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Abstract. A framework that utilizes audio information for recognition
of activities of daily living (ADLs) in the context of a health monitor-
ing environment is presented in this chapter. We propose integrating a
Raspberry PI single-board PC that is used both as an audio acquisi-
tion and analysis unit. So Raspberry PI captures audio samples from
the attached microphone device and executes a set of real-time feature
extraction and classification procedures, in order to provide continuous
and online audio event recognition to the end user. Furthermore, a prac-
tical workflow is presented, that helps the technicians that setup the
device to perform a fast, user-friendly and robust tuning and calibration
procedure. As a result, the technician is capable of “training” the device
without any need for prior knowledge of machine learning techniques.
The proposed system has been evaluated against a particular scenario
that is rather important in the context of any healthcare monitoring
system for the elder: In particular, we have focused on the “bathroom
scenario” according to which, a Raspberry PI device equipped with a
single microphone is used to monitor bathroom activity on a 24/7 basis
in a privacy-aware manner, since no audio data is stored or transmitted.
The presented experimental results prove that the proposed framework
can be successfully used for audio event recognition tasks.

Keywords: Audio analysis · Activities of daily living · Health monitor-
ing · Remote monitoring · Audio sensors · RaspberryPI · Audio event
recognition

1 Introduction

Although fully autonomous artificial intelligence is actively researched and
advanced, the current state of the art (and at the level of maturity required
for commodity electronics) has machine learning methods rely on delicate train-
ing and configuration sessions in order to adapt to different environments. When
embedding machine learning methods in commodity electronics this is typically
worked around by uploading the signal and receiving analysis results from remote
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centralized services. Recent examples include voice-operated personal assistant
applications and companion, toy, and “pet” applications.

This model, however, suffers from its obvious privacy implications. These
implications are further exacerbated in the telemedicine domain for two reasons:
the data collected by the remote service is not only more sensitive, but the users
might also not be able to make informed decisions or might not be offered rea-
sonable alternatives. Home monitoring for the elderly is a prime example: the
increase in life expectancy and in the need for long-term care creates a pressure to
seek alternatives to institutional healthcare for the aged population. Advance-
ments in robotics and automation and in artificial intelligence and intelligent
monitoring are explored as a way to prolong independent living at home while
providing guarantees of safety and adequate medical monitoring [1–3]. The users
of such solutions, however, might be suffering from mild cognitive impairment or
be unable to afford conventional monitoring, which makes ethically questionable
any consent they provide to upload and analyse raw content of their activities of
daily living (ADL) in order to extract medical monitoring information. Several
methods have been used to detect activities of daily living in real home environ-
ments, focusing on elderly population ([4–7]) and a wide range of modalities.

In this paper, we present an audio analysis system (Sect. 2) that explores the
integration of the audio sensor and the processing unit as Raspberry PI1 device.
Such a unit is able to execute signal processing and machine learning algorithms
in order to eliminate the need to provide raw content: the only information that
leaves the confines of the integrated unit is an abstract ADL log. Although such
information still needs to be managed in full accordance to guidelines pertaining
private data, the level of obtrusiveness is greatly reduced by the assurance that
no unwarranted analysis or recording can conceivably be done.

Our system is designed to satisfy two key requirements: that the analysis
algorithms are computationally efficient so that they can be implemented for the
Raspberry PI device; and that they can be tuned and configured for different
acoustic environments by technicians without machine learning expertise. In
order to evaluate the proposed approach on these requirements, we motivate
and present a use case based on bathroom usage (Sect. 3) and draw conclusions
(Sect. 3).

2 Proposed Method

2.1 Overall Architecture

The main part of the whole system is a microphone-equipped Raspberry PI
single-board PC that is used for all data acquisition and processing. Its small-
form factor, low energy consumption and low overall cost make it ideal for
installing it in any room/area we want to monitor and its processing power
is enough for running our algorithms in real time. In our experiments we used a
Raspberry PI model B with a Wolfson audio card.

1 Please cf. https://www.raspberrypi.org.

https://www.raspberrypi.org
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Fig. 1. The Raspberry PI device.

