 1. Fiz any constant o < 1/2. Any LP solution o can be transformed
into a (a,t + 1)-clustered solution ¢’ such that cost(c’) is at most 2 + 6(t +
1)cost(o) /. Furthermore, the number of clusters is at most 3 + 8 - cost(o)/av.

At a high level, the lemma is proved by considering the tree decomposition
T of the input graph G = (V, E) and performing a bottom-up traversal that
identifies a suitable set of boundary bags. We use these boundary bags to split
the tree into a set of disjoint regions and create one cluster per region. We
then fully open the nodes in the boundary bags and transfer assignments from
the nodes that stay partially-open to these fully-open nodes. The transfer of
assignments is performed in such a manner that clusters get localized and have
distributivity of (t+1). By carefully selecting the boundary bags, we shall enforce
that each cluster is open to an extent of only a and that the number of clusters
is also bounded. The proof is discussed in Section 3.

The goal of the second stage is to transform a (1/4,¢+ 1)-clustered solution
(obtained from Lemma 1) into an integrally open solution. At a high level, the

18 A. Aggarwal et al.

localization property allows us to independently process each cluster C' € C
and its corresponding group of clients A. The clients in A are assigned to a
set of fully-open nodes, say F. For each node u € F, we identify a suitable
node v € C called the “consort” of u € C' and fully open v. Then the idea is
to transfer assignments from the non-consort nodes to the nodes in F' and their
consorts in such a manner that at the end, no client is assigned to the non-consort
nodes. This allows us to fully close the non-consort nodes. The localization and
bounded opening properties facilitate the above maneuver. On the other hand,
the distributivity property ensures that F' is at most (¢ + 1). This means that
we fully open at most (¢4 1) consorts per cluster. Thus, overall increase in cost
is at most (¢t + 1)|C|. Since |C| is guaranteed to be linear in cost(ci,), we get an
O(t) approximation factor.

Lemma 2. Let 0 = (x,y) be a (1/4,t + 1)-clustered solution via a collection
of clusters C. The solution can be transformed into an integrally open solution
o' = {a',y") such that cost(c’) < 2-cost(o) + 2(t + 1)[C|.

Once we obtain an integrally open solution, it can be transformed to an inte-
gral solution by applying a cycle cancellation strategy, as given by the following
lemma.

Lemma 3. Any integrally open solution o = (x,y) can be transformed to an
integral solution o’ = (x',y") such that cost(c’) < 4 - cost(o).

We can transform any input LP solution oj, into an integral solution ouy; by
applying the above three transformations leading to the following main result of
the paper: the RP problem admits on O(t)-approximation poly-time algorithm.

3 Clustered Solutions: Proof of Lemma 1

The goal is to transform a given solution into an («, t+1)-clustered solution with
the properties claimed in the lemma. The idea is to select a set of partially-open
or closed nodes and open them fully, and then transfer assignments from the
other partially-open nodes to them in such a manner that the partially-open
nodes get partitioned into clusters satisfying the three properties of clustered
solutions. An issue in executing the above plan is that the capacity at a newly
opened node may be exceeded during the transfer. We circumvent the issue by
first performing a pre-processing step called de-capacitation.

3.1 De-capacitation

Consider an LP solution o = (z,y) and let u be a partially-open or closed node.
The clients that can access v might have been assigned to other partially-open
nodes under o. We call the node u de-capacitated, if even when all the above
assignments are transferred to u, the capacity at u is not exceeded; meaning,

Z Z z(a,v) < W,

a~u v a~v A vEPO

Replica Placement on Bounded Treewidth Graphs 19

For each partially-open node v (considered in an arbitrary order)
For each client a that can access both u and v (considered in an arbitrary order)
Compute capacity available at u: cap(u) =W =3, x(b,u)-r(b)
If cap(u) = 0 exit the procedure

cap(u)
> r(a)

Increment z(a,u) by § and decrement z(a,v) by d.

0 = min {x(a, v)

Fig. 2. Pulling procedure for a given partially-open or closed node u.

where PO is the set of partially-open nodes under o (including). The solution
o is said to be de-capacitated, if all the partially-open and the closed nodes are
de-capacitated.

The preprocessing step transforms the input solution into a de-capacitated
solution by performing a pulling procedure on the partially-open and closed
nodes. Given a partially-open or closed node u, the procedure transfers assign-
ments from other partially-open nodes to u, as long as the capacity at u is not
violated. The procedure is shown in Figure 2, which we make use of in other
components of the algorithm as well.

