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1 Introduction

In this paper, we discuss recent developments on importance sampling methods
for metastable dynamics that may also have multiple scales. Development of
accelerated Monte Carlo methods for metastable, multiple-scale processes is of
great interest. Importance sampling is a variance reduction technique in Monte Carlo
simulation, which is especially relevant when dealing with rare events. Since its
introduction, importance sampling has been one of the most popular techniques
for rare event simulation. There is a vast literature of papers investigating its
applications from a broad set of sciences including engineering, chemistry, physics,
biology, finance, insurance, e.g., [1, 10, 28, 31, 32, 36, 40, 46, 53, 54].

Consider a sequence fX�g�>0 of random elements and assume that we want to
estimate the probability 0 < p� D P ŒX� … D [ @D� � 1 for a given set D, such
that the event fX� … D [ @Dg is unlikely for small �. If closed form formulas are not
available, or numerical approximations are either too crude or unavailable, then one
has to resort in simulation. It is well known that standard Monte Carlo simulation
techniques (i.e., using the unbiased estimator Op� D 1

N

PN
jD1 1X�;j…D[@D) perform

rather poorly in the rare-event regime. As it is known, see, for example, [1], in order
to achieve relative error smaller than one using standard Monte Carlo, one needs
an effective sample size N � 1=p� . In other words, for a fixed computational cost,
relative errors grow rapidly as the event becomes more rare. Thus standard Monte
Carlo is infeasible for rare-event simulation.
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The goal of importance sampling is to simulate the system under an alternative
probability distribution NP instead of the original probability P. Let’s say, for
example, that we are interested in the estimation of

Ey

h
e� 1

� h.X�T /
i

orPy
�
��D[@D � T

	
(1)

where h W Rd 7! R is a positive function, T > 0; � > 0, y 2 D is the initial point,
��D[@D is exit time from the set D [ @D, X� is a stochastic process modeling the
dynamics. Also, notice that the probability above can be considered (modulo the
important technical point of lack of continuity) as a special case of EyŒe� 1

� h.X�T /�,
when h is, for example, chosen such that h.x/ D 0 for x … D [ @D and h.x/ D C1
for x 2 D [ @D.

When rare events dominate, then standard Monte Carlo methods perform poorly
in the small noise limit. Then, to estimate EyŒe� 1

� h.X�T /�, one generates iid samples
X�.k/ from NP and uses the importance sampling estimator

1

N

NX

kD1
e� 1

� h.X�.k//
dP

d NP .X
�
.k//: (2)

The key question is the design of NP such that the second moment
NEyŒe� 1

� h.X�T /.dP=d NP/.X�� /�2 (and hence the variance) is minimized. NE is the
expectation operator under NP. The choice of the appropriate alternative measure
NP is closely related to certain Hamilton-Jacobi-Bellman (HJB) equations.

The first issue that we address is the effect of rest points (and metastability in
general) on importance sampling. It turns out that when dealing with metastability,
even seemingly reasonable schemes that are also asymptotically optimal may
perform poorly in practice. This includes also changes of measure that try to enforce
the simulated trajectories to follow large deviations most likely paths. The reason for
the degradation in performance is the role of prefactors. Prefactors can become very
important when rest points are included in the domain of interest for the simulation.
Large deviations based change of measures may not account for the prefactors,
as they rely on logarithmic asymptotics. We elaborate on these issues and discuss
potential ways on how the issue can be addressed.

The second issue that we address is the effect of multiple scales on the design
of provably efficient importance sampling methods. It turns out that when the
dynamical system has widely separated multiple scales, then one can use averaging
and homogenization techniques. However, as we shall see, it is not sufficient to base
the design of importance sampling on the effective homogenized dynamics. The
local information needs to be taken into account. Mathematically this is done using
the so-called cell problem, or macroscopic problem, in the theory of periodic and
random homogenization.

The rest of the article is summarized as follows. In Sect. 2 we review the
classical large deviations theory and the setup of importance sampling for small
noise diffusions. In Sect. 3 we discuss the effects of rest points, i.e. of stable and
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unstable equilibrium points, in the design of importance sampling. We argue why
asymptotic optimality may actually not mean good practical performance and we
also argue that following large deviations most likely optimal paths may lead to
poor performance. In addition, we present constructions that lead to guaranteed
good performance. We supplement the theoretical arguments by simulation studies.
We refer the interested reader to [15, 23] for more details. In Sects. 4 and 5, we
address the design of importance sampling schemes in the presence of multiple
scales. We construct asymptotically optimal schemes in the presence of multiple
scales. To be more precise, in Sect. 4 we consider overdamped Langevin dynamics in
periodic multiscale environments and we review the related large deviations theory
and importance sampling theory, presenting simulation studies. The interested
reader can also consult [21, 22]. In Sect. 5 we review recent developments in
large deviations and importance sampling for multiscale dynamics in random
environments, see also [49, 50]. In Sect. 6 we describe how one can combine the
results of Sect. 3 with those of Sects. 4 and 5 and also review future directions.

For the sake of concreteness and for exposition purposes we restrict the pre-
sentation of this article in the case of diffusions with gradient drift and constant
diffusivity, which also implies reversible diffusion dynamics. However, we mention
that almost all of the arguments can and have been generalized to the case with
general state dependent drift and diffusion coefficient, especially those about the
effect of multiple scales on importance sampling, see [14, 22, 23, 49, 50]. For results
in the infinitely dimensional case, we refer the interested reader to [45].

2 Review of Large Deviations and Importance Sampling
Theory for Diffusions

Let us briefly review the setup for small noise diffusions in R
d (e.g., [22, 51]) without

the effect of multiple scales. Let Wt be a standard d-dimensional Wiener process and
consider

dX�t D �rV.X�t /dt C p
��dWt; X�t0 D y: (3)

Large deviations principle for the process X�t is well known (e.g., [27]). In
particular, the action functional for the process X�t ; t0 � t � T , in C.Œt0;T�/ as
� # 0 has the form 1

�
St0T.�/, where

St0T.�/ D
(
1
2

R T
t0
. P�s C rV.�s//

T
�
��T

	�1
. P�s C rV.�s//ds; if� 2 AC.Œt0;T�/

C1; otherwise:

(4)

Here C.Œt0;T�/, AC.Œt0;T�/ are the sets of continuous and absolutely continuous
functions on Œt0;T� respectively. Then, under fairly general conditions,

