
A New Approach for Automatic Development
of Reconfigurable Real-Time Systems

Wafa Lakhdhar1(B), Rania Mzid2,3, Mohamed Khalgui1,5,6,
and Nicolas Treves4

1 LISI Lab INSAT, INSAT Centre, University of Carthage,
Urbain Nord BP 676, Tunis, Tunisia

wafa.lakdhar@live.fr, khalgui.mohamed@gmail.com
2 ISI, University Tunis-El Manar, 2 Rue Abourraihan Al Bayrouni,

Ariana, Tunisia
rania.mzid@gmail.com

3 CES Lab ENIS, University of Sfax, B.P:w.3, Sfax, Tunisia
4 CEDRIC Lab, CNAM, 292 rue Saint-Martin, Paris, France

5 Systems Control Lab, Xidian University, August Bebel Str 70, Halle, China
nicolas.treves@cnam.fr

6 School of Electrical and Information Engineering, Jinan University,
Zhuhai Campus, Zhuhai 519070, China

Abstract. In the industry, reconfigurable real-time systems are speci-
fied as a set of implementations and tasks with timing constraints. The
reconfiguration allows to move from one implementation to another by
adding/removing real-time tasks. Implementing those systems as threads
generates a complex system code due to the large number of threads
and the redundancy between the implementation sets. This paper shows
an approach for software synthesis in reconfigurable uniprocessor real-
time embedded systems. Starting from the specification to a program
source code, this approach aims at minimizing the number of threads
and the redundancy between the implementation sets while preserving
the system feasibility. The proposed approach adopts Mixed Integer Lin-
ear Programming (MILP) techniques in the exploration phase in order
to provide feasible and optimal task model. An optimal reconfigurable
POSIX-based code of the system is manually generated as an output of
this technique. An application to a case study and performance evalua-
tion show the effectiveness of the proposed approach.
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NOMENCLATURE

U Processor utilization
n Number of thread
m Number of implementation
Sys System implementations set

impi The ith implementation

Fi The ith Function

Tfi The Period of the ith function

Cfi The WCET of the ith function

τi The ith task

ri The release time of the ith task

Ti The period of the ith task

Ci The WCET of the ith task

Di The deadline of the ith task

Pi The priority of the ith task

Repi The Response time of the ith task
Treconf The reconfiguration time
Tdelete the spent time to delete a task
Tcreat the spent time to create a task
A the number of deleted tasks
B is the number of created tasks
Mergeij Merging Matrix
InitTask Initial Task model
NewTask New task model

1 Introduction

A real-time system is any system which has to respond to externally generated
input stimuli within a finite and specified delay [1]. The development of real-time
systems is not a trivial task because a failure can be critical for the safety of human
beings [2]. The researchers are moving today toward proposing techniques for pro-
gramming concurrent reconfigurable real-time systems. The reconfiguration refers
to the architectural or behavioral modifications of a software system during its
execution to meet user requirements [3]. The successful development of recon-
figurable real-time systems greatly depends on low development costs and the
respect of timing requirements. In fact, several approaches have been proposed
to assist the designer in the synthesis of real-time systems at different levels of the
development process. For real-time concerns, Cheddar tool [4] allows to model
software architectures of real-time systems while ensuring the respect of real-
time properties. To provide design-time guarantees on timing constraints, differ-
ent scheduling methodologies can be used, such as earliest deadline first scheduling
algorithm (EDF) which at each instant in time chooses for execution the currently-
active job with the smallest deadline [5]. Indeed the authors in [6] propose the
RT Reconfiguration tool based on EDF scheduling to assist in designing a fea-
sible reconfigurable real-time system using an agent-based approach. Among all
priority driven policies, Rate Monotonic (RM) is a scheduling algorithm which
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was defined by Liu and Layland [7] where the priority of tasks is inversely propor-
tional to their periods. The authors of [8] provide a method to drive the designer
by producing a set of design solutions based on RM scheduling algorithm. In [9–
11], the authors are interested in the optimization of deployment techniques from
functional and platform models of real-time systems by using mixed integer linear
programming (MILP). An MILP formulation is easily extensible, re-targetable to
a different optimization metric and can easily accommodate additional constraints
or legacy components [9]. The TASTE Toolset approach results from spin-off stud-
ies of the ASSERT project in order to propose innovative and pragmatic solutions
to develop real-time systems using a language based on Simulink, SDL, ASN.1, C,
and Ada [12]. There are many programming languages designed for the develop-
ment of real-time systems such as POSIX (Portable Operating System Interface)
[13]. The POSIX standard promotes portability of applications across different
operating system platforms. The authors [14] use POSIX in the development of
software for real-time and embedded systems.

