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Abstract. Conversational message thread identification regards a wide
spectrum of applications, ranging from social network marketing to virus
propagation, digital forensics, etc. Many different approaches have been
proposed in literature for the identification of conversational threads
focusing on features that are strongly dependent on the dataset. In this
paper, we introduce a novel method to identify threads from any type of
conversational texts overcoming the limitation of previously determining
specific features for each dataset. Given a pool of messages, our method
extracts and maps in a three dimensional representation the semantic
content, the social interactions and the timestamp; then it clusters each
message into conversational threads. We extend our previous work by
introducing a deep learning approach and by performing new extensive
experiments and comparisons with classical learning algorithms.

Keywords: Conversational message - Thread identification - Data clus-
tering - Classification

1 Introduction

Nowadays, online conversations have become widespread, such as email, web
chats, online conversations and social groups. Online chatting, is a fast, econom-
ical and efficient way of sharing information and it also provides users the ability
to discuss different topics with different people. Understanding the context of
digital conversations finds a wide spectrum of applications such as marketing,
social network extraction, expert finding, the improvement of email management,
ranking content and others [1-4].
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The contiguous increase of digital content leads people being overwhelmed
by information. For example, imagine the case where a user has hundreds of new
unread messages in a chat or a mailbox or in a situation where the same user
needs to track and organise posts in forums or social groups. In order to instantly
have a clear view of different discussions, avoiding expensive and tedious human
efforts, we need to automatically organise this data stream into threads.

Many different approaches have been proposed in the related literature to
extract topics from document sets, mainly through a variety of techniques
derived from Probabilistic Latent Semantic Indexing (pLSI) [5] and Latent
Dirichlet Allocation (LDA) [6]. However, the problem of identifying threads
from conversational messages differs from document topic extraction for sev-
eral aspects [4,7-10]: (i) conversational messages are generally much shorter
than usual documents making the task of topic identification much more dif-
ficult (ii) thread identification strongly depends on social interactions between
the users involved in a message exchange, (iii) as well the time of the discussion.

Content

Social
Time

Fig. 1. Three dimensional representation of threads messages.

In our previous work [11] we addressed the problem of efficiently identifying
conversational threads from pools of online messages - for example from emails,
social groups, chats etc. In other words, we looked for the sets of messages that
are related to each other with respect to text content, time and involved users.

We consider a three dimensional representation [12] which consists of text
content, temporal information, and social relations. In Fig. 1, we depict the three
dimensional representation which illustrates 3 threads with different colours and
shapes, that yields to total of 14 messages. The green circles and red squares
threads have the same social and content dimensions but not time. While the
blue diamonds thread consists of different topics and users, but it occurs in
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the same time frame of the green circles one. The use of the three dimensional
representation leads to emphasis of thread separation.

We propose several measures to exploit the messages features, based on this
three dimensional representation. Then, similarly to the work in [13], the gen-
erated features are embedded into a metric distance in density and hierarchi-
cal clustering algorithms [14,15] which cluster messages in threads. In order
to enhance our approach to efficiently identify threads in any type of dataset,
we train a classification model with a set of messages previously organised in
threads. The classifiers exploit the same features used in the clustering phase and
they return the probability that a pair of messages belong to the same thread. In
other words, a binary supervised model is trained with instances, each referring
to a pair of messages. Each instance uses the same features described previously,
and a label describing whether the two messages belong to the same thread or
not. This model provides a probability of being in the same thread for a pair of
messages, we propose to use this probability as a similarity distance in cluster-
ing methods to identify the threads. We observe that the classifiers’ output can
help the clustering process to achieve higher accuracy by identifying the threads
correctly. In this paper we extend our aforementioned approach by comparing
classical Machine Learning supervised algorithms with a Deep Learning Multi-
Layer Perceptron. Deep learning algorithms are proven to achieve good results
in several mining domains [16], especially in big-data contexts [17]; thus consid-
ering that the identification of conversational thread in social networks could be
a problem with an huge amount of data to analyze, a deep learning approach
could fit well into this task.

We have extensively evaluated our approach with real world datasets includ-
ing emails and social group chats. Our experimental results show that our
method can identify the large majority of the threads in several type of dataset,
such as web conversation including emails, chats and posts.

To summarize, the main contributions of this work are:

— a three dimensional message representation based on textual semantic con-
tent, social interactions and time to generate features for each message;

— clustering algorithms to identify threads, on top of the features generated
from the three dimensional representation;

— combination of the generated features to build classifiers that identify the
membership probability of pair of messages to the same thread and this prob-
ability is used as a distance function for the clustering methods to identify
threads;

— extension of the combined classification techniques with clustering algorithms
that achieves a higher accuracy than using clustering alone;

— comparison of performances obtained by several machine learning algorithms
and the deep learning Multi-Layer Perceptron.

The rest of this paper is structured as follows. In Sect. 4, we present related
work, while in Sect. 3, we formally define the thread identification problem. In
Sect. 2, we introduce our model and our algorithms for thread identification.
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Section 3.3 presents the experimental results on real datasets and Sect.5 con-
cludes the paper.

2 Method

In this section, we outline a generic algorithm for identifying messages which
belong to the same thread from a set of messages M, such as emails, social group
posts and chats. As an intermediate step, the algorithm addresses the problem
of computing the similarity measure between pairs of messages. We propose
a suite of features and two methods to combine them (one unsupervised and
one supervised) to compute the similarity measure between two messages. We
also present clustering algorithms which identify threads based on this similarity
measure in Sect. 2.3.