Fig. 2. MQTT-based messaging communication.

Communication to/from the PC is made using the MQTT machine-to-
machine communication protocol. MQTT is a lightweight messaging protocol
that implements the brokered publish/subscribe pattern, created widely used in
IoT applications. Without going into technical details, the main idea is that when
connected to a specified MQTT broker, various machines/applications can send
messages under a certain topic and others can listen to these when “subscribed”
to these topics. In our use case, it is used both for sending commands to the
Raspberry PI (for example to start/stop recording) and for remotely receiving
the processing results (Fig. 1).

For this purpose, two MQTT clients were implemented: The first is installed
in the Raspberry PI and is subscribed to a “command” topic in order to receive
requests for collecting training data, building audio classes models and finally
use them for real-time classification. The second one is bundled in an Android
application and is used for sending remotely the corresponding commands and
listening to the classification results. The system is designed with ease of use
in mind and the only set-up needed is connecting the two clients to the same
broker. By having a dedicated broker this step can be performed automatically,
making the whole system plug-and-play (Fig. 2).
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2.2 System Calibration

Once setup, the system has to go through a training phase in order to be used for
real-life scenarios. This includes recording, feature extraction, manual annotation
of the recorded events and classifier tuning/training. Figure 3 shows the proposed
calibration procedure. During this phase, the various events are recorded using
the Android application as a remote controller of the Raspberry PI device that
makes the actual recording and further processing. An audio file is created on
user’s demand and the user/technician is informed about the categories and
durations of already recorded data. He then provides the current recording’s
label (e.g. “door bell”).

Fig. 3. From left to right: User initiates an event recording and the corresponding file
is created. When user stops, a response is returned with information about the events
recorded so far. When a reasonable amount of data is gathered, an SVM classifier for
the desired events can be created using the pyAudioAnalysis library. In this case, the
response contains information about the classifiers available for future use. Reproduced
from [8].

When a reasonably large amount of data is gathered (typically about 1–2
minutes of recordings for each category), the technician uses the mobile appli-
cation to trigger the training process (that is also executed on the Raspberry PI
device). After this process, the Raspberry PI is ready to monitor and recognize
sound in the “learned” environment. This conceptual sequence of steps for the
calibration procedure is also visualized in Fig. 4.
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Fig. 4. MQTT-based calibration procedure.

2.3 Audio Event Recognition

Audio Features. In total, 34 audio features are extracted on a short-term
basis. This process results in a sequence of 34-dimensional short-term feature
vectors. In addition, the processing of the feature sequence on a mid-term basis
is adopted. According to that the audio signal is first divided into mid-term
windows (segments). For each segment, the short-term processing stage is carried
out and the feature sequence from each mid-term segment, is used for computing
feature statistics (e.g. the average value of the ZCR). Therefore, each mid-term
segment is represented by a set of statistics. In this Section we provide a brief
description of the adopted audio features. For detailed description the reader can
refer to the related bibliography [9–11]. The time-domain features (features 1–3)
are directly extracted from the raw signal samples, while the frequency-domain
features (features 4–34, apart from the MFCCs) are based on the magnitude of
the Discrete Fourier Transform (DFT). The cepstral domain (e.g. used by the
MFCCs) results after applying the Inverse DFT on the logarithmic spectrum.
The complete list of features is presented in Table 1.

Classification. As described in Sect. 2.3, the feature extraction process leads to
a 68-dimensional feature vector for each 1-second audio segment, i.e. 2 statistics
× 34 short-term features. Each unknown audio segment of fixed size (1 s in our
case) is therefore represented by a 68-D feature vector. Each of these samples
is classified using a Support Vector Machine with probabilistic output. We have
selected to use probabilistic SVMs [12] due to their ability to generalize well
especially in high dimensional classification problems [13]. The model is trained
using a cross-validation procedure to select the optimal SVM parameter, namely
the soft margin parameter C.
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Table 1. Adopted short-term audio features.