The synthesis of a valid and optimal implementation model from a given spec-
ification is a crucial issue in the development of reconfigurable real-time applica-
tions. This synthesis consists in building the set of tasks implementing the applica-
tive functions while meeting all related real-time constraints. The reconfigura-
tion at the implementation level consists in adding/removing tasks or modifying
their timing parameters to go from one implementation to another, which may
require an additional time for reconfiguration. So that, the resulting implemen-
tation model should avoid redundancy between the different implementations to
minimize the possible overhead.

In this paper, we present an approach toward an optimal implementation of
reconfigurable uniprocessor real-time systems. The proposed approach aims to
automatically produce a valid and optimal task model from a given specification.
The task model consists of a set of tasks implementing the applicative functions
that we assume independent and periodic. We assume also that assigning priori-
ties to tasks is performed using rate monotonic algorithm RM [15]. The proposed
approach is composed of three phases: the purpose of the first one is to produce
an initial task model from the user specification. The second step aims to opti-
mize this model by using mixed integer linear programming (MILP) techniques
to generate a feasible and an optimal task model. The proposal considers tim-
ing constraints. As for metrics, we consider a multi-objective optimization which
includes the minimization of the response time. Since there are many solvers han-
dling MILP formulations, we use in this paper the CPLEX tool [16]. From this
optimal model, the objective of the third phase is to produce a POSIX-based code
for the considered application. The proposed approach is applied to a CCAS case
study in order to show its applicability.

The paper is organized as follows. Section 2 gives an overview on related works.
Section 3 provides the formalisation of approach. Section 4 explains in details the
proposed approach to obtain a valid and optimal implementation model from the
user specification. Section 5 illustrates the approach on the chosen case study and
evaluates its efficiency. Finally, we summarize our work and discuss the future
work in Sect. 6.
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2 RelatedWorks

In this section, we present the related works that deal with real-time systems and
reconfigurable architectures.

2.1 Real-Time Scheduling

Several works deal with the synthesis problem of real-time systems. The cor-
rectness of such systems depends both on the logical result of the computation
and the time when the results are produced [17]. Thus enforcing timeliness con-
straints is necessary to maintain correctness of a real-time system. In order to
ensure a required real-time performance, the designer should predict the behav-
iour of a real-time system by ensuring that all the tasks meet their deadlines.
Different classes of scheduling algorithms exist where each one is developed for
a particular task model or an environment in which a real-time system operates.
Among all priority driven policies, Rate Monotonic (RM) is a scheduling algo-
rithm used in real-time operating systems. In the case of n synchronous, inde-
pendent and periodic tasks such that their deadlines are equal to their periods,
the processor utilization factor U ≤ ∑n

i=1 n(2
1
n − 1) is a necessary and suffi-

cient condition for the RM-based scheduling of real-time tasks [18]. In the lit-
erature, many approaches such as [19–22] have been carried out in the area of
schedulability analysis for meeting real-time requirements. In [23], the authors
focus on worst-case execution by making conservative assumptions about the sys-
tem. The authors of [22] use a combined offline and online scheduling technique.
A worst-case execution time (WCET) schedule, which provides the ideal operat-
ing frequency and voltage schedule assuming that tasks require their worst-case
computation time, is calculated offline. The online scheduler further reduces fre-
quency and voltage when tasks use less than their requested computing quota, but
can still provide deadline guarantees by ensuring all invocations complete no later
than in the WCET schedule. Pillai and Shin [24] propose an optimal algorithm
for computing the minimal speed that can make a task set schedulable. Chetto et
al. [19] consider the effect of precedence constraints between tasks on the dynamic
priority scheduling problem. That paper proposes an algorithm to accept or reject
aperiodic tasks with precedence constraints to guarantee the timing behavior of
the rest of the system’s tasks. Liu et al. developed an algorithm PASS for real-
time tasks with different priorities and deadlines. PASS considers the hard real-
time tasks and the soft real-time tasks at the same time. The authors of [8,9,25–
29] explore the use of constraint programming to solve scheduling problems, and
presents several optimizations to speed up the search for a valid solution.

