Are Android Smartphones Ready
to Locally Execute Intelligent Algorithms?

M. Ricardo Carlos', Fernando Martinez! ™) Raymundo Cornejo?,
and Luis C. Gonzalez!

! Facultad de Ingenierfa, Universidad Auténoma de Chihuahua,
31125 Chihuahua, Mexico
ricardo.carlosQgmail.com, {fmartine,lcgonzalez}Quach.mx
2 CONACYT, Universidad Auténoma de Chihuahua, Chihuahua, Mexico
rcornejoga@conacyt.mx

Abstract. Given that thousands of applications are already avail-
able for smartphones, we may be inclined to believe that ubiquitous
computing is just around the corner, with online processing in these
mobile devices. But, how well prepared is current smartphone technol-
ogy to support the execution of demanding algorithms? Surprisingly, few
researchers have addressed the processing capabilities of currently avail-
able smartphones. In this paper we investigate some issues in this direc-
tion: we employed twelve algorithms for optimization and classification
to profile the computational demands they place on current smartphones.
For this purpose, we chose twelve devices that go from low to high-end
models, from six different makers, and measured execution time, CPU
and RAM usage while the devices were running the algorithms.

Keywords: Mobile computing - Optimization algorithms - Classifica-
tion algorithms - Profiling

1 Introduction

The number of mobile devices in operation has continuously increased during the
last decade. According to International Data Corporation (IDC), 337.2 million
smartphones were shipped worldwide during the second quarter of 2015. This
figure is 11.6% higher than the sales from the second quarter of 2014 [1], and
high sales are expected in the future, since short smartphone replacement cycles
have been observed worldwide among consumers [2]. United States citizens have
short replacement cycles, replacing their smartphones after one year and nine
months (while Mexican citizens have longer replacement cycles, replacing their
smartphones after three years and three months). Shorter replacement cycles
allow consumers to have access to better and faster storage, computing, and
sensing capabilities with this type of devices, frequently upgraded by manufac-
turers. Therefore, these shorter cycles have increased the available computing
and sensing capabilities for the mobile device market.

© Springer International Publishing AG 2017

O. Pichardo-Lagunas and S. Miranda-Jiménez (Eds.): MICAI 2016, Part II, LNAI 10062, pp. 15-25, 2017.
DOI: 10.1007/978-3-319-62428-0_2

16 M.R. Carlos et al.

The integration of sensing technologies (with accelerometers, gyroscopes,
magnetometers, GPS, light, and proximity sensors, among others) enables smart-
phones to see, hear, and feel the user’s environment. Therefore, the availability
of the information provided by these sensors creates opportunities to infer dif-
ferent types of events for context-awareness, and to create applications for end
users, third parties, crowds and groups [3].

Recent research has explored learning algorithms running in smartphones to
represent, to some extent, the end users’ activities [4]. Inferring and represent-
ing the user’s activity might have positive implications in different domains such
as fitness tracking, health monitoring, fall detection for vulnerable populations,
context-aware behavior, and home and work automation [3]. Furthermore, activ-
ity recognition has been also explored in businesses and organizations where it is
a valuable source of information for decision making processes. Companies have
used activity recognition to present targeted advertisements, which are more
relevant to their customers’ preferences and activities. Similarly, activity recog-
nition can assist with employee management and accounting for employee time.
For example, health care companies can track the activities of their employees
and improve their critical health processes, based on conflicting or time con-
suming activities. In crowd and group contexts, activity recognition has been
used to track and analyze big data sets to automate tagging events such as
traffic, places, emergency events or disasters. Although activity recognition is
widely implemented in these three major types of application, only end user
applications implement some algorithms in smartphones to recognize activities.
Businesses and crowd work applications rely on back-end systems to perform
heavy computing algorithms to collect and analyze data.

Machine learning (ML) can be well suited to treat problems of context-
awareness for businesses and crowd work. ML capabilities can automatically
adapt to the changes in input data created by the user, the available sensors,
or environmental factors. Machine learning can also be used to detect malware
in smartphones [5], and protect these devices from intrusions. Employing algo-
rithms of this nature has been discussed in the literature, and pre-trained models
are already available and deployed [6], but their actual viability to be trained
in mobile devices, under normal operating conditions, has not been addressed.
Furthermore, it is unclear whether if context-aware mobile applications can be
supported with ML algorithms with online processing.