Ey

h
e� 1

� h.X�T /
i

� e� 1
� inffSt0T .�/Ch.�T /W�;�t0Dyg; as� # 0:
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A simple application of Jensen’s inequality together with Varadhan’s integral
lemma (e.g., [13, 27, 52]) shows that an asymptotically optimal NP should satisfy

lim
�!0

� ln NE
h
e� 1

� h.X�T /dP=d NP
i2 D �2G.t0; y/;

withG.t; x/ D inf
�2AC.Œt;T�/;�tDx

fStT.�/C h.�T/g

Turning to importance sampling, for NP that are absolutely continuous with respect
to P, Girsanov’s formula implies

d NP
dP

D e
� 1
2�

R T
0 jvsj2dsC 1

p

�

R T
0 vsdWs (5)

where vt is a progressively measurable process (control) such that the right-hand
side is a martingale (with respect to an appropriate filtration). Under NP, X� satisfies

dX�t D ��rV.X�t /C �vt
	

dt C p
��d NWt; with NWt D Wt � 1p

�

Z t

t0

v	d	 (6)

So, the problem is restricted to choosing the control vt optimally (i.e., such
that the second moment is minimized) and then using the estimator based on
iid samples generated from NP under (6). Under appropriate conditions, the zero-
variance (i.e., the best) change of measure is based on the control vt given by the
formula vt D Nu.t;X�t / where Nv.t; x/ D ��TrG�.t; x/ where G�.t; x/, with terminal
condition G�.T; x/ D h.x/, is the solution to the PDE, of HJB type:

@tG
�.t; x/�rV.x/ �rG�.t; x/� 1

2

ˇ̌
�TrG�.t; x/

ˇ̌2C �

2
tr
�
��Tr2G�.t; x/

	 D 0: (7)

Since (7) is not tractable, it is standard approach to go to the viscosity limit
� # 0. Then G.t; x/ D lim�#0 G�.t; x/ is the viscosity solution to the HJB equation
with Hamiltonian

H.x; p/ D h�rV.x/; pi � 1

2



�Tp


2

i.e., to the equation

@tG.t; x/ � rV.x/ � DG.t; x/ � 1

2

ˇ̌
�TDG.t; x/

ˇ̌2 D 0; G.T; x/ D h.x/: (8)

Notice that by control arguments, e.g., see [25], we can also write

G.t; x/ D lim
�#0

G�.t; x/ D inf
�2AC.Œt;T�/;�tDx

fStT.�/C h.�T/g :
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In fact, more is true. A smooth function NU.t; x/ W Œ0;T� � R
d 7! R is called a

subsolution to the HJB equation (8) with � D 0 if

@t NU.t; x/ � rV.x/ � r NU.t; x/ � 1

2

ˇ̌
�Tr NU.t; x/ˇ̌2 � 0; NU.T; x/ � h.x/: (9)

It turns out (Theorem 4.1 in [22]) that appropriate, smooth subsolutions are
enough. If NU.t; x/ 2 C1;1.Œt0;T� � R

d/ satisfies (9) and the feedback control to use
in (6) is vt D ��Tr NU.t;X�t /, then

G.t0; y/C NU.t0; y/ � lim inf
�!0

�� ln NE
�

e� 1
� h.X�T /

dP

d NP
�2

� 2G.t0; y/: (10)

Therefore, asymptotic optimality is attained if NU satisfies NU.t0; y/ D G.t0; y/ D
lim�#0 G�.t0; y/ since then lower and upper bound agree. The design and analysis of
importance sampling schemes based on the systematic connection with subsolutions
to the appropriate HJB and Isaacs equations goes back to [16, 17]. See also [4–7]
for the closely related concept of Lyapunov inequalities.

The importance sampling simulation scheme in order to estimate ��.t0; y/
:D

Et0;y

h
e� 1

� h.X�T /
i

goes as follows. Let X�;v be the solution to the SDE

dX�;vt D ��rV.X�;vt /C �vt
�

dt C p
��dWt; X�;ut0 D y: (11)

1. Consider vt D Nu.t;X�;vt / D ��Trx NU.t;X�;vt / with NU an appropriate subsolution,
i.e., it satisfies (9)

2. Consider the estimator

O��.y/ :D 1

N

NX

jD1

h
e� 1

� h.X�;vT .j//Zvj
i

(12)

where

Zvj
:D e

� 1
2�

R T
0 kNu.t;X�;vt .j//k2dt� 1

p

�

R T
0 hNu.t;X�;vt .j//;dWt.j/i

and .W.j/;X�;v.j// is an independent sample generated from (11) with control
vt D Nu �t;X�;vt .j/

�
.

We conclude this section, with the remark that a choice of the control vt based on
a subsolution as defined by (9) only guarantees logarithmic asymptotic optimality
and does not say something about the important effect of pre-factors. As we will
see in Sect. 3, this can imply degradation in the performance of the algorithm in
problems with metastability. When dealing with metastability issues, things may
be even more problematic if one is using the exact solution to the association HJB
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equation, G.t; x/. While this may not be a problem for problems that do not involve
rest points (i.e., does not involve stable or unstable equilibrium points) in the domain
of interest, it does become problematic when dealing with metastability issues.

Remark 2.1 Obtaining accurately the solution G.t; x/ to the HJB equation (8),
analytical or numerical, is challenging in high dimensions. However, even if this
were possible, the solution by itself is not always suitable for importance sampling
when one is interested in computing escape or transition probabilities. The issue
is that in these cases, the solution is a viscosity solution with a discontinuous
derivative at the rest point (stable or unstable equilibrium points) and with negative
definite generalized second derivative there. Physically, the exact solution to the
HJB equation attempts at each point in time and space to force the simulated
trajectories to follow a most likely large deviations optimal path. However, by
standard control arguments, see [25], the discontinuity of the spatial derivative at the
rest point implies that multiple most likely optimal paths exist. As a consequence,
the noise can cause trajectories to return to a neighborhood of the origin, thereby
producing large likelihood ratios. In Sect. 3.2, we will see that this is a serious
issue, leading to poor performance, even in dimension one where one can solve the
HJB equation analytically. Importance sampling, when dealing with state dependent
metastable dynamical systems, needs to be addressed from a global point of view
and not local.

3 The Effect of Rest Points on Importance Sampling

As it is shown, mathematically and numerically, in [15, 23, 48], in dynamical
systems that exhibit metastable behavior standard simulation methods do not readily
apply. Asymptotic optimality is necessary but not sufficient for good performance
due to the non-trivial effect of the pre-factors. The pre-factor computations in
[23, 48] prove that there is non-trivial interaction of parameters such as the strength
of the noise � and the terminal time T . We remark here that this is in contrast to
escape probabilities for other well-studied problems, such as stochastic networks,
e.g., [4, 6, 17–20], because there the proximity of the rest point has little impact on
either the asymptotic rate of decay or the pre-exponential term.

These interactive effects vanish in the logarithmic limit as the noise goes to
zero, but they have a significant effect on the performance of the algorithms. The
following question immediately presents itself:

• Is it sufficient to have schemes that are only asymptotically logarithmical optimal,
in the sense that the second moment of the estimator satisfies (10)? What about
pre-factors? Are they truly negligible in practice in the rare event regime?