In [25], the authors propose a technique to minimize the number of tasks in
a real-time system while satisfying timing constraints. The approach in [8] aims
both to reduce the number of preemptions for minimizing timing overheads and
to maximize the laxity of tasks in order to improve the schedulability of the
design model. In [9], the authors propose a method for an optimized synthesis
of AUTOSAR (Automotive Open System Architecture) which are architectures
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based on Mixed Integer Linear Programming (MILP) and GA (Genetic Algo-
rithm). It takes into account three optimization objectives which are extensibil-
ity maximization, latency and tasks number minimization. In [30], the authors
present Integer Linear Programming (ILP) for scheduling problem with depen-
dent tasks in a multiprocessor homogeneous system. Jeannenot proposed in [31] a
set of algorithms under periodic real-time tasks in a processor with dynamic vari-
able speed to determine the suitable speeds execution for each task and minimize
the total energy consumption.

2.2 Reconfiguration of Real-Time System

Nowadays, many research works have been proposed to develop reconfigurable
systems. The authors in [6] propose an approach that deals with reconfigurable
systems to be implemented with different tasks under deadline constraints accord-
ing to user requirements. For that purpose, the authors define an agent-based
architecture to check after any reconfiguration scenario the system’s feasibility
that can be affected when the tasks violate corresponding deadlines. In this case,
the agent provide new parameters for infeasible tasks in order to re-obtain the sys-
tem’s feasibility. In [32], the authors describe a concurrent function block model to
control the run-time reconfiguration process of a real-time holonic controller. They
describe a real-time java implementation to support the function block-based real-
time task execution and the run-time reconfigurability.

The authors in [33] propose a complete methodology to dynamically recon-
figure tasks. They present an interesting experimentation showing the dynamic
change by users of tasks without disturbing the whole system. The authors in
[34] use the Real-time-UML as a meta-model between design models of tasks and
their implementation models to support dynamic user-based reconfigurations of
control systems. In [35], the authors aim to provide an automated development
process from modelling to implementation for the dynamic software part of recon-
figurable systems. TimeAdapt [36] is a development process for reconfigurable sys-
tem design. It allows to specify reconfiguration actions, estimate whether their
execution can be carried out within a given time bound and execute them in a
timely manner. In the same context, the authors of [37] present an approach which
deals with reconfiguration at different levels within the development process of dis-
tributed applications. They propose a model driven approach to help specifying
and configuring reconfigurable systems.

2.3 Code Generation

There are some related approaches which generate complete real-time systems.
In [12], the authors deliver an approach called TASTE to enable the generation
of a complete real-time distributed system. This approach involves four phases:
(i)The system modeling phase using formal techniques, (ii) The transformation
phase, (iii) The feasibility analysis phase, and (vi) The code generation phase
where the authors propose a new language based on existing and mature technolo-
gies such as Simulink, SDL, ASN.1, C, and Ada [1]. Barreto et al. [38] propose a
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software synthesis method for automatic generation of executable code from the
formal model is performed. This approach is an extension of their previous work
[39] which uses pre-runtime approach in order to find feasible schedules satisfying
timing and power constraints. The authors in [40] provide a framework that allows
designers to automatically generate, from a functional specification with depen-
dency constraints described by the Prelude language, a set of real-time tasks that
can be executed on a uniprocessor architecture.

Nowadays, there are many programming languages designed for the develop-
ment of real-time systems. Among the most used real-time languages, we cite
real-time java (RT-java) [41] formalized in June 2000. RT-java aims to support
the programming of real-time codes from different directions used by other soft-
ware development platforms. POSIX (Portable Operating System Interface) is a
standard written in terms of the C programming language [13]. POSIX allows to
create POSIX threads (pthreads [1]) by calling the pthread create API function
with different thread scheduling policies and priorities to meet different applica-
tion requirements. POSIX defines three scheduling policies that can be used to
schedule real-time applications [42]:

– SCHED FIFO: FIFO order among entities of the same priority.
– SCHED RR: Round robin order among entities of the same priority.
– SCHED SS: Sporadic server scheduling, useful for scheduling aperiodic tasks.

As we assume that assigning priorities to tasks is performed using rate monotonic
algorithm RM, we can implement it using POSIX primitives: At first we assign
priorities to tasks in the usual way for RM (i.e. Pi = 1

Ti
). Then we query the range

of allowed system priorities with:

sched get priority min()

sched get priority max()

After that we map task set onto system priorities. Finally we start tasks using
assigned priorities and SCHED FIFO.