In this paper we address the following relevant open question: are current
Android smartphones capable of handling the computational demands of these
algorithms?! It is our understanding that, frequently, it’s taken for granted that
smartphones cannot deal with demanding computing tasks, which are left for
server side applications. Our contribution in this work is to show how mobile
phones perform when classifiers and optimization algorithms are run, to have
a better perspective of what smartphones’ current capabilities are, and provide
some guidance in the implementation of such computing tasks.

! We chose the Android platform because it represents over 80% of the market share,
and this preponderance is expected to remain in the near future [7].

Are Android Smartphones Ready to Locally Execute Intelligent Algorithms? 17

2 Related Work

Mobile phones have evolved extensively, in so manner that today these are not
just telephones but multimedia devices and computing nodes with high capabil-
ities. High-end mobile phones have system-on-a-chip (SoC) embedded systems
with multi-core ARM processors, with clocks running in the order of GHz, and
at least 2 GB of memory. With high performance, low-power, general purpose
CPUs, users now expect near PC-like performance and a rich user experience,
including high-definition audio and video, high-quality multimedia, dynamic web
content, responsive user interfaces, and 3D graphics. In order to meet user expec-
tations, mobile devices must smoothly perform processing tasks at different lev-
els: processor, local 1/0, video, memory, cache, communication, application, and
interaction with the user. In this section we review some of the benchmarking
approaches that target hardware and software systems in mobile phone plat-
forms. Then we present a few works that suggest how applications based on
machine learning improve the user experience that fueled our motivation to state
the question: are smartphones ready to locally execute intelligent algorithms?
As far as we are aware, no previous work has reported how these algorithms
perform on mobile phone architectures.

One of the current challenges in social computing is the management of large
amounts of data. Indeed, the continuous increase in volume, variety, and veloc-
ity of Big Data exposes data centers to an energy utilization problem. Loghin
et al. [8] explore the usage of wimpy nodes, mobile phone-like architectures, to
achieve some data pre-processing which might help alleviate the storage and
processing stress faced by data centers. The authors ran experiments demand-
ing memory, server level communication, and read/write operations on the ARM
big. LITTLE technology. The benchmark included Big Data frameworks such as
the Hadoop Distributed File System, I/O data processing with Hadoop Map
Reduce, and the Parallel Memory Bandwidth Benchmark. Overall performance
of mobile phone-like architectures is around four orders below Intel Xeon-based
servers. In terms of energy costs Loghin et al. found that, under low processing
demands, ARM-based platforms are four times cheaper than Xeon servers but,
with peak computing profiles, these servers demand 50% less energy than ARM
systems.

One of the changes with the users’ lifestyles is that mobile phones allow mul-
titasking. Users can play games while chatting or listening to music, and the
concurrent execution of applications increases battery energy usage. To some
extent, users consider their mobile device as a repository of running applica-
tions. Pathak et al. [9] present eprof, a tool to profile the energy demands of
applications running on smartphones. Their energy profiler accounts for power
draw at hardware components, at program entities, and at the source code level.
Five different free applications that require internet connectivity were ran on
Android devices. The authors found that running the five applications for about
half a minute can invoke 29-47 threads, 200k-6M routine calls, and that it took
0.35%-0.75% of the battery charge. The web browser was also tested using a

18 M.R. Carlos et al.

Google search, and GPS was used to determine user location. This activity con-
sumes 2000 pAH, distributed among CPU (53%), 3G (31%), and GPS (16%).

The academic interest in studying how energy stored in the batteries of
mobile phones is used comes from the direct impact this has on the user’s
experience. In fact, as demonstrated by Carrol and Heiser [10], the hardware
components and services the user interacts with the most are the ones that put
the most pressure on battery life. Using micro-benchmarks, the authors charac-
terize power consumption at the system level. The Openmoko Neo Freerunner
open source platform allowed them to take physical measurements directly on
testing points, available on the main board. Resistors were inserted to measure
current, and both current and voltage measurements helped calculate the power
demands of CPU, memory, touchscreen, graphics hardware, audio, storage, and
various networking interfaces. Their tests integrate such diverse functionality
as voice communication, audio and video playback, web browsing, SMS, and
email communication, media downloads, and gaming. Their findings indicate
that energy is spent the most in Video playback (453 mW), GPS (143 mW),
GSM call (1054 mW), SMS (302mW), email GPRS (610 mW), and email Wifi
(432mW). This level of rich functionality increases the pressure on battery life,
and deepens the need for effective energy management.