• Can we construct a subsolution NU.t; x/ that not only satisfies (9) but it also takes
care of the prefactor effects?
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3.1 Effects in the Prelimit

Let us demonstrate the effect of prefactors on the behavior of estimators in the
following classical simple setting. Let us assume that the diffusion coefficient
� D I, and that x D O is the global minimum for V.x/. In particular, let us assume
that DV.O/ D 0 and that DV.x/ ¤ 0 for every x ¤ O. Define

D D ˚
x 2 R

d W 0 � V.x/ < L



and let Ac D ˚
x 2 R

d W V.x/ D c


. Then for an initial point y such that 0 � V.y/ <

L, let us assume that we want to estimate

��.t; y/ D Pt;y fX�hitsALbeforetimeTg :
A classical quantity if interest in metastability theory is the quasipotential, see

[27]. The quasipotential with respect to the equilibrium point O is defined as follows

W.O; x/ D fS0T.�/ W � 2 C.Œ0;T�/; �.O/ D 0; �.T/ D x;T 2 .0;1/g
Under the assumptions of this section, the quasipotential is computable in closed

form [27]: W.O; x/ D 2V.x/forx 2 fy 2 D \ @D W V.y/ � infz2@D V.z/g:
Now, if we define �� D inf

˚
t > 0 W X�t … D



, then, as it is shown in [27]

we have that lim�#0 � lnE�� D infz2@D W.O; z/: Thus, the quasipotential allows
to approximate exit times in the logarithmic large deviations regime, [27]. Many
quantities in the theory of metastability are defined via the quasipotential. The
quasipotential characterizes the leading asymptotics of exit times and exit probabili-
ties, approximates transition rates for reversible and irreversible systems, and allows
to qualitatively describe transitions between stable attractors if the system has many
of them; see also [11, 12, 24, 27, 38, 39] for more details. These conclusions hold
for both gradient and non-gradient cases, but in the gradient case the quasipotential
is computable in closed form.

Turning now to importance sampling, it is easy to verify that the quasipotential
is a stationary subsolution to the associated HJB equation (9) with � D 0, by adding
an appropriate constant C in order to justify the necessary boundary and terminal
conditions. In particular, NUQP.x/ D 2L � W.O; x/ defines a subsolution for (9). It
turns out, see [23], that the quasipotential yields a reasonable change of measure if
rest points are not part of the domain of interest. However, this is no longer true if
rest points are included in the domain of interest.

Let us denote Q�.0; yI Nu/ D NEŒe� 1
� h.X�T /dP=d NP�2 to be the second moment of the

estimator constructed using the control Nu. Based now on the arguments of [23] one
can prove the following representation for the second moment of the estimator based
on the change of measure induced by the control Nu.t; x/ D �r NUQP.x/

� � log Q�.0; yI Nu/ D inf
v2AE

"
1

2

Z O��

0

kv.s/k2 ds �
Z O��

0




Nu. OX�s /




2

ds C 11fO��>Tg

#

:

(13)
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where OX�s is the unique solution to the SDE

d OX�s D �DV. OX�s /ds C
hp
�dWs � ŒNu. OX�s / � v.s/�ds

i

with initial condition OX�0 D y and O�� is the first time that OX� exits from D.
It is important to note that (13) provides a non-asymptotic representation for

the second moment of the estimator. By the arguments of [23], we can choose a
particular admissible control v.s/ in (13) so that the following takes place. Let T
be large and let 0 < K < T so that the time interval Œ0;T� is split into Œ0;T � K/
and ŒT � K;T�. Set v.s/ D 0 for s 2 Œ0;T � K/. The resulting dynamics for OX�
is stable for s 2 ŒT � K;T� and with high probability the process will stay around
the point y for s 2 Œ0;T � K/. In the time interval ŒT � K;T�, we set v.s/ so that
escape happens prior to T . Then, it can be shown that there are positive constants
C1;C2 < 1, so that

Q�.0; yI Nu/ � e� 1
� C1CC2.T�K/:

This bound indicates that if T is large, one may need to go to considerably small
values of � in order to achieve the theoretical optimal asymptotic performance. We
also remark that if T is large (see Chap. 4 of [27]), G.0; y/ and NU.y/ get closer in
value. Thus, by (10) and for large enough T , the particular importance sampling
scheme is asymptotically optimal.

Hence, we have just seen an example where an importance sampling estimator is
almost asymptotically optimal, but it does not perform that well pre-asymptotically
due to the effect of the possibly long time horizon T and its interplay with �.

3.2 The Problems Arising When Following Large Deviations
Asymptotically Most Likely Paths and a Remedy to the
Problem

The connection of change of measures with HJB equations via large deviations is
well situated for a systematic treatment of dynamic importance sampling schemes
for state dependent processes like diffusions (3). For small noise diffusions the
theoretical framework of subsolutions to HJB equations and their use for Monte
Carlo methods can be found in [22]. It was a common belief for some time that if
the underlying stochastic process has a large deviations principle and if the change
of measure is consistent with the large deviations asymptotically most likely path
leading to the rare event (an open-loop control), then the resulting importance
sampling scheme would be optimal. However, such heuristics have been shown to be
unreliable in general and simple examples have been constructed showing the failure
of the corresponding importance schemes even in very simple settings [29, 30]. This
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is due to the presence of “rogue-trajectories,” i.e., unlikely trajectories, that are likely
enough to increase likelihood ratios to the point that the performance is comparable
to standard Monte Carlo. This is especially true for metastability problems (i.e.,
when transitions between fixed points occur at suitable (large) timescales) where
multiple nearly optimal paths may exist.

Use of dynamic changes of measure, i.e. based on feedback controls (time
and location dependent) becomes important, see [15, 23]. However, even changes
of measures that are based on feedback controls, that are consistent with large
deviations and lead to asymptotically optimal change of measures can also be
problematic in practice. We demonstrate this below in Table 2. Namely, as it turns
out, in the presence of rest points and metastability, the prefactors may affect
negatively the behavior of estimators even if one is using asymptotically optimal
changes of measure in the spirit of (10). Hence, it becomes important to use dynamic
change of measures that are based on subsolutions but lead to good performance
even pre-asymptotically.