2.1 Data Model

We consider a set of messages M = {my, ma, ...} that refers to online texts such
as emails, social group chats or forums. Each message is characterized by the
following properties: (1) textual data (content and subject in case of emails), (2)
creation time, and (3) the users involved (authors or sender/recipients in case
of emails). We represent each message as a three-dimensional model [12,18] to
capture all these components. Thus, a message m € M can be denoted as a
triplet m = <cpm,Um, tm>, where ¢, refers to text content, U, = {ui,ug,...}
refers to the set of users that are involved in m, and t,,, refers to the creation time.
Some dimensions can be missing, for instance chat, groups and forum messages
provide only the author information, without any recipients.

A conversation thread is defined as a set of messages exchanged on the same
topic among the same group of users during a time interval, more formally,
the set of messages M is partitioned in a set of conversations C. Each message
m € M belongs to one and only one conversation ¢ € C. The goal of the thread
reconstruction task is to automatically identify the conversations within a pool
of messages. To this aim, we propose a clustering-based method that relies on
a similarity measure between a pair of messages, called SIM (m;,m;). In the
following sections, we define different proposed approaches to calculate the simi-
larity measure. In the rest of the paper, we will use the notation 2 = {wy,ws, ...}
to refer the predicted extracted conversations.

2.2 Messages Features

Social text messages, like emails or posts, can be summarized by three main
components: text content, temporal information, and social relations [12]. Each
of the three main components can be analyzed under different points of view to
compute the distance between a pair of messages, which involves the creation of
several features. The function STM (m;, m;) relies on these features and returns a
similarity value for each pair of messages (m;, m;), which is used by the clustering
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algorithm that returns the finding threads. We now present the extracted features
used to measure the similarity between two messages.

The content component relies on the semantics of the messages. There are
two main sources: the messages text and the subject, if present (e.g., social
network posts do not have this information). The first considered feature is the
similarity of the messages text content. We make use of the common Bag of
Words (BoW) representation, that describes a textual message m by means
of a vector W(m) = {wi,ws, ...}, where each entry indicates the presence or
absence of a word w;. Single words occurring in the message text are extracted,
discarding punctuation. A stopwords list is used to filter-out all the words that
are not informative enough. The standard Porter stemming algorithm [19] is
used to group words with a common stems. To estimate the importance to each
word, there exist several different weighting schemes [20], here we make use of
the commonly used tf.idf scheme [21].

Using BoW representation, the similarity between two vectors m;, m; can
be measured by means of the commonly used cosine similarity [22]:

for(mi,m;) Y (ma) [TV (m)|

Since by definition the BoW vectors have only positive values, the fc, (m;, m;)
takes values between zero and one, being zero if the two vectors do not share any
word, and one if the two vectors are identical. In scenarios where the subject
is available, the same process is carried out, computing the similarity cosine
feg(mi,m;) of words contained in the messages subject.

The cosine similarity allows a lexical comparison between two messages but
does not consider the semantic similarity between two messages. There are two
main shortcomings of this measure: the lack of focus on keywords, or semantic
concepts expressed by messages, and the lack of recognition of lexicographically
different words but with similar meaning (i.e. synonyms), although this is par-
tially computed through the stemming. In order to also handle this aspect, we
extend the text similarity by measuring the correlation between entities, key-
words and concepts extracted using AlchemyAPI'. AlchemyAPI is a web service
that analyzes the unstructured content, exposing the semantic richness in the
data. Among the various information retrieved by AlchemyAPI, we take into
consideration the extracted topic keywords, involved entities (e.g. people, com-
panies, organizations, cities and other types of entities) and concepts which are
the abstractions of the text (for example, “My favorite brands are BMW and
Porsche = Automotive industry”). These three information are extracted by
Alchemy API with a confidence value ranging from 0 to 1. We create three vec-
tors, one for each component of the Alchemy API results for keywords, entities
and concepts for each message and using the related confidence extracted by
AlchemyAPI as weight. Again we compute the cosine similarity of these vectors,
creating three novel features:

! http://www.alchemyapi.com/.
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— fox (my,m;): computes the cosine similarity of the keywords of m; and m;.
This enables us to quantify the similarity of the message content based purely
on keywords rather than the message as a whole.

— feg(ms, m;): computes the cosine similarity of the entities that appear in m;
and m; focusing on the entities shared by the two messages.

- fee(mi, m;): computes the cosine similarity of the concepts in m; and m;,
allowing the comparison of the two messages on a higher level of abstraction:
from words to the expressed concepts.

The second component is related to the social similarity. For each message
m, we create a vector of involved users U(m) = {uy, us, ...} defined as the union
of the sender and the recipients of m (note that the recipients information is
generally not provided in social network posts). We exploit the social relatedness
of two messages through two different features:

— The similarity of the users involved in the two messages fs, (m;, m;), defined
as the Jaccard similarity between U(m;) and U(m;):

oy = om0l
fsy (mi; myj) U(m;) UU(m;)|

— The neighborhood Jaccard similarity fs, (m;,m;) of the involved users. The
neighborhood set N(u) of an user u is defined as the set of users that have
received at least one message from u. We also include each user w in its
neighborhood A (u) set. The neighborhood similarity of two messages m;
and m; is defined as follows:

T (mismi) = s, uz() (i) UN ()]
ujel/((mj')

Finally, the last component relies on the time of two messages. We define the
time similarity as the logarithm of the inverse of the distance between the two
messages, expressed in days, as follows:

1

1+|tmi—tmj|)

fr(mi;mj) = logy(1 +

We use the inverse normalization of the distance in order to give a value between
zero and one, where zero correspond to a high temporal distance and one refers
to messages with low distance.

As a practical example, Fig. 2 shows two messages, with the related proper-
ties, and the values of the features generated from them.