It can be realized that mobile system designers and computer architects are
aware of computing capabilities and processing resources that must allow users
to use the smartphone as they wish. Gutierrez et al. [11] considered relevant
to measure the performance of interactive applications that are commonly used
by users. Representative applications for streaming HD video, gaming, playing
MP3 files, and browsing the web, were selected for the benchmark and results
were compared against some features of the SPEC CPU2006 benchmark. Gener-
ally speaking, the authors found that smartphone applications are far from the
SPEC benchmarks. They observed issues with massive application code foot-
prints, missing instruction cache, and poor management of paged memory. An
explanation for this level of poor performance of interactive applications is that
most mobile applications are developed relying on high level abstractions and
calls to shared libraries. This impacts the user’s experience.

As illustrated, hardware and software benchmarks have been studied. Battery
energy, data processing, application and code performance have been evaluated
and characterized in order to inform the designers and architects of future smart-
phones. This helps envisage robust and high computing performance mobile
applications that assist users in their everyday activities. Intelligent applications
can keep low resources usage when running location-based systems that make
use of the hunger energy consumers like the GSM, WiFi, and GPS sensors [12].

To the best of our knowledge, the stress machine learning algorithms put on
mobile phone architectures is not documented in the literature. The next sections
describe the experiments and results of running optimization and classification
heuristics on smartphones, and our insights from this experience, to address this
situation.

Are Android Smartphones Ready to Locally Execute Intelligent Algorithms? 19

3 Experimental Setup

In order to test the processing capabilities of common smartphones, the execution
times, memory, and CPU usage were evaluated for seven optimization algorithms
and five classifiers, in twelve Android smartphones. The optimization algorithms
were run to solve common simple and multi-objective test problems, and the
tested classifiers were trained under supervised learning. Each algorithm was
run twelve times on each smartphone. Only one CPU core was employed to run
the algorithms.

The Android platform was selected because it has represented about 80% of
the smartphones in use in the last years [13]. We tested ten mid-range Android
devices with up to three years of use, currently the primary phones of their
respective owners, as a baseline for the smartphones currently in service. We
also a included a more recent high-end model (Samsung S6) and a six years
old device (T-Mobile MyTouch), to get an idea of the differences that could be
expected for newer and older models. The main characteristics of these devices
are summarized in Table 1.

To put in context the capabilities of the smartphones, the same suite of tests
was run on a Toshiba P55W-B5224 laptop with 16 GB of RAM and an Intel i7-
4510U CPU, using a Java 1.8.0 run-time on a Ubuntu Gnu/Linux x86_64 system
(kernel 3.13.0-63-generic SMP), running the algorithms in only one core.

We acknowledge the lack of control in the software installed in the smart-
phones, and that it can have a significant influence when performing benchmarks.
However, the heterogeneity of operating systems, runtimes, and installed appli-
cations are inherent to the Android platform. The smartphones had different
applications installed, since they were the primary mobile phone for their own-
ers. The manufacturer’s kernel and run-time environment were kept in all the
smartphones.

Table 1. Characteristics of the smartphones used.

Device | Model OS |Runtime |CPU cores RAM Chipset
1 LG Nexus 4 5.1.1 ART 2.1 |Quad 1.5GHz |2GB Qualcomm APQ8064
2 Sony D5316 5.0.2| ART 2.1 |Quad 1.4GHz |1GB Qualcomm MSM8928
3 Motorola Moto G 4.4.4| Dalvik 1.6 |Quad 1.2GHz |1GB Qualcomm MSM8226
4 Zuum P60 4.2.2 | Dalvik 1.6 |Quad 1.3GHz |1GB MediaTek MT6582
5 LG D680 4.4.2 | Dalvik 1.6 | Dual 1.0GHz |1GB Mediatek MT6577
6 Samsung SM-G925I |5.0.2| ART 2.1 |Octa 2.1GHz |3GB Samsung Exynos 7420
7 Samsung SM-N900V |4.4.4 | Dalvik 1.6 | Quad 2.27 GHz 3 GB Qualcomm MSM8974
8 Samsung SGH-I337M | 5.0.1 ART 2.1 |Quad 1.89 GHz | 2GB Qualcomm APQ8064AB
9 Motorola Moto G 5.1.0| ART 2.1 |Quad 1.2GHz |2GB Qualcomm MSM8226
10 T-Mobile MyTouch 2.3.4 | Dalvik 1.4 | Single 1.0 Ghz | 768 MB | Qualcomm MSM8255
11 ZTE Blade L3 Plus |4.4.2|Dalvik 1.6 | Quad 1.3Ghz |1GB Mediatek MT6582
12 LG Nexus 5 5.1.1| ART 2.1 | Quad 2.27Ghz |[2GB Qualcomm MSM8974