Lemma 4. Any LP solution o = (x,y) can be transformed into a de-capacitated
solution o’ = {(x',y') such that cost(c’) < 2 - cost(o).

Proof. We consider the partially-open and closed nodes, and process them in
an arbitrary order, as follows. Let u be a partially-open or closed node. Hy-
pothetically, consider applying the pulling procedure on u. The procedure may
terminate in one of two ways: (i) it exits mid-way because of reaching the ca-
pacity limit; (ii) the process executes in its entirety. In the former case, we fully
open u and perform the pulling procedure on w. In the latter case, the node u
is de-capacitated and so, we leave it as partially-open or closed, without per-
forming the pulling procedure. It is clear that the above method produces a
de-capacitated solution ¢’. We next analyze the cost of ¢’. Let s be the num-
ber of partially-open or closed nodes converted to be fully-open. Apart from
these conversions, the method does not alter the cost and so, cost(o”) is at most
s + cost(0). Let the total amount of requests be 7ot = D, 47(a). The extra
cost s is at most |yt /W], since any newly opened node is filled to its capacity.
Due to the capacity constraints, the input solution o must also incur a cost of
at least |ro1/W]. It follows that cost(o”) is at most 2 - cost (o). O

3.2 Clustering

Given Lemma 4, assume that we have a de-capacitated solution o = (x,y).
We next discuss how to transform o into an («,t + 1)-clustered solution. The
transformation would perform a bottom-up traversal of the tree decomposition
and identify a set of partially-open or closed nodes. It would then fully open

20 A. Aggarwal et al.

them and perform the pulling procedure on these nodes. The advantage is that
the above nodes are de-capacitated and so, the pulling procedure would run to its
entirety (without having to exit mid-way because of reaching capacity limits).
As a consequence, the linkage between the nodes gets restricted, leading to a
clustered solution. Below we first describe the transformation and then present
an analysis.

Transformation: Consider the given tree decomposition 7. We select an
arbitrary bag of 7 and make it the root. A bag P is said to be an ancestor of a
bag @, if P lies on the path connecting) and the root; in this case, @ is called a
descendant of P. We consider P to be both an ancestor and descendant of itself.
A node u may occur in multiple bags; among these bags the one closest to the
root is called the anchor of u and it is denoted anchor(u). A region in T refers
to any set of contiguous bags (i.e., the set of bags induce a connected sub-tree).

In transforming o into a clustered solution, we shall encounter three types
of nodes and it will be convenient to color them as red, blue and brown. To
start with, all the fully-open nodes are colored red and the remaining nodes
(partially-open nodes and closed nodes) are colored blue. The idea is to carefully
select a set of blue nodes, fully-open them and perform the pulling procedure on
these nodes; these nodes are then colored brown. Thus, while the blue nodes are
partially-open or closed, the red and the brown nodes are fully-open, with the
brown and blue nodes being de-capacitated.

The transformation identifies two kinds of nodes to be colored brown: helpers
and boundary nodes. We say that a red node u € V is proper, if it has at least
one neighbor v € V which is a blue node. For each such proper red node u, we
arbitrarily select one such blue neighbor v € V and declare it to be the helper
of w. Multiple red nodes are allowed to share the same helper. Once the helpers
have been identified, we color them all brown. The boundary brown nodes are
selected via a more involved bottom-up traversal of 7 that works by identifying
a set B of bags, called the boundary bags. To start with, B is initialized to be
the empty set. We arrange the bags in 7 in any bottom-up order (i.e., a bag
gets listed only after all its children are listed) and then iteratively process each
bag P as per the above order. Consider a bag P. We define the region headed
by P, denoted Region(P), to be the set of bags @ such that @ is a descendant
of P, but not the descendant of any bag already in B. See Figure 1 (b) for an
illustration. A blue node u is said to be active at P, if it occurs in some bag
included in Region(P). Let active(P) denote the set of blue nodes active at P.
We declare P to be a boundary bag and add it to B under three scenarios: (i) P
is the root bag. (ii) P is the anchor of some red node. (iii) the extent to which
the? n’odes'in active(P’) are open is at least a, i.e., D, c,coive(p) Y(U) = a. If
P is identified as a boundary bag, then we select all the blue nodes appearing
in the bag and change their color to be brown. Once the bottom-up traversal
is completed, we have a set of brown nodes (helpers and boundary nodes). We
consider these nodes in any arbitrary order, open them fully, and perform the
pulling procedure on them. We take ¢’ to be the solution obtained by the above
process. This completes the construction of ¢’. We note that a node may change

Replica Placement on Bounded Treewidth Graphs 21

its color from blue to brown in the above process, and the new color is to be
considered while determining the active sets thereafter. Notice that during the
whole process of the above transformation, the solution continues to remain
de-capacitated.