2.3 Clustering

In this section, we present the clustering methods used to identify the
threads. Based on the set of aforementioned features F = {fc,., fos, fox,
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Subject: request for Subject: presentation changes
M1 | presentation M2 | Content: Yes sir, | added a

Content: Hi all, | want to slide on the Acme contract at

remember you to change the the end of the presentation.

presentation of Friday including Users: uy — [us]

some slides on data related to Date: September 16, 2015

the contract with Acme. Wy,,: {sir ad slide Acme contract

Users: u; — [uy, ug] present}

Datg: September 1b5’ 5015 Km,: {Acme, contract, sir, slide,
Win,: {Want. rememb chang end, presentation}

present Fridai includ slide data Cr: I}

relat contract Acme} Em{ "

Kip,: {Hi, Acme, slides, Friday, m, {Acme}
presentation, data, contract}

Cm,: 0

Ep,: {Acme}

Content component  f;=0.492 fc=0.5  fc=0.463 fc =0 fe=1
Social component  fs =0.667 fs,=0.667
Time Component fr=0.585

Fig. 2. Example of features calculation for a pair of messages. Message components:
Subject, Content, Users (sender — recipients) and creation date. W(m;) refers to the
bag of words of a message obtained after the tokenization, stopwords removal and
stemming. The vectors of keywords (K(m;)), concepts (C(m;)) and entities (€(m;))
extracted from AlchemyAPI are shown. In the bottom the values for each proposed
feature are also shown. For simplicity, we assume binary weight for components.

few, foos fsus fsns fr}, we define a distance measure that quantifies the sim-
ilarity between two messages:

SIM(mivmj):HfEf(1+f(miamj)) (1)

We compute a N x N matrix with the similarities between each pair of mes-
sages (m;, m;) and we use density based and hierarchical clustering algorithms,
being the two most common distance-based approaches.

Density-Based Clustering. We use the DBSCAN [14] density-based cluster-
ing algorithm in order to cluster messages to threads because given a set of
points in some space, DBSCAN groups points that are closely packed together
(with many nearby neighbors). DBSCAN requires two run time parameters,
the minimum number min of points per cluster, and a threshold 6 that defines
the neighborhood distance between points in a cluster. The algorithm starts by
selecting an arbitrary point, which has not been visited, and by retrieving its
f-neighborhood it creates a cluster if the number of points in that neighborhood
is equals to or greater than min. In situations where the point resides in a dense
part of an existing cluster, its #-neighbor points are retrieved and are added to
the cluster. This process stops when the densely-connected cluster is completely
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found. Then, the algorithm processes new unvisited points in order to discover
any further clusters.

In our study, we use messages as points and we use weighted edges that
connect each message to the other messages. An edge (m;,m;) between two
messages m; and m; is weighted with the similarity measure SIM(m;, m;).
When DBSCAN tries to retrieve the #-neighborhood of a message m, it gets all
messages that are adjacent to m with a weight in their edge greater or equal
to 0. Greater weight on an edge indicates that the connected messages are more
similar, and thus they are closer to each other.

Hierarchical Clustering. This approach uses the Agglomerative hierarchical
clustering method [15] where each observation starts in its own cluster, and pairs
of clusters are merged as one moves up the hierarchy. Running the agglomerative
method requires the choice of an appropriate linkage criteria, which is used to
determine the distance between sets of observations as a function of pairwise dis-
tances between clusters that should be merged or not. In our study we examined,
in preliminary experiments, three of the most commonly used linkage criteria,
namely the single, complete and average linkage [23]. We observed that average
linkage clustering leads to the best results. The average linkage clustering of two
clusters of messages {2, and {2, is defined as follows:

1
avgLinkCl(£2,,(2,) = KA Z SIM (w;,w;)
y z

wiE.Qy
ijQz

The agglomerative clustering method is an iterative process that merges the
two clusters with highest average linkage score. After each merge of the clusters,
the algorithm starts by recomputing the new average linkage scores between all
clusters. This process runs until a cluster pair exists with a similarity greater
than a given threshold.

2.4 Classification

The clustering algorithms described above rely on the similarity measure SIM,
that combines with a simple multiplication several features, to obtain a sin-
gle final score. This similarity measure in Eq.1 gives the same weight, namely
importance, to each feature. This avoids the requirement to tune the parameters
related to each feature, but could provide an excessively rough evaluation and
thus bad performance. A different possible approach, is to combine the sub com-
ponents of similarity measure SIM as features into a binary supervised model,
in which each instance refers to a pair of messages, the features are the same
described in the Sect.2.2 and the label is one if the messages belonging to the
same thread and zero otherwise. At runtime, this classifier is used to predict
the probability that two messages belong to the same thread, using this prob-
ability as the distance between the pairs of messages into the same clustering
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Table 1. Characteristics of datasets.

Dataset Messages type #messages | #threads | #users | Peculiarities
BC3 Emails 261 40 159 | Threads contain
emails with different
subject
Apache Emails from 2945 334 113 | Threads always
mailing list contain emails with
same subject
Redhat Emails from 12981 802 931 | Threads always
mailing list contain emails with
same subject
WhoWorld |Posts from 2464 132 1853 | Subject and recipients
Facebook page not available
Healthy Posts from 1115 132 601 | Subject and recipients
Choice Facebook page not available
Healthcare |Posts from 3436 468 801 |Subject and recipients
Advice Facebook group not available
Ireland S. | Posts from 4831 408 354 | Subject and recipients
Android Facebook group not available

algorithms. The benefit of such approach is that it automatically finds the appro-
priate features to use for each dataset and it leads to a more complete view of
the importance of each feature. Although it is shown in [24] that decision trees
are faster and more accurate in classifying text data, we experimented with a
variety of classifiers.