To that end, novel explicit simulation schemes are then constructed in [15, 23]
that perform provably well both asymptotically and non-asymptotically, even when
the simulation time is long. These constructions are based on large deviations
asymptotics [8, 9, 27], stochastic control arguments and asymptotic expansions
[24, 25] and detailed asymptotic analysis of the subsolution to the associated HJB
in the neighborhood of the rest point where the potential can be thought of as being
approximately quadratic. Essentially, due to the fact that near the rest point, the
potential can be thought of as being approximately quadratic, one can hope to solve
or to approximate the solution to the associated variational problem there. Then
one needs to patch this solution together with the quasipotential based subsolution
(which is a good subsolution away from the rest point) in the right way. Then, the
combined subsolution, see NUı.t; x/ in (15), turns out to be a good approximation to
the zero variance change of measure. Such schemes lead to importance sampling
algorithms with provably good performance for all small � > 0 and without
suffering from bad prefactor effects.

In order to illustrate the point, let us briefly demonstrate such a construction in
the case of dimension one, see [23]. So, let us assume that V.x/ D 


2
x2 with 
 > 0

and let us assume that we study the problem of crossing a level set, say L, of the
potential function V.x/. Here, we can compute G.t; x/ in closed form and we get

G.t; x/ D inf
�tDx;V.�T /DL

�
1

2

Z T

t



 P�s C 
�s



2 ds

�
D inf

Ox2V�1.L/



�Ox � xe
.t�T/
�2

1 � e2
.t�T/
: (14)

Notice that G.t; x/ is also a viscosity solution to the � D 0 HJB equation (8)
when supplemented with the appropriate boundary conditions. Hence, based on (10)
a change of measure based on G.t; x/, i.e., using the control u.t; x/ D �@xG.t; x/,
is expected to yield an asymptotically efficient estimator. While this is true, we will
see below that this is not sufficient to yield good performance. The fact that the
function G.t; x/ is not continuously differentiable in the domain of interest implies
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that multiple optimal paths exist, which is an intuitive reason for the degradation in
performance that will be demonstrated below.

However, by appropriately mollifying G.t; x/ and combining it with the quasipo-
tential subsolution (as constructed in Sect. 3.1), one can construct a global sub-
solution which performs provably well even pre-asymptotically. The point is that
G.t; x/ provides a good change of measure while near the rest point, whereas the
quasipotential induced subsolution NUQP.x/ D 2L � W.O; x/ provides a good change
of measure away from the rest point. There are a few more issues to deal with
though. The first one is that G.t; x/ is discontinuous near t D T . The second one
is that we need to put them together in a smooth way that will define a global
subsolution.

Since G.t; x/ is discontinuous at t D T , we introduce two mollification
parameters t� and M that will be appropriately chosen as functions of �. Motivated
by the fact that G.t; x/ is a good subsolution near the equilibrium point, we fix
another parameter OL 2 .0;L�. In the one-dimensional case, it is easy to solve the

equation V.x�/ D OL and in particular we get that x� D ˙Ox where Ox D
q

2OL



. As a
matter of fact, instead of using G.t; x/ directly, we set

FM.t; xI Ox/ D 


�Ox � xe
.t�T/
�2

1
M C 1 � e2
.t�T/

In order now to pass smoothly between the NUQP.x/ and FM.t; xI Ox/ or FM.t; xI �Ox/
without violating the subsolution property, we use the exponential mollification,
see [17]

Uı.t; x/ D �ı log
�

e� 1
ı

NUQP.x/ C e� 1
ı ŒF

M.t;xIOx/C NUQP.Ox/� C e� 1
ı ŒF

M.t;xI�Ox/C NUQP.�Ox/�
�

It is easy to see that as ı # 0

lim
ı#0

Uı.t; x/ D minf NUQP.x/;F
M.t; xI Ox/;FM.t; xI �Ox/g

Clearly, if we choose OL D L, then we get NUQP.Ox/ D 0. Based on these
constructions, a provably efficient importance sampling scheme is constructed in
[23], based on the subsolution

NUı.t; x/ D
� NUQP.x/; t > T � t�

Uı.t; x/; t � T � t� (15)

It turns out that NUı.t; x/ is a global smooth subsolution which has provably
good performance both pre-asymptotically and asymptotically. The role of the
exponential mollification is to allow a smooth transition between the region that
is near the equilibrium point and the region that is far away from it. The precise
optimality bound and its proof guide the choice of the parameters ı; t�;M, and OL.
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Table 1 Parameter values for the algorithm based on a given value of � > 0

Parameter ı OL 2 .0;L� M t�

Values 2� O.1/ or "2m with m < � maxf OL
"2�
; 4g with � 2 .0; 1=2/ � 2



log 1

M

Table 2 Left: exit time distribution Py

�
��D[@D � T

	
for different pairs .�;T/, using the optimal

change of measure constructed in [23]

� j T 2:5 7 10 18 23
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Events range from very rare to not so rare. Right: Comparison of relative errors per sample for two
different changes of measure and for two values of �. Small relative error is better

For the convenience of the reader, we present in Table 1 the suggested values for
.ı; OL;M; t�/, given the value of the strength of the noise � > 0.

We refer the interested reader to [15, 23] for further details on the theoretical
performance of the algorithm and on the choice of parameters.

In order to illustrate in a simple setting the effect of prefactors in the presence of
metastable effects, we record in Table 2 Monte Carlo estimates based on K D 107

trajectories for the exit time distribution Py
�
��D[@D � T

	
from the basin of attraction

of the left attractor of the potential of Fig. 1 for the process X� given by (3) with
� D I. We used the importance sampling (IS) methods of [23], i.e., the change
of measure based on the subsolution (15) and record estimates for different pairs
.�;T/. In the figures next to Table 2, we compare the relative errors per sample
of (a): the algorithm, which is optimal for all � > 0, i.e. the one based on the
subsolution NUı.t; x/, with (b): the IS algorithm that is consistent with the large
deviations asymptotically most likely path leading to the rare event, i.e the one
based on the actual solution G.t; x/ of the associated HJB equation. Notice however
that the IS algorithm based on G.t; x/ is only asymptotically optimal in the large
deviations logarithmic sense as � # 0 [i.e., it satisfies (10)].

Using relative error per sample as comparison criterium, we compare the two
algorithms for two values of �, one for which the events are not so rare (� D 0:13)
and one for which the events are very rare (� D 0:05). Exact values are in the
table, and we remark for completeness that intermediate behavior is qualitatively
the same. Both algorithms perform well when T is small, but the algorithm that is
based on the solution of the associated HJB equation, which is only logarithmic
asymptotically optimal, starts deteriorating considerably as T gets large. The latter
is an effect of the pre-factors becoming important. On the other hand, the change of
measure constructed in [23] that takes into account the pre-factor information and is
pre-asymptotically optimal yields optimal performance independently of the values
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� and T with relative errors around one, meaning that the values recorded at the
table are reliable. It is important to note that due to large deviations, exit happens in
long time scales, which implies that reliable estimates, especially when T is large,
are essential.