This standard facilitates the application portability that is why we adopt it as
a target language to implement a reconfigurable real-time system in the current
paper.

The main contributions of this paper are four-fold. The first part consists in
ensuring the respect of timing properties before the effective implementation of the
real-time system (i.e. at the design level). Second, we are interested in the reconfig-
uration of real-time systems where the addition and removal of tasks are applied at
run-time.Third,weproposeamulti-optimizationmetric. Indeed, theproposedapp-
roach aims tominimize the reconfiguration time by avoiding a redundancy between
the different implementations from one side. From the other side, it aims to mini-
mize the response times of the real-time tasks in order to maintain the performance
of the system. Finally, this work automatically generates a complete reconfigurable
real-time system from the specification level by using the programming language
POSIX. None of the existing works is solving all the four problems together.
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3 System Formalization

In this section, we present a formal description of a reconfigurable uniprocessor
system. We present in addition real-time prerequisites required to introduce the
paper’s contribution.

It is assumed in this work that a reconfigurable real time system Sys is defined
as a set of implementations: Sys = {imp1, imp2 . . . impm}. We denote by Sys(t)
the implementation defining the system at a particular time t (i.e. Sys(t) = impi).
An implementation impi is composed of n tasks that we assume independent and
periodic (i.e. impi = {τ1, τ2, τ3 . . . τn}). Each task τi executes a set of applicative
functions τi = {F1, F2, F3 . . . Fk}. A function Fi is characterized by static para-
meters Fi = (Tfi , Cfi) where Tfi is the activation period of the function Fi and
Cfi is an estimation of its Worst Case Execution Time WCET. Note that these
parameters are considered as inputs to the proposed approach and must be spec-
ified by the user. Each task τi is characterized by a set of real-time parameters
(ri, Ti, Ci,Di, Pi): its release time ri, we assume that ri = 0, its activation period
Ti which is deducted from the activation periods of the functions implemented by
this task, its capacity or worst case execution time Ci which is equal to the sum
of the WCETs of the functions executed by this task, its deadline Di we assume
that Di = Ti, the priority Pi, we assume that Pi = 1/Ti since we adopt the Rate
Monotonic (RM) priority assignment. The Fig. 1 depicts the task parameters:

Let U be the processor utilization factor defined by: U =
∑n

i=1
Ci

Ti
. For timing

verification, we perform in this paper Rate-Monotonic (RM) response time analy-
sis based on the computation of an upper bound of the response time Repi of the
different tasks constituting the task model. This analysis aims to verify whether
these tasks complete their computations within the time limit specified by the
real-time application i.e. the deadline (Repi ≤ Di) [18].

The reconfiguration scenario corresponds to adding/removing tasks or modify-
ing timing parameters. Thus, we introduce the reconfiguration time Treconf which
refers to the time required to jump from one implementation to another according

Fig. 1. Real-time task parameters.
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to user requirements (i.e. reconfiguration conditions). This parameter is defined
as follow:

Treconf = A ∗ Tdelete + B ∗ Tcreat

where A is the number of deleted tasks, B is the number of created tasks, Tdelete

is the spent time to delete a task and Tcreat is the spent time to create a task.
We assume that the blanking time Tdelete and creation time Tcreat of all the tasks
are equal for a considered platform (i.e. Tdelete = Tcreat). We denote by Tcost the
spent time to create a task or to delete it (i.e. Tdelete = Tcreat = Tcost). Thus, the
reconfiguration time is given as follow: Treconf = (A + B) ∗ Tcost.

4 Proposed Approach

In this section, we present an overview on our approach and detail the structure
of different modules involved in this work.

4.1 Motivation and Definitions

We deliver an approach which automatically converts a high-level specification
of a reconfigurable real-time system into an executable running on POSIX plat-
form. The proposed approach aims to optimize the system code while meeting
all related real-time constraints and avoiding any redundancy between the imple-
mentation sets. Figure 2 shows the process of the proposed approach. As entry, the
designer provides the specification model which defines the reconfiguration condi-
tions, the applicative functions that must be executed under a considered condi-
tion and the temporal parameters of each function. This model presents the input
of the task generator step which aims to produce an initial task model. Then, the
optimization step receives the generated model and proposes a valid and optimal
task model. This model is finally converted into an executable program running
under POSIX.