The classification requires a labeled dataset to train a supervised model.
The proposed classifier relies on data in which each instance represents a pair
of messages. Given a set of training messages M, with known conversation
subdivision, we create the training set coupling each training message m € M,
with ns messages of M, that belong to the same thread of m and ny messages
belonging to different threads. We label each training instance with one if the
corresponding pair of messages belong to same thread and zero otherwise. Each
of these coupled messages are picked randomly. Theoretically we could create
(IMxy| - [Mr, —1|)/2 instances, coupling each message with the whole training
set. In preliminary tests using Random Forest as the classification model, we
notice that coupling each training message with a few dozen same and different
messages can attain higher performances. All the experiments are conducted
using ns = ng = 20, i.e. each message is coupled with at maximum 20 messages
of the same conversation and 20 of different ones. In the rest of the paper we
refer to the proposed clustering algorithm based on a supervised model, as SVC.

As it will be shown in the Sect. 3.3, the Agglomerative hierarchical clustering
achieves better results with respect to the DBSCAN, thus, we use this clustering
algorithm in the SVC approach.
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2.5 Multi-layer Perceptron

A Multi-Layer Perceptron (MLP) is a deep learning algorithm [16,25] that can be
viewed as a logistic regression classifier where the input is first transformed using
a learnt non-linear transformation @. This transformation maps the input data
into a space where they expect to be better linearly separable. This intermediate
layer is referred to as a hidden layer.

Formally, a one-hidden-layer MLP is a function f : RP — R’ where D is
the size of input vector « and L is the size of the output vector f(x), such that,
in matrix notation:

fl@) =GO + WO (s + WMa))),

with z that is the input vector, i.e. the set of feature values F computed for
the coupled messages; b(1), b(2) are bias vectors; W, W2 are weight matrices
and G and s activation functions. The vector h(z) = &(x) = s(b™M) + Wz)
constitutes the hidden layer. W) € RP*Pr is the weight matrix connecting the
input vector to the hidden layer. Each column W,(Z-l) represents the weights from
the input units to the i-th hidden unit. After a pre-tuning phase, we chose the
hyperbolic tangent activation function:

s =tanh(a) = (e* —e %) /(e + %)

for its faster and higher results with respects to other functions, like for
instance the sigmoid. The output vector is then obtained as:

o(x) = G(OP + WHh(x))

By considering that we need a binary classification, namely either the coupled
messages belong or not to the same thread, the output is a couple of probabil-
ities for each class achieved by choosing G as the softmax function. To run our
experiments, we make use of Yusuke java implementation Sugomori? [26].

3 Evaluation

In this section, we compare the accuracy of the clustering methods described in
Sect. 2 in terms of identifying the actual threads.

3.1 Datasets
For evaluating our approach we consider the following seven real datasets:

— The BC3 dataset [27], which is a special preparation of a portion W3C corpus
[28] that consists of 40 conversation threads. Each thread has been annotated
by three different annotators, such as extractive summaries, abstractive sum-
maries with linked sentences, and sentences labeled with speech acts, meta
sentences and subjectivity.

2 https://github.com/yusugomori/DeepLearning.
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— The Apache dataset which is a subset of Apache Tomcat public mailing list®
and it contains the discussions from August 2011 to March 2012.

— The Redhat dataset which is a subset of Fedora Redhat Project public mailing
list* and it contains the discussions that took place in the first six months of
20009.

— Two Facebook pages datasets, namely Healthy Choice® and World Health
Organizations®, crawled using the Facebook API7. They consist of real posts
and relative replies between June and August 2015. We considered only the
text content of the posts (discarding links, pictures, videos, etc.) and only
those written in English (AlchemyAPT is used to identify the language).

— Two Facebook public groups datasets, namely Healthcare Advice® and Ireland
Support Android®, also crawled using the Facebook API. They consist of con-
versations between June and August 2015. Also for this dataset we considered
only the text content of the posts written in english.

We use the first three datasets that consist of emails in order to compare
our approach with existing related work [29-31] on conversation thread recon-
struction in email messages. To our knowledge, there are no publicly available
datasets of social network posts with a gold standard of conversation subdivi-
sion. We use the four Facebook datasets to evaluate our method in a real social
network domain.

The considered datasets have different peculiarities, in order to evaluate our
proposed method under several perspectives. BC3 is a quite small dataset (only
40 threads) of emails, but with the peculiarity of being manually curated. In this
dataset is possible to have emails with different subjects in the same conversa-
tion. However, in Apache and Redhat the messages in the same thread, have also
the same subject.

With regards to Facebook datasets, we decided to use both pages and groups.
Facebook pages are completely open for all users to read and comment in a
conversation. In contrast, only the members of a group are able to view and
comment a group post and this leads to a peculiarity of different social interaction
nets. Furthermore, each message - post - in these datasets has available only the
text content, the sender and the time, without information related to subject
and recipients. Thus, we do not take into account the similarities that use the
recipients or subject. Table 1 provides a summary of the characteristics of each
dataset.

In the experiments requiring a labeled set to train a supervised model, the
datasets are evaluated with 5-fold cross-validation, subdividing each of those in
5 thread folds.

3 http://tomcat.apache.org/mail/dev.

* http://www.redhat.com/archives/fedora-devel-list.

5 https://www.facebook.com/healthychoice.

5 https://www.facebook.com/WHO.

" https:/ /developers.facebook.com/docs/graph-api.

