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Abstract. Considered is a 2D cellular automaton with moving agents.
The objective is to find agents controlled by a Finite State Program
(FSP) that can form domino patterns. The quality of a formed pat-
tern is measured by the degree of order computed by counting matching
3 × 3 patterns (templates). The class of domino patterns is defined by
four templates. An agent reacts on its own color, the color in front, and
whether it is blocked or not. It can change the color, move or not, and
turn into any direction. Four FSP were evolved for multi-agent systems
with 1, 2, 4 agents initially placed in the corners of the field. For a 12×12
training field the aimed pattern could be formed with a 100% degree of
order. The performance was also high with other field sizes. Livelocks are
avoided by using three different variants of the evolved FSP. The degree
of order usually fluctuates after reaching a certain threshold, but it can
also be stable, and the agents may show the termination by running in
a cycle, or by stopping their activity.

Keywords: Cellular automata agents · Multi-agent system · Pattern
formation · Evolving FSM behavior · Spatial computing

1 Introduction

Pattern formation is an area of active research in various domains as in physics,
chemistry, biology, computer science or natural and artificial life. There exists
a lot of examples, namely in polymer composites, laser trapping, spin systems,
self-organization, growth processes, morphogenesis, excitable media and so forth
[1–10]. Cellular automata (CA) make suitable and powerful tools for catching the
influence of the microscopic scale onto the macroscopic behavior of such complex
systems [11–13]. At the least, the 1–dimensional Wolfram’s “Elementary” CA
can be viewed as generating a large diversity of 2–dimensional patterns whenever
the time evolution axis is considered as the vertical spatial axis, with patterns
depending or not on the random initial configuration [14]. A similar evolution
process is observed in the Yamins–Nagpal “1D spatial computer” generating the
roughly radial striped pattern of the Drosophila melanogaster [15,16]. But the
authors emphasize therein how the local-to-global CA paradigm can turn into
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the inverse global-to-local question, namely “given a pattern, which agent rules
will robustly produce it?”

Based upon our experience from previous works dealing with CA agents
and with FSM–agents driven by Finite State Machines and generating spatial
patterns [17–19], we focus herein on the problem of generating an optimal config-
uration of domino patterns in an n×n field, from four 3×3 Moore-neighborhood
domino templates. “Optimal” means that the configuration must have neither
gap nor overlap. Although the objective in [19] was to form long orthogonal line
patterns, some similarity will be observed between both configurations as related
to alignments in spin systems. A more down-to-earth application for the domino
pattern is the problem of packing encountered in different logistics settings, such
as the loading of boxes on pallets, the arrangements of pallets in trucks, or cargo
stowage [20]. Another application is the construction of a sieve for rectangular
particles with a maximum flow rate.

Related Work. (i) Pattern formation. A programming language is presented in
[15] for pattern-formation of locally-interacting, identical agents – as an exam-
ple, the layout of a CMOS inverter is formed by agents. Agent-based pattern
formations in nature and physics are studied in [21,22]. In [23] a general frame-
work is proposed to discover rules that produce special spatial patterns based on
a combination of machine learning strategies including genetic algorithms and
artificial neural networks.

(ii) FSM–controlled agents. We have designed evolved FSM–controlled CA
agents for several tasks, like the Creature’s Exploration Problem [24,25], the All-
to-All Communication Task [25–27], the Target Searching Task [28], the Routing
Task [29,30]. The FSM for these tasks were evolved by genetic algorithms mainly.
Other related works are a multi-agent system modeled in CA for image process-
ing [31] and modeling the agent’s behavior by an FSM with a restricted number
of states [32]. An important pioneering work about FSM–controlled agents is
[33] and FSM–controlled robots are also well known [34].

This work extends the issues presented in [17–19] with a different class of
patterns herein and unlike in [19] only two colors and neither markers nor addi-
tional communication signals are used. Furthermore, agents are now able to find
patterns with the maximum degree of order. In Sect. 2 the class of target pat-
terns is defined and in Sect. 3 the multi-agent system is presented. In Sect. 4
livelock situations and the termination problem are described. The used genetic
algorithm is explained in Sect. 5 and the effectiveness and efficiency of selected
FSP are evaluated in Sect. 6 before Conclusion. The CA agents used herein are
implemented from the write access CA–w concept [35–37].

2 Domino Patterns and Degree of Order

Given a square array of (n + 2) × (n + 2) cells including border, we focus on the
problem of generating an optimal configuration of domino patterns in the n × n
enclosed field, from four domino templates (Fig. 1). The role of the border, with
a perimeter of 4n + 4 white cells, is to facilitate the work of the agents, thus
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Fig. 1. (a) The four 3 × 3 domino templates define the domino pattern class. (b)
A pattern with 4 hits. It can be tiled (with overlaps) by matching templates. Each
matching template produces a hit (dot) in the center. (c) A pattern for a 4 × 4 field
(plus border) with the maximal degree or order 8. (d) A pattern for a 6 × 6 field with
the maximal degree or order 16.

moving within an uniform field. The four possible 3 × 3 Moore-neighborhood
domino templates around a central black cell are displayed in Fig. 1a, showing
our so-called spin-like left (←), up (↑), right (→), down (↓) dominos. They define
the domino pattern class.

The templates are tested on each of the n2 sites (ix, iy) of the n × n field. So
each template is applied in parallel on each cell, which can be seen as a classical
CA rule application. If a template fits on a site, then a hit (at most one) is
stored at this site. Then the sum of all hits is computed which defines the degree
of order h. A pattern with 4 hits is displayed in Fig. 1b: the top-left horizontal
domino is generated by matching the right template centered at (0, 0) with the
left template centered at (1, 0) then producing two hits. In the same way the
bottom-right vertical domino is generated by matching the down template with
the up template, thus giving altogether a pattern with order h = 4. Dominos are
isolated in the sense that neither contact nor overlap is allowed; in other words,
a black domino must be surrounded by ten white cells.