20 M.R. Carlos et al.

4 Optimization Algorithms

Four multi-objective algorithms, NSGA-II, a steady-state version of NSGA-II,
SPEA2 and PAES, were used to solve the Kursawe test problem with three
variables, employing a representation of the chromosome of type Real and a
population of one hundred individuals. Crossover, mutation, and selection oper-
ations were performed randomly. The maximum number of evaluations was set
to 25,000 for all multi-objective algorithms.

Three single-objective algorithms, PSO, Differential Evolution, and Evolu-
tion Strategy, were used to solve the Sphere problem with twenty variables. The
default parameters used in the framework were kept for each these algorithms:
for PSO, the swarm size was set to 50, mutation operations were performed, and
was run for a maximum of 5,000 iterations; for Differential Evolution, the popu-
lation size was 100, crossover and selection operations were performed, and the
maximum of evaluations was set to 1,000,000; an elitist Evolution Strategy was
evaluated for a maximum of 20,000 times, with 4 = 1 and A = 10, using bit flip.

These algorithms and the test functions solved with them are frequently
found in the literature, and were chosen as a representative sample of the type
of calculations performed when working with optimization problems.

The algorithm implementations were provided by the 4.5 version of the jMetal
framework, [14]. This framework was chosen because it offers readily available
Java implementations of an array of both single and multi-objective optimization
and test problems, with Java being the main programming language for the
Android platform.

4.1 Results

The average execution times for each algorithm are summarized in Table 2.

The 2015 Samsung S6 was the fastest smartphone. During the execution of
the algorithms, the OS reported for it an average CPU usage under 20%. As
expected, the oldest phone (T-Mobile MyTouch from 2010), was the slowest
(with execution times about 15 times longer than the S6) and had an average
CPU usage close to 90%. For the other phones, the CPU usage was between
40% and 60%. The user-installed software running in the background in these
devices might affect these results. However, we would expect the differences
between devices to remain reasonably similar if we compare all phones with
factory settings, due to the hardware specifications.

Hardware is not the only significant factor for smartphone performance, the
OS and runtime environment seem to also be relevant for algorithm execution.
The algorithms were executed on two Moto G phones with the same hard-
ware, but the one with Android 5.1.0 and an ART 2.1.0 runtime solved the
test problems in about half the time. The Samsung SM-N900V (Android 4.4.4,
Dalvik 1.6.0) and the LG Nexus 5 (Android 5.1.1 and ART 2.1.0) have the same
chipset, yet the first took almost twice the time of the latter to finish the tests.
The smartphones with an ART runtime clearly outperformed those with Dalvik,
even when the CPU architecture was comparable or equal.

Are Android Smartphones Ready to Locally Execute Intelligent Algorithms? 21

Table 2. Rounded average execution times and standard deviations for genetic algo-
rithms, in seconds.

Device | NSGAIT | SSNSGAII | SPEA2 |PAES | PSO ES DE

Avg | Std | Avg |Std |Avg |Std|Avg|StdAvg |Std|Avg|Std | Avg | Std
1 7.7,0.1 /160.6 | 0.7| 41.5|0.5 |2.2 |0.1 9.410.2 |11.5/0.3 74.9 |1 0.4
2 8.4]06 [179.1] 1.7] 45.3[1.1 [2.2 0.1 [10.3]04 [11.6]1.0 | 55.8|1.4
3 17.6 1 0.8 | 354.4 1.0 92.1 1.0 |{4.8 |04 22.1 /0.4 [23.0/0.8 |173.6 1.0
4 20.410.4 |432.6 | 9.7/110.2 |24 5.8 |0.8 |27.2|0.5 |27.5/1.0 |198.9 |1.6
5 18.5 1.5 | 310.5| 3.6 82.9 14 47 1.0 195 2.0 |23.6 3.8 1515 3.2
6 2.0/00 /| 35.9| 1.0| 10.7/06 /0.7 |0.1 | 2.3|/0.1 | 4.0 0.4 | 17.2/0.3
7 14.2 /0.8 | 232.6 |10.5 60.9 /1.2 |3.7 |0.6 |15.2]0.7 |20.0|1.1 167.1|0.9
8 7910 |155.7 | 9.7 347 1.1 1.7 0.1 | 6.2 0.3 | 87 05| 604 0.8
9 9.6]0.1 [206.2] 09| 52.3]0.6 25 (0.1 122]01 [13.1]08 | 65103
10 27.711.1 |536.8 | 2.2/149.1 |1.7 |74 |0.6 31.1/0.9 |[36.4|1.8 |328.1 3.4
11 18.0 0.1 |394.6 | 121048 0.8 |48 0.5 253 0.4 239 1.4 150.1 0.5
12 3801] 79.4] 48] 23212112 01| 42]01] 65/03 | 427]03