8 https://www.facebook.com/groups/533592236741787.
9 https:/ /www.facebook.com/groups/848992498510493.
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3.2 Evaluation Metrics

The precision, recall and Fy-measure [23] are used to evaluate the effectiveness
of the conversation threads identification. Here, we explain these metrics in the
context of the conversational identification problem. We evaluate each pair of
messages in the test set. A true positive (TP) decision correctly assigns two sim-
ilar messages to the same conversation. Similarly, a true negative (TN) assigns
two dissimilar messages to different threads. A false positive (FP) case would
be when the two messages do not belong to the same thread but are labelled
as co-threads in the extracted conversations. Finally, false negative (FN) case is
when the two messages belong to the same thread but are not co-threads in the
extracted conversations. Precision (p) and recall (r) are defined as follows:

__ TP

TP+ FP T_iTP—kFN

The F}-measure is defined by combining the precision and recall together, as
follows:

p

2.p.
F=2P2T
p+r

We also use the purity metric to evaluate the clustering. The dominant con-
versation, i.e. the conversation with the highest number of messages inside a
cluster, is selected from each extracted thread cluster. Then, purity is measured
by counting the number of correctly assigned messages considering the domi-
nant conversation as cluster label and finally dividing by the number of total
messages. We formally define purity as

. 1
purity(2,C) = ™ zk:mjaxwk € ¢

where 2 = {wi,ws,...,wi} is the set of extracted conversations and C =
{c1,c¢2,...,c;} is the set of real conversations.

W, W, W3

Fig. 3. Conversation extraction example. Each wy refers to an extracted thread and
each ¢; corresponds to the real conversation of the message.

To better understand the purity metric, we refer to the example of thread
identification depicted in Fig.3. For each cluster, the dominant conversation
and the number of related messages are: wy : ¢1,4, ws : ¢2,4, ws : c3,3. The
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total number of messages is |[M| = 17. Thus, the purity value is calculated as
purity = (4+4+3)/17 = 0.647.

A final measure of the effectiveness of the clustering method, is the sim-
ple comparison between the the number of identified threads (|{2|) against the
number of real conversations (|C|).

3.3 Results

Tables2 and 3 report the results obtained with the seven datasets using the
Weka [32] implementation of Random Forest algorithm. We applied a 2 x 2 cost
matrix with a weight of 100 for the instances labelled with one and the Sugomori
Java implementation of the Multi-Layer Perceptron as described above. The
reported results are related to the best tuning of the threshold parameter of the
clustering approaches, both for DBSCAN and Agglomerative. Further analysis
on the parameters of our method are discussed in the next section.

Table 2 shows the results on the email datasets, on which we can compare
our results (SVC) with other existing approaches, such as the studies of Wu and
Oard [31], Erera and Carmel [30] and the lastest one of Dehghani et al. [29]. The
first two approaches [30,31] are unsupervised, as the two clustering baselines,
while the approach in [29] is supervised, like our proposed SVC; both this super-
vised methods are evaluated with the same 5-fold cross-validation, described
above. All of the existing approaches use the information related to the subject
of the emails, we show in the top part of the table a comparison using also the
subject as feature in our proposed approach. We want point out that in Apache
and Redhat dataset, the use of the subject could make the clusterization effort-
less, since all messages of a thread have same subject. It is notable how our
supervised approach obtains really high results, reaching almost perfect predic-
tions and always outperforming the existing approaches, particularly in Redhat
and Apache dataset.

In our view, the middle of Table 2 is of particular interest, where we do not
considered the subject information. The results, especially in Redhat and Apache,
have a little drop, remaining anyhow at high levels, higher than all existing
approaches that take into consideration the subject. Including the subject or not,
the use of a supervised model to evaluate the similarity between two messages,
brings a great improvement to the clustering performances, compared to the use
of a simple combination of each feature as described in Sect. 2.3. In the middle
part of Table2 is also shown the effectiveness of our SVC predictor without
the three features related to AlchemyAPI information; these features lead to
an improvement of results especially in Redhat, which is the largest and more
challenging dataset.

Table 2 also compares the performances of the SVCmethod using both the
Random Forest algorithm (SVCgp) and the Multi-Layer Perceptron (SVCyrp).
Noteworthy is the drop of precision and recall of the MLP algorithm for the
apache and redhat dataset when the subject are not considered, in this case the
Random Forest clearly outperforms the Deep Learning approach.
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Table 2. Conversational identification results on email datasets. [30,31], DBSCAN
and Agglom. are unsupervised methods, while [29] and SVC are supervised, both using
the Random Forest (RF) and the Multi-Layer Perceptron (MLP) algorithms. The top
part of the table shows the results obtained by methods using subject information, the
middle part shows those achieved without such feature, finally the bottom part shows
the results obtained with SVC method considering only a single dimension. With + and
— we indicate respectively the use or not of the specified feature (s: subject feature, a:
the three Alchemy features). For clustering and SVC approach we report results with
best threshold tuning.

Methods BC3 Apache Redhat

Precision | Recall | F1 Precision | Recall | F1 Precision | Recall | F1
Wu and 0.601 0.625 |0.613 |0.406 0.459 |0.430 |0.498 0.526 |0.512
Oard [31]
Erera and 0.891 0.903 |0.897 |0.771 0.705 |0.736 |0.808 0.832 |0.82
Carmel [30]
Dehghani 0.992 0.972 10.982 |0.854 0.824 |0.839 |0.880 0.890 |0.885
et al. [29]
DBSCAN 0.871 0.737 10.798 |0.359 0.555 |0.436 |0.666 0.302 |0.416
(+s)
Agglom. 1.000 0.954 0.976 |0.358 0.918 |0.515 |0.792 0.873 10.83
(+s)
SVCgrr (+s)|1.000 0.986 | 0.993/0.998 1.000 |0.999|0.995 0.984 (0.989
SVCuyLp 1.000 0.982 0.991 0.969 1.000 [0.984 | 0.99 0.981 |0.985
(+s)
DBSCAN 0.696 0.615 | 0.653 |0.569 0.312 |0.403 |0.072 0.098 |0.083
(—s)
Agglom. 1.000 0.954 1 0.976 |0.548 0.355 |0.431 0.374 0.427 10.399
(—s)
SVCgrr (—s)|1.000 0.952 |0.975 |0.916 0.972 10.943|0.966 0.914 0.939
SVCgrF 0.967 0.979 1 0.973 |0.892 0.994 |0.940 |0.815 0.699 |0.753
(—s —a)
SVCuyLp 1.000 0.973 | 0.986|0.654 0.671 |0.663 |0.703 0.541 |0.612
(—s)
SVCumrLp 1.000 0.972 10.986 |0.633 0.616 0.624 |0.469 0.579 10.518
(—s —a)
SVCgrFp 1.000 0.919 |0.958/0.954 0.974 0.964|0.988 0.984 0.986
(content)
SVCgrF 0.964 0.902 0.932 |0.604 0.706 |0.651 |0.899 0.872 |0.885
(content —s)
SVCgrF 1.000 0.828 0.905 |0.539 0.565 |0.552 |0.68 0.558 [0.613
(content —s
—a)
SVCgrF 0.939 0.717 10.813 |0.345 0.361 |0.353 |0.360 0.045 [0.08
(social)
SVCgrF 0.971 0.897 10.933 |0.656 0.938 |0.772 |0.376 0.795 |0.511