Analysis: We now show that o’ is an (o, t + 1)-clustered solution. To start
with, we have a set of red nodes that are fully-open and a set of blue nodes that
are either partially-open or closed under o. The red nodes do not change color
during the transformation. On the other hand, each blue node u becomes active
at some boundary bag P. If u occurs in the bag P, it changes its color to brown,
otherwise it stays blue. Thus, the transformation partitions the set of originally
blue nodes into a set of brown nodes and a set of nodes that stay blue. In the
following discussion, we shall use the term ‘blue’ to refer to the nodes that stay
blue. With respect to the solution ¢’, the red and brown nodes are fully-open,
whereas the blue nodes are partially-open or closed.

Recall that with respect to o', two nodes u and v are linked, if there is a
client a assigned to both u and v. In order to prove the properties of (a,t + 1)-
clustering, we need to analyze the linkage information for the blue nodes. We
first show that the blue nodes cannot be linked to brown nodes, by proving the
following stronger observation.

Proposition 1. If a client a € A is assigned to a blue node v under o', then a
cannot access any brown node v.

Proposition 1 rules out the possibility of a blue node u being linked to any
brown node. Thus, v may be linked to a red node or another blue node. The
following lemma establishes a crucial property on the connectivity in these two
settings.

Lemma 5. (a) If two blue nodes u and v are linked under o', then there must
exist a path connecting u and v consisting of only blue nodes. (b) If a blue node
u s linked to a red node v under o', then there must exist a path p connecting u
and v such that barring v, the path consists of only blue nodes.

The transformation outputs a set of boundary bags B; let B denote the set
of non-boundary bags. If we treat the bags in B as cut-vertices and delete them
from T, the tree splits into a collection R of disjoint regions. Alternatively, these
regions can be identified in the following manner. For each bag P € B and each
of its non-boundary child Q € B, add the region headed by @ (Region(Q)) to
the collection R. Let the collection derived be R = {R1, Ra, ..., Ri}. It is easy
to see that R partitions B and that the regions in R are pairwise disconnected
(not connected by edges of the tree decomposition).

In order to show that ¢’ is an («,t + 1)-clustered solution, let us suitably
partition the set of blue nodes into a collection of clusters C. For each region R;,
let C; be the set of partially-open nodes that occur in some bag of R;. We take
C to be the collection {C},Cs,...,Cx}. It can be verified that the collection C
is a partitioning of the set of partially-open nodes. Based on Lemma 5 we can
establish the following result.

22 A. Aggarwal et al.

Lemma 6. The solution o’ is (a,t + 1)-clustered.

We next analyze the cost of the solution ¢’ = (a/,y’). Let Red, Blue and
Brown denote the set of red, brown and blue nodes, respectively. We can see that
in constructing ¢’ the brown nodes are the only new nodes opened fully and
hence, cost(c’) < cost(o) + |Brown|. We create a brown helper node for each red
node and furthermore, for each boundary bag P € B, we convert all the blue
nodes in P to be brown and the number of blue nodes per bag is at most (¢+1).
Thus, the number of brown nodes is at most [Red| + (¢ +1)|B|. A bag P is made
into a boundary bag under one of the three scenarios: (i) P is the root bag; (ii)
P is the anchor of some red node; (iii) the total extent to which the nodes in
active(P) are open is at least a. The number of boundary bags of the first two
types are 1+ |Red| and those of the third type can be (1/«) times the extent to
which the blue nodes are open, which is in turn, at most cost(o). Using the above
arguments, we can show that |B| is at most 2+ |Red|+ cost(o)/a and cost(o”) is
at most 2+ 3(t+ 1)cost(o)/a. The preprocessing step of de-capacitation incurs a
2-factor increase in cost. Taking this into account, we get the cost bound claimed
in the statement of Lemma 1.