4.2 Task Generator

The first step consists in generating the initial task model. This stage considers the
specification model as an input and aims to generate the initial task model which
defines a possible implementation of the considered system. For each reconfigura-
tion condition, this step generates an implementation and associates its appropri-
ate functions. Then, for each generated implementation, it regroups the functions
having the same period Tfi to be executed by one task τi. Since we assume that the
release time ri = 0 and Pi = 1/Ti, the task τi is characterized only by (Ti, Ci,Di)
where the period Ti corresponds to the period of the grouped functions, Ci is the
sum of WCETs of the grouped functions and the deadline Di of each task is equal
to the corresponding period Ti.

Let us note that for the generation of this model, the optimization and
real-time feasibility concerns are not considered. Algorithm1 illustrates this
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Fig. 2. Process overview.

generating step. The Initial task model can be generated with complexity O(N ∗
M) + O(P ∗ M) = max(O(N ∗ M);O(P ∗ M)), where N denotes the size of
the conditions, M denotes the number of functions and P presents the number of
implementations.

4.3 Task Model Optimization

This phase aims to produce a feasible and optimal implementation of the recon-
figurable real-time system from the initial task model.

In order to avoid redundancy between the sets of implementation and reduce
the number of tasks, this phase aims to merge the tasks belonging to different
implementations but implementing the same functions and/or having close peri-
ods. For instance, let us consider two tasks τi ∈ impk and τj ∈ impl. τi and τj
are defined by a set of parameters: τi = (Ti, Ci,Di) and τj = (Tj , Cj ,Dj). These
two tasks have close periods (i.e. Ti = Tj + δt) where δt is a constant defined by
the user. We denote by τ ′

i the task resulting from merging these two tasks which
is characterized by

τ ′
i(T

′
i , C

′
i,D

′
i) =

⎧
⎨

⎩

T ′
i = min(Ti, Tj)

C ′
i = Ci + Cj

D′
i = min(Di,Dj)
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Algorithm 1. Task Generation

Input:
- F : Functions set
- ReconfCnd : Reconfiguration condition
Output:
- InitTask : Initial Task Model

1 Notations:
2 - Reconf Cnd Func: Correlation table between the reconfiguration conditions

and the functions.
3 - imp : Implementation set
4 nbr t ← 0
5 k ← 0
6 /* Generation Of Implementations */
7 for i ← 0 to SizeOf(ReconfCnd) do
8 for j ← 0 to SizeOf(F ) do
9 if (F [j] ∈ Reconf Cnd Func[i]) then

10 imp[i][k] = F [j]
11 k + +;

12 /* Generation Of Task Model */
13 for each implementation impi do
14 for eachfunctionFj do
15 /* We create a task and we initialize its parameters with function Fj

parameters */
16 WcetOf(InitTask[nbr t]) = WcetOf(Fj)
17 PeriodOf(InitTask[nbr t]) = PeriodOf(Fj)
18 DeadlineOf(InitTask[nbr t]) = DeadlineOf(Fj)
19 for eachfunctionFj+1 do
20 /* We check if Fj and Fj+1 have the same period and we evaluate if

the result WCET is less than the task period to ensure the system
feasibility */

21 if PeriodOf(Fj) == PeriodOf(Fj+1)) then
22 if (WcetOf(Fj) + WcetOf(Fj+1) <=

PeriodOf(InitTask[nbr t])) then
23 WcetOf(InitTask[nbr t]) =

WcetOf(InitTask[nbr t]) + WcetOf(Fj+1)

24 nbrt + +;

25 return InitTask

Where T ′
i corresponds to minimum of the two periods, C ′

i is equal to the sum
of their WCETs and the deadline D′

i of τ ′
i is equal to the corresponding period

T ′
i . This approach allows to merge more than two tasks by optimizing other

parameters like the sum of their response times. Thus, the considered problem
is a combinatorial one, and the solution depends on many parameters. In order
to implement properly the problem by taking into consideration the different
constraints, we propose a MILP formulation of our problem. So we should define
the objective function and the required constraints for parameters and variables.
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Figure 3 shows an example to illustrate the scenario of reconfiguration which
correspond to the transition from imp1 to imp2. The reconfiguration consists in
removing τ2, τ3,τ4 and adding τ5, τ6,τ7, thus the reconfiguration time is defined
as follows:

Treconf = 3 ∗ Tdelete + 3 ∗ Tcreat = 6Tcost.