(time)
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Table 3. Conversation identification results on Facebook post datasets (subject and
recipient information are not available). The top part of the table shows the results
obtained considering all the dimensions, both using the Random Forest (RF) and the
Multi- Layer Perceptron (MLP) algorithms; the bottom part shows the results obtained
with SVC method considering only a single dimension. For clustering and our approach
we report results with best threshold tuning.

Methods |Healthy Choice ‘World Health Org. Healthcare Advice Ireland S. Android
Precision|Recall|Fy Precision|Recall|Fy Precision|Recall|Fy Precision|Recall|F

DBSCAN |0.027 0.058 |0.037 |0.159 0.043 |0.067 |0.206 0.051 |0.082 |0.201 0.002 |0.004

Agglom 0.228 0.351 |0.276 |0.154 0.399 |0.223 |0.429 0.498 |0.461 |0.143 0.141 |0.142

SVCRrfr [0.670 0.712 |0.690/0.552 0.714 |0.623 |0.809 0.721 |0.763 |0.685 0.655 |0.67

SVCRrFr |0.656 0.713 |0.683 |0.543 0.742 |0.627 |0.802 0.733 |0.766/0.708 0.714 |0.711

(—2)

SVCpsrrp|0.657 0.722 |0.688 |0.615 0.698 |0.654/0.665 0.762 |0.71 |0.68 0.739 |0.709

SVCpsrp|0.65 0.726 |0.686 |0.61 0.696 |0.65 |0.664 0.764 (0.71 |0.68 0.737 |0.708

(—a)

SVCgrp /0.308 0.032 |0.058 |0.406 0.120 |0.185 |0.443 0.148 |0.222 |0.127 0.042 |0.063

(content)

SVCRrFr |0.286 0.025 |0.046 |0.376 0.11  |0.171 |0.414 0.127 ]0.195 |0.105 0.033 |0.050

(content

—a)

SVCgrp |0 0 0 0 0 0 0.548 0.188 |0.280 |0.155 0.234 |0.186

(social)

SVCRrFr |0.689 0.670 |0.679/0.531 0.750 |0.622|0.638 0.769 |0.697/0.667 0.703 |0.685

(time)

The aforementioned considerations, are valid also for the experiments on
social network posts. To the best of our knowledge, there is not any related
work on such type of datasets. In Table3, we report the results of our app-
roach on the four Facebook datasets. These data do not provide the subject and
recipients information of messages, thus the reported results are obtained with-
out the features related to the subject and neighborhood similarities, namely
feg(mi,my) and fg, (ms, m;). We notice that the pure unsupervised clustering
methods, particularly DBSCAN, achieve low precision and recall. This is due to
the real difficulties of these post’s data: single posts are generally short with little
semantic information. For example suppose we have two simultaneous conversa-
tions t1: “How is the battery of your new phone?” - “good!” and t2: “how was
the mowvie yesterday?” - “awesome!”. By using only the semantic information
of the content, it is not possible to associate the replies to the right question,
thus the time and the social components become crucial. Although there is a
large amount of literature to handle grammatical errors or misspelling, in our
study we have not taken into account these issues. Despite these difficulties, our
method guided by a supervised model achieves quite good results in such data,
with an improvement almost always greater than 100% with respect the pure
unsupervised clustering. Results in Table 3 show the difficulties also for Alche-
myAPI to extract valuable information from short text posts. In fact, results
using the AlchemyAPI related features does not lead to better results.
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The results achieved by the SVC method for each dimension are reported
at the bottom of the Tables2 and 3, in particular those regarding the content
dimension have been produced with all features, excepts the subject and the
Alchemy related features. In Table2 is notable that considering the content
dimension together with the subject feature leads, as expected, to the highest
accuracy. By excluding the subject feature, SVC produces quite good results with
each dimension, however they are lower than those obtained by the complete
method; this shows that the three dimensional representation leads to better
clusterisation.

Table 3 shows the differentiation in the results related to the Facebook
datasets. In particular, the social dimension performs poorly if used alone, in
fact the author of a message is known, whereas not the receiver user; also the
text content dimension behaves badly if considered alone. In these datasets, the
time appears to be the most important feature to discriminate the conversations,
however the results achieved only with this dimension are worse than those of
the SVC complete method.

From these results, achieved using each dimension separately from the others,
we deduce that SVC is robust to different types of data. Moreover the use of a
supervised algorithm allows both to identify the importance of the three dimen-
sions and to achieve a method that can deal with different datasets without
requiring ad-hoc tuning or interventions.

Parameter Tuning. Parameter tuning in machine learning techniques is often
a bottleneck and a crucial task in order to obtain good results. In addition, for
practical applications, it is essential that methods are not overly sensitive to
parameter values. Our proposed method requires the setting of few parameters.
In this section, we show the effect of changing different parameter settings. A
first investigation of our SVC regards the supervised algorithm used to define
the similarity score between a pair of messages.