As mentioned earlier, an issue with the collection C is that it may have
more clusters than the bound claimed in Lemma 1. The issue can be resolved
as follows. Consider each boundary bag P. All the non-boundary children of
P have a corresponding cluster in C and let Cp denote the collection of these
clusters. We merge any two clusters C,C’ from Cp having y(C),y(C") < a/2.
The process is stopped when we cannot find two such clusters.

It can be shown that the process of merging does not affect distributivity
and the total number of clusters in the transformed solution is at most 3 +
4cost(o)/a. The preprocessing step of de-capacitation incurs a 2-factor increase
in cost. Taking this into account, we get the bound on number of clusters claimed
in the statement of Lemma 1.

4 Integrally Open Solution: Proof of Lemma 2

Our goal is to transform a given (1/4,¢ + 1)-clustered solution ¢ = (z,y) into
an integrally open solution ¢’. We classify the clients into two groups, small and
large, based on the extent to which they are served by dedicated replicas: a client
a € A said to be small, if y(a) < 1/2, and it is said to be large otherwise. Let
A, and A; denote the set of small and large clients, respectively.

We pre-process the solution o by opening a dedicated replica at each large
client a and removing its assignments to the nodes (set y(a) = 1 and set z(a,u) =
0 for all nodes u accessible to a). We see that the transformation at most doubles
the cost and the solution remains (1/4,t + 1)-clustered.

Consider the pre-processed solution o. Let C denote the set of clusters (of
the partially-open nodes) under o. For each cluster C' € C, we shall fully open a
selected set of at most 2(¢ + 1) nodes and fully close rest of the nodes in it.

We now describe the processing for a cluster C' € C. Let A C A, denote the set
of clients assigned to the nodes in C'. By the distributivity property, these clients

Replica Placement on Bounded Treewidth Graphs 23

are assigned to at most (¢4 1) fully-open nodes, denoted F' = {uy, ua, ..., uty1}
A client a € A may be assigned to multiple nodes from F'. In our procedure, it
would be convenient if each client is assigned to at most one node from F' and
we obtain such a structure using the following transformation.

Proposition 2. Given a solution o = (x,y), a set of fully-open nodes F' and a
set of clients A, we can obtain a solution o' = (', y’) such that each client a € A
1s assigned to at most one node from F. Furthermore, the transformation does
not alter the other assignments, i.e., for any node u € V and any client a € A,
ifug F orad A, then 2'(a,u) = x(a,u). Moreover, cost(c’) < cost(o) + |F]|.

The above proposition is proved via a cycle cancellation procedure that trans-
fers assignments amongst the nodes in F'. The procedure can ensure that, except
for at most |F| clients, every other client a € A is assigned to at most one node
from F'. We open dedicated replicas at the exceptional clients and this results in
an cost increase of at most |F|.

The proposition does not alter the other assignments and so, its output solu-
tion is also (1/4,t 4+ 1)-clustered. Given the proposition and the pre-processing,
we can assume that o = (z,y) is (1/4, t+1)-clustered wherein each client a € A is
assigned to at most one node from F and that y(a) < 1/2. For each node u; € F,
let A; C A denote the set of clients assigned to the node u;. The proposition
guarantees that these sets are disjoint.

For a node v and a client a, let 1oad(a, v) denote the amount of load imposed
by a on v towards the capacity: load(a,v) = z(a,v)r(a). It will be convenient
to define the notion over sets of clients and nodes. For a set of clients B and
a set of nodes U, let load(B,U) denote the load imposed by the clients in
B on the nodes U: 1oad(B,U) = . ,cp yev.ane (@ v)r(a); when the sets are
singletons, we shall omit the curly braces. Similarly, for a subset C/ C C, let
load(C’) = >, cc load(v).

The intuition behind the remaining transformation is as follows. We shall
identify a suitable set of nodes L = {vy,vs,...,vip1} from C, with v; being called
the consort of u; in C, and fully open all these nodes. Then, we consider the non-
consort nodes € = C'— L and for each i < t+1, we transfer the load load(4;,C")
to the node u;. As a result, no clients are assigned to the non-consort nodes any
more and so, they can be fully closed. In order to execute the transfer, for each
i < t+1, we create space in u; by pushing a load equivalent to load(A;, C’) from
u; to its (fully-opened) consort v;. The amount of load load(A4;,C”) involved in
the transfer is very small: the bounded opening property ensures that y(C) <
1/4 and thus, load(A;,C’) < W/4. The fully-opened consort v; has enough
additional space to receive the load: y(v;) < 1/4 and so, load(A,v;) < W/4,
which means that if we fully open the consort, we get an additional space of
(3/4)W. However, an important issue is that a consort v; may not be accessible to
all the clients in A;. Therefore, we need to carefully choose the consorts in such a
manner that each fully open node u; has enough load accessible to the consort v;
that can be pushed to v;. Towards this purpose, we define the notion of pushable
load. For a node u; € F and anode v € C, let pushable(u;, v) denote the amount

24 A. Aggarwal et al.

of load on u; that is accessible to v: pushable(u;, v) = D c .00 Z(@, ui)7(a).
We next show how to identify a suitable set of consorts such that the pushable
load is more than the load that we wish to transfer.