4 Importance Sampling for Rough Energy Landscapes

In Sect. 3, we reviewed some of the practical issues that come up when one is trying
to apply importance sampling techniques to metastable dynamics. While in Sect. 3
we ignored the effect of multiple scales, the goal of this section is to address the
role of multiple scales in the design of asymptotically optimal importance sampling
schemes.

A particular model of interest in chemical physics is the first order Langevin
equation (16). Let us consider

dX�;ıt D
h
� �
ı

rQ
�

X�;ıt =ı
�

� rV
�

X�;ıt

�i
dt C p

�
p
2DdWt; X�;ı0 D y; ; 0 < �; ı � 1;

(16)

where the two-scale potential is composed by a large-scale part, V.x/, and a
fluctuating part, �Q.x=ı/. If Q is periodic, then we have a periodic environment,
whereas if Q is random then we have a random environment. Models like (16) can be
used to model rough energy landscapes [2, 21, 33, 55]. As it has been suggested (e.g.,
[37, 55]), the associated energy landscapes of certain biomolecules can be rugged
(i.e., consist of many local “small” minima within local deep minima separated by
barriers of varying heights). When one is interested in rare events, large deviations
and Monte Carlo methods are relevant.

If Q.y/ is periodic, large deviations for multiscale diffusions in periodic envi-
ronments are obtained in [14, 26, 47] for all possible interactions between � and
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Fig. 1 A smooth and a rough potential function (energy landscape) with two wells
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ı, setting the ground for the mathematical formulation of the related importance
sampling theory, [21, 22, 47]. The novel feature is that the optimal change of mea-
sure for importance sampling is not based only on the gradient of the homogenized
HJB equation (as in Sect. 2). The effect of fluctuations, which is quantified via the
solution to the “cell problem” in homogenization [3, 43], is equally important. The
cell problem is the solution to a Poisson type PDE. It is used to define the so called
“corrector,” which characterizes the first order correction in the approximation of
the multiscale HJB by its homogenized limit. Therefore, when compared to the case
without multiple scales, one needs more detailed information in order to guarantee,
at least, asymptotic optimality.

For example, consider model (16) in the case �
ı

" 1. Define the Gibbs measure

�.dy/ D 1

L
e� Q.y/

D dy; L D
Z

Td
e� Q.y/

D dy:

Then denote by 
.y/ the smooth solution to the “cell problem”

�rQ.y/ � r
.y/C Dtr
�r2
.y/

	 D rQ.y/;
Z

.y/�.dy/ D 0: (17)

The following large deviations result holds which is a special case of the results
of [14]. In particular, [14] covers the case of general state dependent drift (not
necessarily of gradient form) and state dependent diffusion coefficient.

Theorem 4.1 (Theorem 5.3 of [14] for the Case of (16)) Assume that the functions
rQ .y/ and rV .x/ are continuous and globally bounded, as are their partial
derivatives up to order 1 in y and order 2 in x, respectively. Let fX�;ı; �; ı > 0g
be the unique strong solution to (16). Let

r.x/ D �
Z

Td

�
I C @
.y/

@y

�
�.dy/rV.x/;

q D 2D
Z

Td

�
I C @
.y/

@y

��
I C @
.y/

@y

�T

�.dy/;

where I denotes the identity matrix. If �=ı ! 1, then fX�;ı; �; ı > 0g converges in
probability as �; ı ! 0 to the solution of the ODE

d NXt D r. NXt/dt

and satisfies a large deviations principle with rate function

StT.�/ D

8
<̂

:̂

1

2

Z T

t

� P�s � r.�s/
�

q�1 � P�s � r.�s/
�T

ds if� 2 AC.Œt;T�/; �t D x

C1 otherwise:

In addition, it turns out that an asymptotically efficient change of simulation
measure can be constructed analogously to Sect. 3, but based on the feedback control
(see Theorem 4.1 in [22])
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vt D Nu.t;X�t ;X�t =ı/; with Nu.t; x; y/ D �p
2D .I C @
.y/=@y/T rx NU.t; x/: (18)

NU.t; x/ satisfies the inequalities in (9) with the homogenized (averaged) coeffi-
cients r.x/ and q in place of the original ones �rV.x/ and � D p

2DI (compare
with (9)). In particular, the second moment of an estimator with change of measure
based on the control vt by (18) will satisfy (10); this is Theorem 4.1 in [22].

Thus, compared to the case without multiscale features, one needs to consider the
extra factor .I C @
.y/=@y/, that can be thought as the appropriate weight function,
to achieve asymptotic optimality. In the absence of multiple scales, i.e., when Q D 0,
we have 
 D 0 and we recover the case studied in Sect. 3. The numerical simulation
studies of [21, 22] verify the need for accounting for the local environment via the
weights .I C @
.y/=@y/ in the change of simulation measure.

Before illustrating the performance of this importance sampling scheme in
a simulation study, let us demonstrate theoretically the necessity to include the
cell problem information in the design of the change of measure. For simplicity
purposes, let us restrict attention to dimension one. As we have seen before, the
effective diffusion coefficient is given by

q D 2D
Z

T

�
1C @


@y

�2
�.dy/

In this case, the optimal change of measure is based on the control

Nu.t; x; y/ D �p
2D .1C @
.y/=@y/ @x NU.t; x/:

So, let us assume that one is using instead the change of measure, based on the
control dictated by the averaged dynamics. Namely, let us assume that the control
in question is Ou.t; x/ D �p

q@x NU.t; x/.
A verification theorem, see [22] for details, shows that one would need a

statement of the form

“E
Z T

t

�p
2D

�
1C @


@y

�
X�;ıs

ı

��
� p

q

�
ds ! 0” (19)

By averaging principle, this is true if

p
q D

Z

T

p
2D

�
1C @
.y/

@y

�
�.dy/: (20)

However, this is impossible, since

�Z �
1C @
.y/

@y

�
�.dy/

�2
¤
Z �

1C @
.y/

@y

�2
�.dy/:

This last property explains mathematically why, the local information, as quanti-
fied via the cell problem, needs to be taken into account in the design of importance
sampling. In Sect. 4.1, we will also see numerical evidence of this issue.



Importance Sampling for Metastable and Multiscale Dynamical Systems 43

4.1 A Simulation Study

Let us demonstrate the performance of the importance sampling scheme in a simple
simulation study. Consider the one well potential function with diffusion coefficient
D D 1,

V.x/ D 1

2
x2; Q.y/ D cos.y/C sin.y/ (21)

Assume that we want to estimate �.�; ı/ D E

h
e� 1

� h.X�;ı1 /
i
, where h.x/ D

.jxj � 1/2 :
It is easy to see that we are dealing with a rare event here, as the function h.x/ is

minimized at jxj D 1. Let us compare the following three different estimators

O�0.�; ı/ D 1

K

KX

jD1

h
e� 1

� h.X�;ı1 .j//
i

� � �standardMonteCarlo

O�1.�; ı/ D 1

K

KX

jD1

h
e� 1

� h. NX�;ı;Nu1 .j//Z Nu
j

i
� � �optimal

O�2.�; ı/ D 1

K

KX

jD1

h
e� 1

� h. NX�;ı;Ou1 .j//Z Ou
j

i
� � �ignoreslocalinformation

where we have defined the controls

• Nu.t; x; y/ D �p
2 .1C @
.y/=@y/Gx.t; x/—asymptotically optimal.