We conducted a series of experiments on the benchmark datasets varying the
model. Namely, we used decision trees (Random Forest), SVM (LibSVM), Logis-
tic Regression and Deep Learning Multi-Layer Perceptron. For all the standard
Machine Learning algorithms we used the default parameter values provided by
the Weka implementation. For the MLP we done a tuning - we omit for space
reasons - and we defined and fixed in all the experiments the following para-
meters: (i) hyperbolic tangent activation function: s = tanh(a), (ii) number of
training iterations: n. = 500, (iii) number of hidden layers: n;, = 50, and (iv)
learning rate: Ir = 0.5.

Considering the intrinsic lack of balance of the problem (i.e. each message
has a plenty of pairs with messages that belong to different threads and just few
in the same one) we also experimented with a cost-sensitive version of Random
Forest, setting a ratio of 100 for instances with messages belonging to the same
thread. Table4 shows the results, it is notable that the cost sensitive Random
Forest always outperforms the standard Random Forest. Logistic regression and
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Table 4. Results varying the supervised model used to compute the distance between
two email.

Model ‘ Purity ‘ Precision ‘ Recall ‘ Fq ‘ [£2]
BC3 (|C| = 40)

LibSVM | 0.980 | 0.962 0.984 0973 | 40
Logistic | 1.000 | 1.000 0.965 | 0.982| 45
RF 1.000 | 1.000 0.961 |0.980 | 45
RF:100 |1.000 |1.000 0.952 | 0.975 | 46
MLP 1.000 | 1.000 0.973 | 0.986 44
Apache (|C| = 334)
LibSVM | 0.785 | 0.584 0.583 | 0.584 | 500
Logistic | 0.883 |0.904 0.883 | 0.893 | 275
RF 0.862 | 0.885 0.979 | 0.930 | 255
RF:100 |0.920 |0.916 0.972 | 0.943 | 286
MLP 0.821 |0.654 0.671 | 0.663 |431
Redhat (|C| = 802)
LibSVM | 0.575 | 0.473 0.674 | 0.556 | 450
Logistic | 0.709 |0.619 0.697 | 0.656 | 572
RF 0.89 0.888 0.900 |0.894 | 762
RF:100 | 0.954 | 0.966 0.914 | 0.939 | 818
MLP 0.773 |0.703 0.541 |0.612 | 820
Facebook page: Healty Choice |C| = 132)
LibSVM | 0.766 | 0.657 0.694 |0.675 | 187

Logistic | 0.788 | 0.676 0.724 | 0.699 | 211

RF 0.771 |0.682 0.656 | 0.668 | 218

RF:100 |0.787 |0.670 0.712 | 0.690 |214

MLP 0.792 | 0.657 0.722 | 0.688 | 220

Facebook page: World Health Organization (n. = 132)
LibSVM | 0.628 | 0.444 0.805 | 0.573 | 118

Logistic | 0.755 | 0.566 0.702 | 0.627 | 198

RF 0.731 |0.536 0.718 | 0.614 | 186

RF:100 |0.747 |0.552 0.714 |0.623 | 222

MLP 0.784 | 0.615 0.698 | 0.654 | 220

Facebook group: Healthcare Advice (|C| = 468)
LibSVM | 0.692 | 0.502 0.768 | 0.607 | 383

Logistic | 0.840 |0.699 0.761 | 0.729 | 548

RF 0.766 | 0.596 0.773 | 0.673 | 467

RF:100 |0.909 | 0.809 0.721 | 0.763 | 714

MLP 0.822 | 0.665 0.762 | 0.71 531

Facebook page: Ireland Support Android (|C| = 408)
LibSVM | 0.655 | 0.460 0.744 | 0.568 | 356

Logistic | 0.814 |0.654 0.723 | 0.687 | 573

RF 0.786 | 0.646 0.641 | 0.644 | 627

RF:100 |0.821 |0.685 0.655 | 0.670 | 663

MLP 0.837 | 0.68 0.739 | 0.709 | 583
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cost sensitive Random Forest achieve better results, with a little predominance
of the latter.

An interesting outcome deduced by analysing Table4 is that, as already
reported in [33], the Random Forest algorithm obtains really good results, par-
ticularly when one is able to dive it into the right space of features opportunely
weighted with respect to the classes. The deep learning method should overcome
this problem, in fact MLP obtains higher performance in 6 out 7 datasets with
respect to the simple unweighted Random Forest, but only in 1 out of 7 datasets
are instead better of the cost-sensitive RF. For this reason, the choice of one or
other algorithm highly depends on the previous knowledge available about the
dataset.

The main parameter of our proposed method regards the threshold value used
in the clustering algorithms. We experimented with the use of a supervised model
in the DBSCAN clustering algorithm, but we noticed the results were not good.
This is not surprising if we consider how DBSCAN works: it groups messages
in a cluster iteratively adding the neighbors of the messages belonging to the
cluster itself. This leads to the erroneous merge of two different conversations,
if just one pair of messages is misclassified as similar, bringing a sharp decline
to the clustering precision. The previous issue, however, does not affect the
agglomerative clustering, because of the use of average link of two messages inside
two clusters, to decide whether to merge them or not. In this approach the choice
of the threshold parameter is crucial, namely the stop merge criterion. Figure 4
shows the Fj trend varying the agglomerative threshold, using the weighted
Random Forest as the supervised model. Is notable that all the trends have only
one peak that corresponds to a global maximum, thus with a simple gradient
descent is possible to find the best threshold value. Furthermore, our method is
generally highly effective for threshold values ranging from 0.1 to 0.3, as shown

o BC3 o Apache . Redhat
- WHO Healthy Choice ~ Healthcare Advice
——Ireland Android - Average
B. Multi-Layer Perceptron B. Random Forest

1 ——

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
threshold threshold

Fig. 4. F1 measure for varying number of threshold, using (A) the MLP-based super-
vised algorithm and (B) the Random Forest algorithm.
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in Fig.4. This is also confirmed by the average trend, that has a peak with a
threshold equal to 0.1.