Lemma 7. We can find a set of nodes L = {v1,va,..., 0441} such that for all
i <t+1, pushable(u;,v) > load(4;,C").

We have shown that each node u; has a load of at least load(A;,C’) which
can be pushed to its consort v;. As observed earlier load(A4;,C") < W/4 and
load(A;, v;) < W/4. Hence, when we fully open the consort, we get an additional
space of (3/4)W, which is sufficient to receive the load from wu;.

Given the above discussion, we iteratively consider each cluster C; € C and
perform the above transformation. This results in (¢ +1) consorts from C; being
fully-opened and all the other nodes in C; being fully closed. At the end of
processing all the clusters, we get a solution in which each node either fully open
or fully close. For each cluster C;, we incur an extra cost of at most (¢t + 1)
while applying Proposition 2, and an additional cost of (¢ + 1) for opening the
consorts. Thus, the cost increases by at most 2(¢ + 1)|C].

References

1. S. Arora, V. Chakaravarthy, K. Gupta, N. Gupta, and Y. Sabharwal. Replica place-
ment on directed acyclic graphs. In V. Raman and S. Suresh, editors, Proceedings
of the 34th International Conference on Foundation of Software Technology and
Theoretical Computer Science (FSTTCS), pages 213-225, 2014.

2. S. Arora, V. Chakaravarthy, N. Gupta, K. Mukherjee, and Y. Sabharwal. Replica
placement via capacitated vertex cover. In A. Seth and N. Vishnoi, editors, Proceed-
ings of the 33rd International Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), pages 263-274, 2013.

3. A. Benoit, H. Larchevéque, and P. Renaud-Goud. Optimal algorithms and approxi-
mation algorithms for replica placement with distance constraints in tree networks.
In Proceedings of the 26th IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 1022-1033, 2012.

4. H. Bodlaender and A. Koster. Combinatorial optimization on graphs of bounded
treewidth. Computer Journal, 51(3):255-269, 2008.

5. J. Chuzhoy and J. Naor. Covering problems with hard capacities. SIAM Journal
of Computing, 36(2):498-515, 2006.

6. I. Cidon, S. Kutten, and R. Soffer. Optimal allocation of electronic content. Com-
puter Networks, 40:205-218, 2002.

7. U. Feige. A threshold of In n for approximating set cover. Journal of the ACM,
45(4):634-652, 1998.

8. K. Kalpakis, K. Dasgupta, and O. Wolfson. Optimal placement of replicas in trees
with read, write, and storage costs. IEEE Transactions on Parallel and Distributed
Systems, 12:628-637, 2001.

9. M. Kao, H. Chen, and D. Lee. Capacitated domination: Problem complexity and
approximation algorithms. Algorithmica, 72(1):1-43, 2015.

10. B. Saha and S. Khuller. Set cover revisited: Hypergraph cover with hard capacities.
In A. Czumaj, K. Mehlhorn, A. Pitts, and R. Wattenhofer, editors, Proceedings
of the 89th International Colloquium on Automata, Languages, and Programming
(ICALP), volume 7391 of LNCS, pages 762-773. Springer, 2012.

2 Springer
http://www.springer.com/978-3-319-62126-5

Algorithms and Data Structures

15th International Symposium, WADS 2017, 5t. John's,
ML, Canada, July 31 - August 2, 2017, Proceedings
Faith, E.; Kolokolova, A.; Sack,).-R. (Eds.)

2017, XX, 594 p. 129 illus., Softcover

ISBEMN: 978-3-319-62126-5

	2 Replica Placement on Bounded Treewidth Graphs
	1 Introduction
	2 Overview of the Algorithm
	3 Clustered Solutions: Proof of Lemma 1
	3.1 De-capacitation
	3.2 Clustering

	4 Integrally Open Solution: Proof of Lemma 2
	References