In order is to minimize the reconfiguration time Treconf , tasks having close
periods (or same period T in this example) must be merged (see Fig. 3). Conse-
quently, after merging these tasks (i.e. τ2 with τ6, τ3 with τ7) Treconf becomes:

Treconf = 2 ∗ Tdelete + 2 ∗ Tcreat = 4Tcost

Fig. 3. Example of a reconfiguration scenario.

Definitions
Let m be the number of tasks in the initial model, let N be the number of tasks
in the new task model, let s be the starting time which corresponds to effective
starting time of each task. We denote by InitTask the initial task model which
is a three column matrix where the first column presents the period Ti of task,
the second one presents their WCETs Ci and the third column is their deadline
Di. NewTask is the resulting task model after merging the different tasks (i.e.
optimized task model).

Objective Function

Maximize
∑

i,j∈{1,m}
Mergeij −

∑

i,j∈{1,m}
Repij (1)
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This expression defines the objective function of our problem. Merge denotes a
boolean variable used to mention whether two tasks τi and τj are merged. More
in detail, Mergeij is equal to 1 if task ti ∈ impk and task tj ∈ impl are merged.
The expression(1) aims to maximize the number of merged tasks and minimize
the sum of response times of the different tasks constituting the task model.
In order to limit non meaningful merging situations, we define in addition the
following constraints:

Merging Situation Constraints
The constraints (2) and (3) introduce the merging condition such as tow the
tasks τi ∈ impk and τj ∈ impl will be merged if they have the same period.

∀i, j ∈ {1 . . . m} et i �= j,
if(InitTask[i, 1] − InitTask[k, 1]) = δt then Mergeij = 1 (2)

∀i, j ∈ {1 . . . m} et i �= j,
if(InitTask[i, 1] − InitTask[k, 1]) �= δt then Mergeij = 0 (3)

The constraint (4) means that we have to maximize the number of merged
tasks and thus minimize the number of tasks used in the task model. Indeed,
this equation serves as a bound for the objective function (i.e. the number of
merging operations).

N = m − (
∑

i,j∈{1...m}
Mergeij)/2 (4)

Real-Time Constraints
NewTask is a three column matrix where the first column presents the periods
of the new tasks computed by the constraint (5). The second column presents
the WCETs of the tasks computed by the constraint (6) and the last column is
the deadline presented by the constraint (7)

∀k ∈ {1 . . . N}, ∀i, j ∈ {1 . . . N} : NewTask[k, 1] = min(InitTask[i, 1], InitTask[j, 1])
(5)

NewTask[i, 2] = (InitTask[i, 2] + InitTask[j, 2])Merge[i, j]+
(1 − Merge[i, j])InitTask[i, 2] (6)

∀i ∈ {1 . . . N}, NewTask[i, 3] = NewTask[i, 1] (7)

The constraint (8) verifies whether the new model meets the timing constraints.

U =
N∑

i=1

NewTask[i, 2]
NewTask[i, 1]

≤
N∑

i=1

N(2
1
N − 1) (8)

Constraint (9) ensures that the response times Repi of the different tasks in the
optimized model are lower or equal than their deadlines:

∀i ∈ {1 . . . N}Repi ≤ NewTask[i, 3] (9)
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Constraint (10) gives the computation formula of the response time Repi of
task τi:

Repi = s[i] + NewTask[i, 2] (10)

The response time Repi of a task τi is defined as the sum of its start time and
its execution time.

∀i ∈ {1 . . . N}s[i] − s[j] >= NewTask[j, 2] (11)

∀i ∈ {1 . . . N}s[j] − s[i] >= NewTask[i, 2] (12)

To ensure a single executed task at any time, we should have either
s[i] − s[j] − NewTask[j, 2] >= 0 or s[j] − s[i] − NewTask[i, 2] >= 0, for every
pair of tasks ti and tj .

∀i ∈ {1 . . . N}s[i] <= r[i] (13)

By respecting these constraints, the objective function will seek for the best
way to merge tasks, so as to reduce the reconfiguration time while ensuring the
respect of timing properties. The task model generated by the linear program
will be interpreted by the code generator in order to generate a running program
in POSIX.

4.4 Code Generator

The last step of our approach consists in building the executable application from
the optimized task model. We generate a POSIX code on the basis of transfor-
mation rules. For each task in the optimized task model, the code generator
implements a POSIX thread by using pthread. In addition, this step produces
the controller code of the reconfigurable real-time system, which allow mov-
ing from implementation to another, following well-defined conditions (i.e. user
requirements).