4 Related Work

In last years, thread identification has received a lot of attention, including
content and metadata based approaches. Metadata based approaches refers to
header fields that are contained in emails or forum posts (e.g. send-to, reply-to).
Content based approaches focus on text analysis on subject and content text. In
this paper, we differentiate from the existing works by generalizing the problem
of identifying threads in different types of datasets, not only in email sets like
the most of related work [10,30,31,34,35]. The authors of [31] focus on identify-
ing conversational threads from emails using only the subject. They cluster all
messages with the same subject and at least one participant in common. Here,
we also handle cases where messages belong to the same thread but have dif-
ferent subject. Similarly, in [34] the authors identify threads in emails using the
extracted header information. They first try to identify the parent/child rela-
tionships using Zawinski algorithm'® and then they use a topic-based heuristic
to merge or decompose threads to conversations. Another approach for identify-
ing threads in emails is proposed in [30], where clustering into threads exploits a
similarity function that considers all relevant email attributes, such as subject,
participants, text content and date of creation. Quotations are taken into account
in [10] where combined with several heuristics such as subject, sender/recipient
relationships among email and time, and as a result can construct email threads
with high precision. Emails relationships are also considered in [35] where the
authors use a segmentation and identification of duplicate emails and they group
them together based on reply and forwarding relationships.

The work most closely related to ours is that of [29], that studies the conver-
sation tree reconstruction, by first identifying the threads from a set of emails.
Specifically, they map the thread identification problem to a graph clustering
task. They create a semantic network of a set of emails where the nodes denote
emails and the weighted edges represent co-thread relationships between emails.
Then, they use a clustering method to extract the conversation threads. How-
ever, their approach is focus only on email datasets and their results are strongly
bound with the used features, since when they do not take into account all fea-
tures they have a high reduction in their accuracy. In contrast here, we consider
general datasets and by using our classification model we are able to identify
threads even when there are missing features. Although, it is not clear which
graph clustering algorithm is used and how it identifies the clusters. We conduct
an extensive comparison between our approach and the study of [29] in Sect. 5.

Another line of research addresses mining threads from online chats [4,7-9].
Specifically, the study of [4] focuses on identifying threads of conversation by
using pattern recognition techniques in multi-topic and multi-person chat-rooms.
In [9] they focus on conversation topic thread identification and extraction in a

10 https://www.jwz.org/doc/threading.html.
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chat session. They use an augmented ¢f.idf to compute weights between mes-
sages’ texts as a distance metric exploiting the use of Princeton WordNet!!
ontology, since related messages may not include identical terms, they may in
fact include terms that are in the same semantic category. In combination with
the computed distance between messages they use the creation time in order to
group messages with high similarity in a short time interval. In [7], they propose
three variations of a single-pass clustering algorithm for exploiting the tempo-
ral information in the streams. They also use an algorithm based on linguistic
features in order to exploit the discourse structure information. A single-pass
clustering algorithm is also used in [8] which employs the contextual correlation
between short text streams. Similar to [9], they use the concept of correlative
degree, which describes the probability of the contextual correlation between
two messages, and the concept of neighboring co-occurrence, which shows the
number features co-existing in both messages.

Finally, there also exists a line of research on reconstructing the discussion
tree structure of a thread conversation. In [36], a probabilistic model in condi-
tional random fields framework is used to predict the replying structure for online
forum discussions. The study in [24] employs conversation threads to improve
forum retrieval. Specifically, they use a classification model based on decision
trees and given a variety of features, including creation time, name of authors,
quoted text content and thread length, which allows them to recover the reply
structures in forum threads in an accurate and efficient way. The aforementioned
works achieve really high performance (more than 90% of accuracy) in the con-
versation tree reconstruction, while the state of the art in threads identification
obtains lower performance, about 80% for emails data and 60% for chats and
short messages data. To this end, in this study we focus on improving thread
identification performance.

5 Conclusions

This paper has studied the problem of identifying threads from a pool of messages
that may correspond to social network chats, mailing list, email boxes, chats,
forums etc. We have addressed the problem by introducing a novel method which
given a pool of messages, it leverages the textual semantic content, the social
interactions and the creation time in order to group the messages into threads.
The work contains an analysis of features extracted from messages and it presents
a similarity measure between messages, which is used in clustering algorithms
that map messages to threads. Moreover the paper introduces a supervised model
that combines the extracted features together with the probability of couples
of messages to belong to the same thread, which is interpreted as a distance
measure between two messages. Experiments show that this method leads to
higher accuracy in thread identification, outperforming all earlier approaches.
Furthermore we investigated two differents main supervised approaches to
create the classification model: standard machine learning algorithms, such as

" http://wordnet.princeton.edu/.
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Random Forest, SVM and Logistic regression, and the deep learning Multi-
Layer Perceptron. The results highlight that the cost-sensitive Random Forest
approach achieves higher accuracy, whereas the Multi-Layer Perceptron seems a
good choice with huge amount of data or when features are unknown and hidden
relationships need to be found. Hence with cases with a good and thoughtful
features set, a standard machine learning approach can provide better results.

There are many directions for future works. An interesting variation is the
reconstruction of conversational trees, where the issue is to identify the reply
structure of the conversations inside a thread. Another more general development
is studying the streaming version of the problem where identifying temporal
thread discussions from a stream of messages rather than from a static pool of
texts.
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