Memory assignment was not consistent among the smartphones. The T-
Mobile MyTouch had a maximum assigned memory under 6 MB, with an aver-
age around 3 MB. The S6 had a maximum of almost 50 MB, and an average
around 30 MB. The values for the other phones are distributed between those two
extremes, with big variations between models. These variations are attributed
to differences in the Android OS and runtime versions run in each device.

On average, the laptop required only 12.63% of the time used by the fastest
smartphone (with SSNSGAII having the biggest performance difference, requir-
ing only 5.82% of the fastest time, and ES showing the smallest difference, 22.29%
of the fastest time).

5 Classifiers

A similar experiment was performed with five classification algorithms. Execu-
tion times, memory and CPU usage were evaluated on the Android smartphones
for twelve test runs.

The five classifiers employed were: a C4.5 decision tree; KNN, considering fif-
teen neighbours; a Random Forest with fifteen trees; a support vector machine
with a linear kernel; and a multi-layer perceptron, with one hidden layer. The
SVM implementation was provided by LIBSVM [15], JSAT [16] provided the
other algorithms. These libraries were chosen because they provide Java imple-
mentations of the evaluated classifiers.

The data set employed for this experiment consisted of 500 items, labeled
for five different categories. These items are histograms obtained from a bag-of-
words methodology [17] to classify acceleration signals in one axis. Each item
has 250 features, stored as integer values. The classifiers were trained with 60%

22 M.R. Carlos et al.

of the data and the other 40% was used to test the models. While the same data
was employed to train and test all algorithms, it was re-tagged for two categories
to be used for the MLP.

5.1 Results

The average execution times for the training of each algorithm on the tested
smartphones are summarized in Table 3.

Table 3. Rounded average execution times and standard deviations for classification
algorithms, in seconds.

Device | C45 KNN RFOREST | SVM MLP

Avg |Std |Avg |Std |Avg Std |Avg |Std |Avg |Std
4.54 |0.13| 5.23 /0.08|4.08 |0.09 [4.21 | 0.18|11.93 | 0.29
3.2 10.16| 4.10/0.12|2.70 | 0.08 |2.97 |0.18 12.88 | 0.28
4.35 1 0.68| 6.00|0.52/2.92 | 0.55 |2.41 | 0.5930.58 | 0.72
5.04 10.39| 6.63|0.29|3.82 |0.30 |3.59 |0.3131.34 | 0.39
5.54 [0.97| 7.55|1.14]4.35 |0.78 |4.48 |0.8427.99 | 1.91
1.31/0.09| 1.58|0.06/1.21|0.06 |1.17|0.06| 6.02|2.16
2.75 10.66| 3.21|0.54|2.04 |0.50 |1.61 |0.55 8.56 |2.35
3.42 10.19| 3.68 |0.17]2.97 |10.23 |2.73 |0.25| 8.04 |0.51
4.10 [0.22| 4.96 |0.13|3.51 |0.09 |3.74 |0.26 | 15.41 | 0.37
8.53 [0.57/10.90 | 0.48 | 5.69 |0.50 |5.12 |0.6543.93 | 0.68
490 0.40| 6.130.283.29 1 0.31 | 3.70 | 0.36|32.28 | 0.29
3.26 10.23| 4.43/0.11]2.95 [0.12 | 3.24 |0.14 | 14.25 | 0.16

Nelie N I e N S L N N R

—
o

—_
—_

—
[\

The ranking of the smartphones is similar to the one obtained for the opti-
mization algorithms. The Galaxy Note 3 (SM-N900V) had the biggest change in
ranking, going from the seventh place in the previous test to almost the top in
this one. This big change might be attributed to the owner performing an emer-
gency factory reset, removing some applications that might have been running in
the background for our previous test. This noticeable change in performance puts
in perspective that the impact of the diversity of conditions found in Android
smartphones must not be underestimated.