• Ou.t; x/ D �p
qGx.t; x/—based only on the homogenized system.

and the likelihood ratio is Zu
j D dP

d NP . NX�;ı;u1 .j//. Notice that in this case, we can
compute

1C @
.y/

@y
D eQ.y/=

Z

T

eQ.y/dy;

which justifies the interpretation of the term 1 C @
.y/
@y as the proper weight term

needed that takes into account the local information.
In Table 3, we see simulation studies based on N D 107 simulation trajectories

each, for the estimation of �.�; ı/ using the three different estimators. The measure
of comparison is chosen to be the relative error per sample, defined to be

O	i.�; ı/
:D p

N

q
Var. O�i.�; ı//

O�1.�; ı/
:
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Table 3 Comparing different importance sampling estimators

No. � ı �=ı O�1.�; ı/ O	0.�; ı/ O	1.�; ı/ O	2.�; ı/
1 0.25 0.1 2.5 2:25e � 01 1 6 20

2 0.125 0.04 3.125 3:65e � 02 3 6 5

3 0.0625 0.015625 4 8:75e � 04 34 4 13

4 0.03125 0.007 4.46 6:87e � 07 141 3 105

5 0.025 0.004 6.25 1:61e � 08 217 2 97

6 0.02 0.002 10 1:99e � 10 1294 1 157

7 0.015 0.0013 11.54 1:37e � 13 800 1 588

It is clear that the importance sampling scheme based on the asymptotically opti-
mal change of measure Nu.t; x; y/ outperforms the standard Monte Carlo estimator
in which no change of measure is being done. It also outperforms, the estimator
based solely on the homogenized system, which ignores the local information
characterized by solution to the cell problem 
.y/.

5 Importance Sampling for Multiscale Diffusions in Random
Environments

Let 0 < �; ı � 1 and consider the process .X�;Y�/ D ˚�
X�t ;Y

�
t

�
; t 2 Œ0;T�
 taking

values in the space R
m � R

d�m that satisfies the system of SDEs

dX�t D
h�
ı

b
�
Y�t ; �

�C c
�
X�t ;Y

�
t ; �

�i
dt C p

��
�
X�t ;Y

�
t ; �

�
dWt;

dY�t D 1

ı

h�
ı

f
�
Y�t ; �

�C g
�
X�t ;Y

�
t ; �

�i
dt C

p
�

ı

�
�1
�
Y�t ; �

�
dWt C �2

�
Y�t ; �

�
dBt
	
;

X�0 D x0; Y�0 D y0

(22)

We assume non-degeneracy of the diffusion coefficients as well C1 smoothness
and boundedness of the drift and diffusion coefficients. Moreover, we assume
that ı D ı.�/ # 0 such that �=ı " 1 as � # 0. .Wt;Bt/ is a 2�-
dimensional standard Wiener process. We assume that for each fixed x 2 R

m,
b.�; �/; c.x; �; �/; �.x; �; �/; f .�; �/, g.x; �; �/; �1.�; �/ and �2.�; �/ are stationary and
ergodic random fields in an appropriate probability space .�;G; �/ with � 2 � .

Example 5.1 Notice that if we choose b.y; �/ D f .y; �/ D �ryQ.y; �/ for a
periodic function Q.�/, c.x; y; �/ D �rxV.x/, �.x; y; �/ D �1.y; �/ D p

2D and
�2.y; �/ D 0, and set y0 D x0=ı, we then get the Langevin equation (16). In
particular, if we make these choices, then we simply have Y�t D X�t =ı and the model
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can be interpreted as diffusion in the rough potential �Q.x=ı; �/ C V.x/, where
the roughness is dictated by Q. In general, Q may not be modelled as a periodic
function. One may model Q as a random field; see the simulation study in Sect. 5.3.

5.1 Description of the Random Environment

The large deviations and importance sampling results for (22), see [49, 50], are
true under certain assumptions on the random medium that we recall here for
convenience. We assume that there is a group of measure preserving transformations
f�y; y 2 R

d�mg acting ergodically on � that is defined as follows.

Definition 5.2

i. �y preserves the measure, namely 8y 2 R
d�m and 8A 2 G we have �.�yA/ D

�.A/.
ii. The action of f�y W y 2 R

d�mg is ergodic, that is if A D �yA for every y 2 R
d

then �.A/ D 0 or 1.
iii. For every measurable function f on .�;G; �/, the function .y; �/ 7! f .�y�/ is

measurable on
�
R

d�m � �;B.Rd�m/˝ G
�
.

Let Q� be a square integrable function in � and define the operator Ty Q�.�/ D
Q�.�y�/. The operator Ty� is a strongly continuous group of unitary maps in L2.�/,
see [41]. Denote by Di the infinitesimal generator of Ty in the direction i, which is a
closed and densely defined generator, see [41].

In order to guarantee that the involved functions are ergodic and stationary
random fields on R

d�m, for Q� 2 L2.�/, let us define the operator �.y; �/ D Q�.�y�/.
Similarly, for a measurable function Q� W Rm � � 7! R

m we consider the (locally)
stationary random field .x; y/ 7! Q�.x; �y�/ D �.x; y; �/. Then, it is guaranteed
that �.y; �/ (respectively, �.x; y; �/) is a stationary (respectively, locally stationary)
ergodic random field.

The coefficients, b; c; �; f ; g; �1; �2 of (22) are defined through this procedure and
therefore are guaranteed to be ergodic and stationary random fields. For example, in
the case of the c drift term, we start with an L2.�/ function Qc.x; �/ and we define
the corresponding coefficients via the relation c.x; y; �/ D Qc.x; �y�/.

For every � 2 � , let us the operator

L� D f .y; �/ry � Ctr
��
�1.y; �/�

T
1 .y; �/C �2.y; �/�

T
2 .y; �/

�ryry�
	

which is the infinitesimal generator of a Markov process, say Yt;� . Using the Markov
process Yt;� , we can define the so-called environment process, see [35, 41, 42, 44],
denoted by �t. The environment process �t has continuous transition probability
densities with respect to the d-dimensional Lebesgue measure, see [41], and is
defined by the equations



46 K. Spiliopoulos

�t D �Yt;� �

�0 D �y0�

The infinitesimal generator of the Markov process �t is given by

QL D Qf .�/D � Ctr
�� Q�1.�/ Q�T

1 .�/C Q�2.�/ Q�T
2 .�/

�
D2�	 :

In order to simplify the presentation, let us assume that the operator QL is in
divergence form. In particular, let us set Qf .�/ D �D QQ.�/ and Q�1.�/ D p

2D� D
constant and Q�2.�/ D p

2D
p
1 � �2 D constant.