Index Name Description

1 Zero Crossing Rate Rate of sign-changes of the frame

2 Energy Sum of squares of the signal values, normalized by
frame length

3 Entropy of Energy Entropy of sub-frames’ normalized energies. A measure
of abrupt changes

4 Spectral Centroid Spectrum’s center of gravity

5 Spectral Spread Spectrum’s second central moment of the spectrum

6 Spectral Entropy Entropy of the normalized spectral energies for a set of
sub-frames

7 Spectral Flux Squared difference between the normalized magnitudes
of the spectra of the two successive frames

8 Spectral Rolloff The frequency below which 90% of the magnitude
distribution of the spectrum is concentrated.

9–21 MFCCs Mel Frequency Cepstral Coefficients: a cepstral
representation with mel-scaled frequency bands

22–33 Chroma Vector A 12-element representation of the spectral energy in 12
equal-tempered pitch classes of western-type music

34 Chroma Deviation Standard deviation of the 12 chroma coefficients

Audio Analysis Implementation. Audio feature extraction and classifica-
tion has been implemented using the pyAudioAnalysis library [14]. This is an
open-source Python library that implements a wide range of audio analysis func-
tionalities and can be used in several applications. Using pyAudioAnalysis one
can classify an unknown audio segment to a set of predefined classes, segment an
audio recording and classify homogeneous segments, remove silence areas from
a speech recording, estimate the emotion of a speech segment, extract audio
thumbnails from a music track, etc. In this work, pyAudioAnalysis has been
used to extract audio features, to train the classification models and to perform
cross validation experimentation in order to extract the respective performance
measures. pyAudioAnalysis achieves 2 × realtime performance on the Raspberry
devices, which validates its usage in the context of the particular setup.

3 Bathroom Use Case and Evaluation

3.1 Use Case and Motivation

As discussed in the introduction, the motivating use case for our approach is
medical monitoring. Specifically, we base our evaluation setup on allowing elderly
people with mild cognitive impairment to maintain an independent life, at their
own home, for longer than what is safely possible today.
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In order to have a guideline about what information is used by medical
doctors to assess such conditions, we use the interRAI Long-Term Care Facili-
ties Assessment System (interRAI LTCF). interRAI LTCF enables comprehen-
sive, standardized evaluation of the needs, strengths, and preferences of persons
receiving care. interRAI has been analysed previously in order to identify assess-
ment items, such as mood and ADL logs, that can be automatically recognized
and are useful to medical personnel [15]. Among the assessment items listed, we
identified those regarding bathroom use as being closest to our concept: these
items can be extracted by processing very sensitive content, and being able to
provide guarantees about the management and processing of this content would
have significant impact on the acceptance of any relevant solution by users.

In this context, we have recorded and manually annotated sounds from bath-
room usage. In particular, the following audio classes are trained and evaluated
by the proposed methodology:

– Silence - no sound
– Flushing water
– Shower
– Tap water
– Other activities

Note that the selected audio events are location-specific and therefore the
adopted calibration workflow can be used during the installation phase, as
described in Sect. 2.2.

3.2 Dataset

In order to train and evaluate the proposed event recognition methodology, we
have recorded and manually annotated (using the mobile app described earlier
in the paper) an audio dataset. The total duration of the dataset is almost 1
hour. The audio recordings and the respective ground truth is openly available
at https://iit.demokritos.gr/∼tyianak/bathroomScenarioEventsNew.zip

Two different bathroom locations have been used for recording/annotation.
This gives us the opportunity to evaluate the performance of the proposed clas-
sification method when the respective models have been trained in a different
setup. In particular, the complete dataset consists of the following parts:

– A large training dataset of more than 400 audio segments to be used for the
scenario of the “static” training, according to which, the classifiers are trained
beforehand. Note that this subset only consists of audio segments as it is only
used for training.