Except for the SM-N900V, the devices running ART also outperformed those
running Dalvik for this test. This finding, together with the performance of the
newest device, shows the big advances that are being made in mobile platforms,
both in terms of hardware and software.

In this test, unsurprisingly, the laptop also outperformed the smartphones. It
required 14.69% of the time used by the fastest smartphone (with MLP having
the biggest time difference, requiring 4.32% of the fastest smartphone time).

Are Android Smartphones Ready to Locally Execute Intelligent Algorithms? 23

6 Discussion

Our results show that even modest smartphones can handle low scale applica-
tions of optimization and classification tasks.

If we extrapolate execution times to big datasets, or more complex optimiza-
tion problems, we might quickly run into unacceptable time scales. The current
workflow of running the intensive calculations in more powerful machines and
just deploying the pre-trained models in smartphones is clearly justified.

The improvement in computing power is clear when comparing the older
phones with the more recent ones. If this trend continues, the possibility of
smartphones running more complex problems should not be discarded.

We found very noticeable variations in resource usage, which might be caused
by both hardware and software differences. For example, CPU utilization was
more consistent in some devices (see Fig. 1). This is suspected to be caused by
the operating system having to interrupt our process in order to perform some
background task. A common situation probably caused by hardware limitations,
the number of applications running in the background, the runtime, or a com-
bination of these.

The differences in standard deviation for the execution times are probably
related to the previously mentioned situation. And these variations in execution
times might have repercussions in the usability of the device, which in turn could
play a significant role in the acceptance of the users for applications that run
these kinds of algorithms.

Fig. 1. CPU usage for an execution of NSGAII, for (a) Device 8, and (b) Device 6.

While running the tests, an increase in temperature was felt in most devices,
enough to be noticeable when holding the smartphone or having it at rest in the
front trouser pocket. This situation, and the impact in battery life, will probably
be influential in the choice of the users of using, or not using, applications relying
on this kind of processing. A possible solution to these objections could be to
schedule the intensive processing to be performed when the smartphone is being
charged and is not being actively used by its owner (for example, at night).

24 M.R. Carlos et al.

7 Conclusions and Future Work

We performed an exploratory evaluation of execution times and resource usage
for java implementations of optimization and classification algorithms in Android
smartphones. The fastest device took, on average, 6—8 times longer to run the
evaluated algorithms than a laptop computer. Considering that the other smart-
phones were about 7 times slower for optimization tasks, and three times slower
for supervised learning, it is clear that the current workflow of deploying only
pre-trained models in smartphones is justified if we are working with big datasets
or complex problems.

However, the execution times for low scale applications are acceptable, sug-
gesting smartphones might be underused for this kind of tasks. Potential use
cases for this type of algorithms include the custom refinement of previously
generated models for contextual applications, by performing optimization or
training classifiers on data acquired in the specific context of the device’s owner.
Educational software that can show real life applications of these algorithms are
another area of opportunity, with the possibility to put data acquisition and
model training, literally, in the hands of students.

As for future work, the lower computational capacity of smartphones might
be compensated by performing calculations when the device is charging and
not in use. This strategy, and its energetic efficiency, remain to be explored.
The viability of distributed computing using smartphones is another possible
research topic.

References

1. IDC: Worldwide smartphone market posts 11.6% year-over-year growth in Q2 2015,
the second highest shipment total for a single quarter, according to IDC (2015).
http://www.idc.com/getdoc.jsp?containerld=prUsS25804315

2. Entner, R.: International Comparisons: The Handset Replacement Cycle (2013).
http://mobilefuture.org/resources/international-comparisons-the-handset-replace
ment-cycle-2

3. Lockhart, J.W., Pulickal, T., Weiss, G.M.: Applications of mobile activity recog-
nition. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing,
UbiComp 2012, pp. 1054-1058. ACM, New York (2012)

4. Reyes-Ortiz, J.L., Oneto, L., Sama, A., Parra, X., Anguita, D.: Transition-aware
human activity recognition using smartphones. Neurocomputing 171, 754-767
(2016)