Then, we can write the unique ergodic invariant measure for the environment
process f�tgt�0 in closed form; see [41, 50] for more general case which is not
necessarily restricted to the gradient case. Denote by E

� the expectation operator
with respect to the measure �. Then , the measure �.d�/ defined on .�;G/ by

�.d�/
:D Qm.�/
E� Qm.�/�.d�/;with Qm.�/ D expŒ� QQ.�/=D�:

is the unique ergodic invariant measure for the environment process f�tgt�0.
Next, we need to define the equivalent to the cell problem in the case of periodic

coefficients, also known as the macroscopic problem in the homogenization theory.
To do so, we first define H1 D H1.�/ to be the Hilbert space equipped with the
inner product

.Qf ; Qg/1 D
dX

iD1
.DiQf ;Di Qg/:

Let us consider 	 > 0 and consider the following problem on �

	 Q
	 � QL Q
	 D Qb: (23)

Under the condition Qb 2 L2.�/ with


Qb

H�1 < 1, Lax-Milgram lemma, see

[34, 41], guarantees that Eq. (23) has a unique weak solution in the abstract Sobolev
space H1 or equivalently in H1.�/. At this point, we note that in the periodic case
one also considers (23), but one can then take 	 D 0 given that b averages to
zero when is integrated against the invariant measure � . However, in the random
case, (23) with 	 D 0 does not necessarily have a well-defined solution (even if
b averages to zero when is integrated against the invariant measure �), see, for
example, [34].

In the general random case, we consider the equation with 	 > 0 and in the end,
the homogenization theorem is proven by taking appropriate sequences 	 D 	.�/

such that 	.�/ # 0 as � # 0. Taking 	 # 0 is allowed by the following well-known
properties of the solution to (23), (see [41, 42, 44]),
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1. There is a constant K that is independent of 	 such that

	E�
� Q
	.�/

	2 C E
�
�
D Q
	.�/

	2 � K

2. Q
	 has an H1 strong limit, i.e., there exists a Q
0 2 H1.�/ such that

lim
	#0



 Q
	.�/ � Q
0.�/



1

D 0 and lim
	#0

	E�
� Q
	.�/

	2 D 0:

5.2 Large Deviations and Importance Sampling Theory
for Diffusion in Random Environments

Now that we have defined the random environment and explained its properties, let
us review the related large deviations and importance sampling theory from [49, 50].
Set for notational convenience Q� D D Q
0.
Theorem 5.3 (Theorem 3.5 in [49]) Let f.X�;� ;Y�;� / ; � > 0g be, for fixed � 2
� , the unique strong solution to (22). Assume non-degeneracy of the diffusion
coefficients as well as C1 smoothness and boundedness of the drift and diffusion
coefficients. Consider the regime where �; ı # 0 such that �=ı " 1. Then,
fX�;� ; � > 0g converges in probability, almost surely with respect to the random
environment � 2 � , as �; ı # 0 to the solution of the ODE

d NXt D r. NXt/dt

and satisfies, almost surely with respect to � 2 � , the large deviations principle
with rate function

St0T.�/ D
(
1
2

R T
t0
. P�s � r.�s//

T q�1.�s/. P�s � r.�s//ds if� 2 AC.Œt0;T�/and�t0 D x0

C1 otherwise:

where

r.x/ D lim
	#0

E
�
�Qc.x; �/C D Q
	.�/Qg.x; �/

	 D E
� ŒQc.x; �/C Q�.�/Qg.x; �/�

q.x/ D lim
	#0

E
�
�
. Q�.x; �/C D Q
	.�/ Q�1.�//. Q�.x; �/C D Q
	.�/ Q�1.�//T

C �
D Q
	.�/ Q�2.�/

� �
D Q
	.�/ Q�2.�/

�T
i

D E
�

�
. Q�.x; �/C Q�.�/ Q�1.�//. Q�.x; �/C Q�.�/ Q�1.�//T C

� Q�.�/ Q�2.�/
� � Q�.�/ Q�2.�/

�T
�

and 	 D 	.�/ D ı2

�
.
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Notice that the coefficients r.x/ and q.x/ are obtained by homogenizing (22) by
taking ı # 0 with � fixed. The form of the action functional can be recognized as
the one that would come up when considering large deviations for the homogenized
system. This is also implied by the fact that ı goes to zero faster than �, since �=ı
" 1.

We also remark here that if b D 0, then 
	 D 0. In this case r.x/; q.x/ take the
simplified forms r.x/ D E

� ŒQc.x; �/� and q.x/ D E
�
� Q�.x; �/ Q�.x; �/T	.

Turning now to importance sampling, given controls u1 and u2 one considers the
controlled dynamics under the importance sampling measure NP

d NX�s D
h�
ı

b
� NY�s ; �

�C c
� NX�s ; NY�s ; �

�C �
� NX�s ; NY�s ; �

�
u1.s/

i
dt C p

��
� NX�s ; NY�s ; �

�
d NWs;

d NY�s D 1

ı

h�
ı

f
� NY�s ; �

�C g
� NX�s ; NY�s ; �

�C �1
� NY�s ; �

�
u1.s/C �2

� NY�s ; �
�

u2.s/
i

dt

C
p
�

ı

�
�1
� NY�s ; �

�
d NWs C �2

� NY�s ; �
�

d NBs
	
; (24)

NX�t0 D x0; NY�t0 D y0

where .v1.s/; v2.s// denote the first and second component of the control

u.s; NX�s ; NY�s / D .u1.s; NX�s ; NY�s /; u2.s; NX�s ; NY�s //:

Then, for a given cost function h.x/, under NP

��;� .t0; x0; y0/ D exp

�
�1
�

h. NX�T/
�

dP

d NP .
NX�; NY�/;

is an unbiased estimator for E
�
exp

˚� 1
�
h.X�T/


	
.

Consider next the Hamiltonian

H.x; p/ D hr.x/; pi � 1

2




q1=2.x/p




2

with r.x/; q.x/ the coefficients defined in Theorem 5.3 and consider the HJB
equation associated to this Hamiltonian, letting NU.t; x/ be a smooth subsolution to it
(analogously to Sect. 2 with r.x/ and q.x/ in place of �rV.x/ and � , respectively).
Then, the following theorem guarantees at least logarithmic asymptotically good
performance.