– A subset of 4 audio (continuous) recordings and respective ground-truth anno-
tations. The total duration of this set is 7 min. This dataset is used both for
training and testing

https://iit.demokritos.gr/~tyianak/bathroomScenarioEventsNew.zip


Monitoring Activities of Daily Living 27

3.3 Experimental Evaluation

Performance Measures. Let CM be the confusion matrix, i.e. a Nc × Nc

matrix (Nc is the total number of audio classes), whose rows and columns refer
to the true (ground truth) and predicted class labels of the dataset, respectively.
In other words, each element, CM(i, j), stands for the number of samples of class
i that were assigned to class j by the adopted classification method. The diagonal
of the confusion matrix captures the correct classification decisions (i = j). CM
is normalized row-wise, in order to discard the information that is related to the
size of each class:

CMn(i, j) =
CM(i, j)

∑Nc

n=1 CM(i, n)
(1)

Obviously, after the normalization process, the elements of each row sum to
unity.

Three useful performance measures are then extracted from the confusion
matrix. The first is the overall accuracy, Acc, of the classifier, which is defined
as the fraction of samples of the dataset that have been correctly classified:

Acc =
∑Nc

m=1 CM(m,m)
∑Nc

m=1

∑Nc

n=1 CM(m,n)
(2)

Apart from the overall accuracy, we have adopted two class-specific measures
that describe how well the classification algorithm performs on each class. The
first of these measures is the class recall, Re(i), which is defined as the proportion
of data with true class label i that were correctly assigned to class i:

Re(i) =
CM(i, i)

∑Nc

m=1 CM(i,m)
(3)

where
∑Nc

m=1 CM(i,m) is the total number of samples that are known to belong
to class i. In addition, we use the class precision (Pr(i)), i.e. the fraction of
samples that were correctly classified to class i if we take into account the total
number of samples that were classified to that class:

Pr(i) =
CM(i, i)

∑Nc

m=1 CM(m, i)
(4)

Finally, the F1-measure is also computed, which is the harmonic mean of the
precision and recall values:

F1(i) =
2Re(i)Pr(i)
Pr(i) + Re(i)

(5)
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Results. Two categories of experiments have been conducted:

– 1st experimental setup: This is the proposed setup, according to which one
or more sequences (i.e. the recordings of the second subset of the dataset
described in Sect. 3.2) are used to train the classifiers, through the presented
mobile interface. The rest of the recordings is used for evaluation.

– 2nd experimental setup: This setup is used for comparison. The idea here
is to adopt a “static” model trained from irrelevant data, i.e. segments that
have not been recorded and annotated through the mobile interface.

Table 2 shows the (row-wise normalized) confusion matrix and the respective
precision, recall and F1 measures for each audio class and for the 1st experimental
setup. This is the result of the evaluation process when only one recording is used
during the training phase.

Table 2. 1st experimental setup: Single-recording training: Row-wise normalized con-
fusion matrix, recall precision and F1 measures. Overall F1 measure: 68.1%.

Confusion matrix (%)

True ⇓ Predicted

Shower Flush Tap Silence Activity

Shower 89.4 1.8 3.0 0.1 5.8

Flush 7.2 70.7 0.4 2.1 19.6

Tap 5.7 4.0 85.8 0.8 3.6

Silence 1.4 4.0 0.0 58.0 36.5

Activity 13.0 11.6 2.6 31.2 41.6

Performance measurements (%, per class)

Recall: 89.4 70.7 85.8 58.0 41.6

Precision: 76.6 76.8 93.5 62.9 38.8

F1: 82.5 73.6 89.5 60.3 40.2

These results correspond to the most realistic and less demanding (in terms
of calibration-training time). In addition, Table 3 demonstrates the ability of
the classifiers to adopt to more data, if they can be available. In particular,
Table 3 shows the same performance measures if a “leave one out” process is
used in the evaluation process, using the described dataset. That is, if three
whole recordings are used for each training phase. Results indicate an almost
5% performance boosting. However, using three recordings instead of one means
a 300% increase in the calibration time to be carried out by the technicians.

Finally, in Table 4 we present the comparison of the performances of the two
experimental setups. The second experimental setup (i.e. the one based on large
pre-trained audio datasets) has been evaluated for three different classification
approaches, namely: Hidden Markov Models, Convolutional Neural Nets and
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Table 3. 1st experimental setup: Three-recording training: Row-wise normalized con-
fusion matrix, recall precision and F1 measures. Overall F1 measure: 73.8%.