5 Case Study

In this section, we illustrate the proposed approach through a case study. The
considered case study consists in a Car Collision Avoidance System (CCAS)
[43]. Firstly, we present the CCAS specification. Then we apply the proposed
approach using the suite of tools associated to an automatic construction of a
feasible and optimal implementation of a reconfigurable real-time system.

5.1 CCAS Presentation

The Car Collision Avoidance System (CCAS) detects obstacles in front of the
vehicle to which it is mounted and, if an imminent collision is detected, applies
the brakes to slow the vehicle. To show the applicability of our approach, we
consider in this paper a simplified version of this system. For clarity, several
features of the system (CCAS) were omitted. Therefore, we only define two
modes of operation:
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(i) Default mode: represents a traditional use of CCAS,
(ii) Economic mode: represents a restrictive use of CCAS with safety require-

ments.

In the case where the economic mode must be enabled, the system jumps from
the default mode to the secure one.

Default Mode: This mode is defined by five functions:

(i) F1 (ReadImage): reads images from the input to the system from a radar,
(ii) F2 (Discrete Cosine Transformation: DCT ) moves the representation of the

image from the spatial domain into the frequency domain
(iii) F3 (Quantization): data in the frequency domain is selectively discarded to

compress the image
(iv) F4 (InverseDCT ): moves the image back into the spatial domain
(v) F5 (Display): displays the images for monitoring

The Figs. 4 and 5 present the overview of the CCAS system.

Fig. 4. CCAS overview in default mode.

Fig. 5. CCAS overview in economic mode.
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Table 1. CCAS specification in economic mode.

Fi Tf Cf

F1 5 ms 1 ms

F ′
1 5 ms 1 ms

F2 5 ms 1 ms

F3 15 ms 0.5 ms

F4 15 ms 0.25 ms

F ′
4 15 ms 0.25 ms

F5 20 ms 2 ms

Table 2. CCAS specification in default mode.

Fi Tf Cf

F1 5 ms 1 ms

F2 5 ms 1 ms

F3 15 ms 0.5 ms

F4 15 ms 0.5 ms

F5 20 ms 2 ms

Economic Mode: The economic Mode is defined by seven functions. Compared
with the default mode, we have added two function F ′

1 to compress the received
image and F ′

4 to decompress it. Tables 1 and 2 give a tabular presentation of the
specification model describing the different functions of the CCAS system.

5.2 CCAS Initial Task Model

The second step consists in generating the implementations and their tasks from
the specification model by applying Algorithm1. Tables 3 and 4 give a tabular
description of the initial task model describing the CCAS. This model shows
two possible implementations of the CCAS which refer respectively to the two
execution modes already specified. Thus, we denote by CCASsys the recon-
figurable real-time system of the Car Collision Avoidance which defines two
implementations:

CCASsys = {DefaultMode,EconomicMode}

The first implementation executes three tasks DefaultMode = {τ1, τ2, τ3} and
the second executes also three tasks EconomicMode = {τ4, τ5, τ6}. Each task is
defined by the specific real-time parameters and implements the set of applicative
functions having the same period.
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Table 3. Tabular description of the initial task model of the CCAS in default mode.

Task Ti (ms) Ci (ms) Di (ms) Fi

τ1 5 3 5 {F1, F2}
τ2 15 1 15 {F3,F4}
τ3 20 2 20 {F5}

Table 4. Tabular description of the initial task model of the CCAS in economic
mode.

Task Ti (ms) Ci (ms) Di (ms) Fi

τ4 5 3 5 {F1, F
′
1, F2}

τ5 15 1 15 {F3,F4, F
′
4}

τ6 20 2 20 {F5}

5.3 CCAS Optimized Task Model

The third step corresponds to the generation of the optimized task model from
the initial one. The objective of this step is to optimize the initial task model by
minimizing the redundancy, the number of tasks and the response times of the
different tasks. The merging matrix given by the task model optimization phase
is given as follow:

Merge =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

This matrix shows that the solution considered by the solver is the merge of τ2
and τ5 and the merge of τ3 and τ6. We note that tasks τ1 and τ4 are not merged
by the solver even they have the same period because due to feasibility concerns
(i.e. if the solver decide to merge τ1 and τ4, the resulting task will not meet its
deadline). Tabular descriptions of task models generated by this phase are given
in Tables 5 and 6.

Table 5. Tabular description of the optimized task model of the CCAS in default
mode.