Theorem 5.4 (Theorem 4.1 in [50]) Let f�X�s ;Y�s
�
; � > 0g be the solution to (22)

for s 2 Œt0;T� with initial point .x0; y0/ at time t0. Consider a non-negative, bounded
and continuous function h W Rm 7! R. Let NU.s; x/ be a subsolution to the associated
HJB equation that has continuous derivatives up to order 1 in t and order 2 in x, and
the first and second derivatives in x are uniformly bounded. Assume non-degeneracy
of the diffusion coefficients as well C1 smoothness and boundedness of the drift and
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diffusion coefficients. In the general case where b ¤ 0, consider 	 > 0 and define
the (random) feedback control u	.s; x; y; �/ D �

u1;	.s; x; y; �/; u2;	.s; x; y; �/
�

by

u	.s; x; y; �/ D
�
� �� C D
	�1

�T
.x; y; �/rx NU.s; x/;� �D
	�2

�T
.y; �/rx NU.s; x/

�

Then for 	 D 	.�/ D ı2

�
# 0 we have that almost surely in � 2 �

lim inf
�!0

�� ln Q�;� .t0; x0; y0I u	.�// � G.t0; x0/C NU.t0; x0/: (25)

If b D 0, then set u.s; x; y; �/ D ���T.x; y; �/rx NU.s; x/; 0� and (25) holds with
u	.�/ D u.�/.

5.3 A Simulation Study

Consider, for instance, the case of Example 5.1

dX�;ıt D �rV�

 

X�;ıt ;
X�;ıt

ı

!

dt C p
2�dWt; (26)

where the potential function V� .x; x=ı/ D �Q.x=ı/ C V.x/: Q.y/ is a stationary
ergodic random field on a probability space .X ;G; �/. We may consider, for
instance, V.x/ D 1

2
x2 and

Q.y/meanzeroGaussianwithE� ŒQ.x/Q.y/� D exp
h
� jx � yj2

i

Making the connection with (22), the fast Y motion essentially is Y D X=ı.
Referring to Theorems 5.3 and 5.4 we have r.x/ D �V 0.x/=.K OK/ and q D 2=.K OK/
where K D E�Œe�Q.z/�; OK D E�ŒeQ.z/�. Given a classical subsolution NU, one
expects that the corresponding change of simulation measure that guarantees at
least asymptotic optimality is based on the control Nu.s; x; y; �/ D .�p

2.1 C
@
.y; �/=@y/ NUx.s; x/; 0/ where one can compute that the weight function is 1 C
@
.y; �/=@y D eQ.y;�/= OK. Note that in contrast to the periodic case, the control u is
random in that it implicitly depends on � 2 � , via the random field Q.y; �/.

Assume that we want to estimate

��;ı D P
h
X�;ıhits1before0jX�;ı0 D 0:1

i
(27)

As in Sect. 4.1, we compare the asymptotical optimal change of measure with
standard Monte Carlo, which corresponds to no change of measure, and with the
importance sampling that corresponds to the change of measure based only on
the homogenized problem, which ignores the macroscopic problem. Based on 107

trajectories, we have the following simulation data
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Table 4 Comparing different importance sampling estimators with x� D 0 (equilibrium), x0 D
0:1 (initial point), xC D 1 (target)

No. � ı �=ı O�1.�; ı/ O	0.�; ı/ O	1.�; ı/ O	2.�; ı/
1 0.25 0.1 2.5 1:38e � 1 3 0.5 3

2 0.125 0.04 3.125 1:31e � 2 7 16 8

3 0.0625 0.018 3.472 6:13e � 4 36 18 42

4 0.05 0.01 5 2:30e � 5 212 28 316

5 0.04 0.007 5.72 5:93e � 6 396 75 332

6 0.025 0.004 6.25 7:82e � 10 � 22 1856

It is clear that the importance sampling scheme based on the asymptotically
optimal change of measure Nu.t; x; y; �/ outperforms the standard Monte Carlo
estimator in which no change of measure is being done. It also outperforms,
the estimator based solely on the homogenized system, which ignores the local
information characterized by solution to the macroscopic problem. Of course, this
behavior is parallel to the behavior observed in the periodic case of Sect. 4.1.
Additional simulation studies can be found in [50].

In [50], the interested reader can find further simulation studies in the case of
the general model (22) where one does not necessarily have the Y motion to be
X=ı. However, we do point out that the theoretical results of [50] are valid for the
system (22) where the process .X�;Y�/ has initial point .x0; y0/ and both x0 and y0
are of order one as ı # 0. This is not exactly the same to the case where Y D X=ı,
as then y0 D x0=ı, which is no longer of order one as ı # 0. But, simulation studies,
as the one presented in Table 4, indicate that the theoretical results should be also
valid for the Y D X=ı case.

6 Importance Sampling for Metastable Multiscale Processes
and Further Challenges

In Sect. 3 we elaborated on the effects of rest points and metastable dynamics on
importance sampling schemes. The end conclusion was that extra care is needed
when stable or unstable equilibrium points are in the domain of interest. In this case,
asymptotic optimality is not enough in that asymptotically optimal schemes may not
perform well in practice unless one goes to really small values of �, in which case
the events may be too rare to be of any practical interest. Then, in Sects. 4 and 5
we summarized the issues that come up in the design of asymptotically efficient
importance sampling schemes when the dynamics have multiple scales.

In [15, 23] we have systematically addressed the effects of rest points onto the
design of importance sampling schemes and have identified what the main issues
are. In [23], we have suggested a potential provably appropriate remedy to the
issue, by constructions as the ones mentioned in Sect. 3. The subsolution constructed
there effectively yields a very good approximation to the zero variance change
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of measure. Even though the constructions in [15, 23] work provably well pre-
asymptotically and asymptotically and do not degrade as parameters such as the
time horizon T getting large, the performance in higher dimensions can be worse
than the corresponding performance in the lower-dimensional cases. While this is
expected to be the case as the dimension gets larger, due to further approximations
and simplifications that need to be made, there is a clear room for improvement
here. This is part of ongoing work of the author and we refer the interested reader
to [45] for some results in the infinitely dimensional small noise SPDE case.

Moreover, it is clear that the constructions of Sects. 4 and 5 guarantee only
asymptotic optimality. If in addition to multiscale dynamics one has to also face
metastability, then, as it was seen in Sect. 3, theoretical asymptotic optimality is not
sufficient for good numerical performance. One can of course combine the results
of Sect. 3 with those of Sects. 4 and 5. To be more precise, one can combine the
results of [15, 23] with those of [22, 50]. In practice, one can just use the changes of
measure as indicated in [22, 50] that guarantee asymptotic optimality, but construct
the subsolution NU.t; x/ as indicated in [15, 23]. We plan to address this issue in more
detail in a future work.
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