Confusion matrix (%)

True ⇓ Predicted

Shower Flush Tap Silence Activity

Shower 85.6 1.6 2.6 0.2 10.0

Flush 5.7 86.5 0.0 1.5 6.3

Tap 5.2 3.7 85.5 0.7 4.9

Silence 0.1 3.4 0.0 72.5 24.0

Activity 5.8 9.7 1.5 29.0 53.9

Performance measurements (%, per class)

Recall 85.6 86.5 85.5 72.5 53.9

Precision 83.6 82.5 95.4 69.8 54.4

F1: 84.6 84.5 90.2 71.1 54.2

Support Vector Machines. On the other hand, only SVMs are used for the pro-
posed approach (i.e. the 1st experimental setup), since it would not make sense
to use the other two approaches which, by nature, require more training data.
The results prove that, indeed, using location-specific audio data for training
the models leads to better classification performance, compared to pretrained
models, even if much larger datasets have been used.

Table 4. Performance results for both experimental setups. It is obvious that, regard-
less of the classification method, using a “static” model that has been trained using
external data leads to poor classification performance.

Experimental setup Method Performance F1

1st 1 train 68

N-1 train 74

2nd HMM 57

CNN 59

SVM 58

4 Conclusions

This paper has presented an architectural approach that employs a Raspberry PI
device both as an audio acquisition and analysis unit, in the context of a health
monitoring system. The overall goal of such system is to detect and recognize
Activities of Daily Living (ADLs) in real living environments of elderly people.
Both real-time audio feature extraction and classification methods have been
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implemented and integrated on the device. Apart from the audio analytics pro-
cedures implemented on Raspberry PI, we propose a workflow for a fast and
easy-to-use calibration procedure. According to this, the implemented classi-
fiers are actually trainned in the particular home’s sound conditions, through
a series of simple calibration steps, executed through an Android application,
handled by the technician that installs the device. In that way, no requirements
for knowledge on machine learning are needed.

Experimental evaluation has demonstrated a 70% classification performance
even if a single recording (1 to 1.5 min long) is used in the training process. In
addition, experimental evaluation has shown that there is an actual need for a
fast and easy retraining procedure. The complete software that was used for the
experiments can be found in the project’s Git repository2 under an open-source
license.

The proposed system architecture satisfies three vital requirements.

– First, by using computationally efficient algorithms, we manage to cover the
needs of data acquisition and processing using only a low-spec’ed Raspberry
PI device, while achieving a 2 × realtime performance. This validates the
system’s suitability in the context of a low-cost health monitoring setup as it
does not require a workstation or a PC (e.g. [16]), but a single Raspberry PI
that serves both as an acquisition and an analysis module. In particular, the
total cost of both the acquisition and analysis modules is less than 100$.

– In addition, the system achieves a satisfactory classification performance,
given (a) the low-end hardware used and (b) the lack of demand for big
training data. Although our method does not outperform (in terms of overall
classification accuracy) other similar methods for ADL recognition in the
context of a smart home environment, the significant differences in terms of
overall cost and easiness of setup, can make the proposed approach preferable
for real house applications. For instance, the approach in [17] achieves a 85%
classification accuracy in a ADL recognition task, however the acquisition
scenario requires multiple microphone sensors and therefore much higher cost.

– The setup procedure (i.e. configuration and calibration of the overall system)
for different acoustic environments and target events can be performed by
technicians without machine learning expertise. The need for a fast and easy
procedure for training the audio classifiers, without any prior knowledge for
machine learning methods has been met and the effectiveness of the procedure
has been validated through experimental results.

Our ongoing and future research work focuses on the following directions:

– Extend the calibration procedure so that it also takes into account a “base
dataset”, i.e. an initial classification scheme that is tuned in the context of
the annotation process and not re-trained from scratch.

– Use long-term temporal knowledge to smooth the results of the classifier,
based on prior knowledge regarding the events.

2 https://bitbucket.org/radioprojectanalysis/ict4awe2016.

https://bitbucket.org/radioprojectanalysis/ict4awe2016
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