5. Chen, S., Xue, M., Tang, Z., Xu, L., Zhu, H.: Stormdroid: a streaminglized machine
learning-based system for detecting android malware. In: Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security, pp. 377—
388. ACM (2016)

6. Alammar, J.: Supercharging android apps with tensorflow (2016). https://
jalammar.github.io/Supercharging-android-apps-using-tensorflow /

7. IDC: Smartphone Growth Expected to Drop to Single Digits in 2016, Led by
China’s Transition from Developing to Mature Market, According to IDC (2016).
http://www.idc.com/getdoc.jsp?containerld=prUs41061616

http://www.idc.com/getdoc.jsp?containerId=prUS25804315
http://mobilefuture.org/resources/international-comparisons-the-handset-replacement-cycle-2
http://mobilefuture.org/resources/international-comparisons-the-handset-replacement-cycle-2
https://jalammar.github.io/Supercharging-android-apps-using-tensorflow/
https://jalammar.github.io/Supercharging-android-apps-using-tensorflow/
http://www.idc.com/getdoc.jsp?containerId=prUS41061616

Are Android Smartphones Ready to Locally Execute Intelligent Algorithms? 25

10.

11.

12.

13.

14.

15.

16.

17.

Loghin, D., Tudor, B.M., Zhang, H., Ooi, B.C., Teo, Y.M.: A performance study
of big data on small nodes. Proc. VLDB Endow. 8(7), 762-773 (2015)

Pathak, A., Hu, Y.C., Zhang, M.: Where is the energy spent inside my app? Fine
grained energy accounting on smartphones with eprof. In: Proceedings of the Tth
ACM European Conference on Computer Systems, pp. 29-42. ACM (2012)
Carroll, A., Heiser, G.: An analysis of power consumption in a smartphone. In:
USENIX Annual Technical Conference, vol. 14 (2010)

Gutierrez, A., Dreslinski, R.G., Wenisch, T.F., Mudge, T., Saidi, A., Emmons, C.,
Paver, N.: Full-system analysis and characterization of interactive smartphone
applications. In: 2011 TEEE International Symposium on Workload Characteri-
zation (IISWC), pp. 81-90. IEEE (2011)

Papandrea, M.: A smartphone-based energy efficient and intelligent multi-
technology system for localization and movement prediction. In: 2012 IEEE Inter-
national Conference on Pervasive Computing and Communications Workshops
(PERCOM Workshops), pp. 554-555. IEEE (2012)

IDC: Global market share held by the leading smartphone operating systems in
sales to end users from 1st quarter 2009 to 1st quarter 2016 (2016). http://www.
statista.com/statistics/266136/global-market-share-held-by-smartphone-operatin
g-systems

Durillo, J.J., Nebro, A.J., Alba, E.: The jMetal framework for multi-objective opti-
mization: design and architecture. In: 2010 IEEE Congress on Evolutionary Com-
putation (CEC), pp. 1-8. IEEE (2010)

Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2, 27:1-27:27 (2011). Software available at http://
www.csie.ntu.edu.tw/cjlin/libsvm

Raff, E.: JSAT: Java statistical analysis tool (2015). https://github.com/
EdwardRaff/JSAT

Wang, J., Liu, P., She, M.F., Nahavandi, S., Kouzani, A.: Bag-of-words represen-
tation for biomedical time series classification. Biomed. Sig. Process. Control 8(6),
634-644 (2013)

http://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems
http://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems
http://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems
http://www.csie.ntu.edu.tw/cjlin/libsvm
http://www.csie.ntu.edu.tw/cjlin/libsvm
https://github.com/EdwardRaff/JSAT
https://github.com/EdwardRaff/JSAT

2 Springer
http://www.springer.com/978-3-319-62427-3

Advances in Soft Computing

15th Mexican International Conference on Artificial
Intelligence, MICAlI 2016, Cancun, Mexico, October
23-28, 2016, Proceedings, Part I

Pichardo Lagunas, 0.; Miranda-imeénez, 5. (Eds.)
2017, X0, 552 p. 195 illus., Softcover

ISBM: 978-3-319-62427-3

	Are Android Smartphones Ready to Locally Execute Intelligent Algorithms?
	1 Introduction
	2 Related Work
	3 Experimental Setup
	4 Optimization Algorithms
	4.1 Results

	5 Classifiers
	5.1 Results

	6 Discussion
	7 Conclusions and Future Work
	References