Task Ti (ms) Ci (ms) Di (ms) Repi (ms) Function

τ1 5 3 5 7 F1,F2

τ ′
2 15 2 15 10.7 F3,F4,F

′
4

τ ′
3 20 4 20 5.2 F5
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Table 6. Tabular description of the optimized task model of the CCAS in economic
mode.

Task Ti (ms) Ci (ms) Di (ms) Repi (ms) Function

τ ′
1 5 3 5 8 F1,F

′
1,F2

τ ′
2 15 2 15 10.8 F3,F4,F

′
4

τ ′
3 20 4 20 5.3 F5

After optimisation, the CCAS system consists also in two implementations
but implementing different functions: DefaultMode = {τ1, τ

′
2, τ

′
3} and Economic-

Mode = {τ ′
1, τ

′
2, τ

′
3}. We note that the number of tasks implementing the CCAS

after optimization is only 4 tasks compared to 6 tasks in the initial task model.
In addition, as we can see from Tables 5 and 6, the response times Repi of the
different tasks are lower than their deadlines Di and thus the timing constraints
of the CCAS system are met. Figures 6 and 7 present the execution graphs of
the tasks in the default mode and the economic mode of the CCAS system given
by cheddar simulator [4]. These figures confirm that the system is feasible since
all the tasks meet the related deadlines.

Fig. 6. Execution graph of CCAS tasks in default mode.

Fig. 7. Execution graph of CCAS tasks in economic mode.
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Fig. 8. Excerpt of the controller implementation.

5.4 Code Generation

The last step in our approach is the code generator. We generate a POSIX
code from the optimized task model describing the CCAS. Figure 8 presents an
excerpt of the controller POSIX code. The controller’s role is to switch from
one implementation to another under a considered condition. As shown in Fig. 8
if the variable “CND” is equal to “Economic” then the control executes the
EconomicMode implementation else it executes the DefaultMode.

5.5 Performance Evaluation

The experiments are carried-out on Intel Core i5-4200U processor running at
1.6 GHz with 6 GB of cache memory. CPLEX is used as a MILP solver for the
whole set of experiments. We evaluate the proposed approach by considering the
CCAS system CCASsys previously defined.

We denote by Treconfinitial
the reconfiguration time in the initial task model

of the CCAS and TreconfCurrent
the reconfiguration time in the optimized task

one. These parameters are given as follow:

Treconfinitial
= 5 ∗ Tdelete + 6 ∗ Tcreat = 11 ∗ Tcost

TreconfCurrent
= 1 ∗ Tdelete + 2 ∗ Tcreat = 3 ∗ Tcost
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We note that the proposed approach allows to reduce the reconfiguration time
and thus improves the overall performance of the reconfigurable real-time system
(CCAS). It minimizes also the sum of the response times of the considered tasks
such as Repinitial = 3010 ms and after optimization it becomes Repoptimized =
1920 ms.
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Fig. 11. Results of task merging.

In addition, we have randomly generated instances with 5 to 40 tasks. We
compare the reconfiguration time and the sum of response times after opti-
mization with the initial corresponding parameters. The numerical results are
depicted in Figs. 9 and 10.

These figures show that the optimization of the reconfiguration and response
times are clearer and more important for large scale reconfigurable real-time
systems. In fact, when the number of tasks is more important, the optimisation
phase will seek for solutions to merge tasks having the same periods while min-
imizing the response times of the different tasks. Such optimisation, reduce the
reconfiguration time and guarantee the system feasibility. Figure 11 shows the
number of tasks obtained after merging compared to the initial number of task.
We compute average results by executing several times the linear program on
randomly generated task sets. We observe from this figure that we are able to
merge many tasks. Thus, we minimize the additional time overhead.

6 Conclusion

The contribution presented in this paper consists in a methodology that supports
the development of reconfigurable real-time systems. By defining the specifica-
tion such as reconfigurable conditions, functions and temporal constraints the
approach generates as first step an initial task model. Then, this model will be
optimized using MILP techniques to produce an optimized task model. Finally,
our approach generates a POSIX-based code which describes the reconfigurable
real-time system. We have evaluated the performance of the three-step approach.
The numerical results show that the integer programming model allows to min-
imize the reconfiguration time and response times. As a future work, we aim to
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extend our approach by considering multiprocessor systems and other optimiza-
tion metrics. So that we expect to evaluate scalability of the proposed method
with an industrial example.
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