Domino Enumeration. For an even side length n, let hmax be the maximum
expected order. Hereafter we give an evaluation of this optimal order by induc-
tion in a non formal way. In (c) and (d) two optimal patterns are displayed
respectively for a 4 × 4 field and a 6 × 6 field. They are redisplayed in Fig. 2,

Fig. 2. From left to right: 1. Tiling the 4×4 field with 4 tetraminos. 2. Tiling the 6×6
field with 9 tetraminos. 3. The agent entering the central 6 × 6 subfield, with border,
in the 12 × 12 field: fifth snapshot of Fig. 5a.
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showing the patterns now tiled with square 2 × 2 tetraminos. Such a 4–mino
may either contain a domino or be empty. So, a n×n field (n even) can be tiled
by exactly ξ∗

n = n2/4 tetraminos. That gives an upper bound for the maximal
order. Note that the central 4–mino in the 6 × 6 field is empty.

Let us now observe the 12 × 12 field in Fig. 2 showing one agent generating
the pattern. Starting from the top-left corner, the agent generates 4 rows of 5
aligned dominos, moving clockwise, before entering a central 6× 6 subfield, with
border. We are now ready for the induction.

Let us call a “void” a cell belonging to an inner border and let νn be the
void index in a n × n field; we claim that ν0 = ν2 = ν4 = 0 and

νn = 4(n − 5) + νn−6 (n > 4) (1)

and give an informal proof. The first term of the sum is the perimeter (in number
of cells) of the inner border surrounding the central (n − 6) × (n − 6) subfield,
the second term denotes the number of voids in that subfield. Setting m = n/2
and p = �m/3� we get

νn =

⎧
⎨

⎩

4p (3p − 2) (m ≡ 0)
4p (3p) (m ≡ 1) (mod 3).
4p (3p + 2) (m ≡ 2)

(2)

The number ξn of non-empty 4–minos and bounded by ξ∗
n is then given by

ξn =
n2 − νn

4
(3)

Table 1. Domino enumeration for n×n fields: upper bound ξ∗
n, void index νn, domino

number ξn, optimal degree hmax.

n m p ξ∗
n νn ξn hmax

0 0 0 0 0 0 0

2 1 0 1 0 1 2

4 2 0 4 0 4 8

6 3 1 9 4 8 16

8 4 1 16 12 13 26

10 5 1 25 20 20 40

12 6 2 36 32 28 56

14 7 2 49 48 37 74

16 8 2 64 64 48 96

18 9 3 81 84 60 120

20 10 3 100 108 73 146

22 11 3 121 132 88 176

24 12 4 144 160 104 208
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namely the domino number, and therefore the maximum expected order is
hmax = 2ξn and the relative order is hrel = h/hmax. 	


The quantities for the first even values of the field size n are displayed in
Table 1.

3 Modeling the Multi-agent-System

Compared to classical CA, moving agents with a certain “intelligence” have to
be modeled. Therefore the cell rule becomes more complex. Different situations
have to be taken into account, such as an agent is situated on a certain cell and
is actively performing actions, or an agent is blocked by another agent or by a
border cell in front. The cell state is modeled as a record of several data items:

CellState = (Color,Agent)
Color L ∈ {0, 1}
Agent = (Activity, Identifier,Direction,ControlState)

Activity ∈ {true, false}
Identifier ID ∈ {0, 1, ..., k − 1}
Direction D ∈ {0, 1, 2, 3} ≡{toN, toE, toS, toW}
ControlState S ∈ {0, 1, ..., Nstates − 1}.

This means that each cell contains a potential agent, which is either active
and visible or passive and not visible. When an agent is moving from A to
B, its whole state is copied from A to B and the Activity bit of A is set to
false. The agent’s structure is depicted in Fig. 3. The finite state machine (FSM)
realizes the “brain” or control unit of the agent. Embedded in the FSM is a state
table which defines the actual behavior. The state table can also be seen as a
program or algorithm. Therefore the abbreviations FSP (finite state program)
or AA (agent’s algorithm) are preferred herein. Outputs are the actions and the
next control state. Inputs are the control state s and defined input situations x.

Fig. 3. An agent is controlled by a finite state machine (FSM). The state table defines
the agent’s next control state, its next direction, and whether to move or not. The
table also defines whether the color shall be toggled (0 → 1) or (1 → 0).



Generating Maximal Domino Patterns by CA Agents 23

An input mapping function is used in order to limit the size of the state table.
The input mapping reduces all possible input combinations to an index x ∈ X =
{0, 1, . . . , Nx −1} used in combination with the control state to select the actual
line of the state table.

The capabilities of the agents have to be defined before designing or searching
for an AA. The main capabilities are: the perceivable inputs from the environ-
ment, the outputs and actions an agent can perform, the capacity of its memory
(number of possible control and data states) and its “intelligence” (useful proac-
tive and reactive activity). Here the intelligence is limited and carried out by a
mapping of its state and inputs to the next state, actions and outputs.

An agent can react on the following inputs:

• control state: agent’s control state s,
• direction: agent’s direction D,
• color: color L of the cell the agent is situated on,
• front color: color LF of the cell in front,
• blocked: the blocking condition caused either by a border, another agent in

front, or in case of a conflict when another agent gets priority to move to the
front cell. The inverse condition is called free.

An agent can perform the following actions:

• next state: state ← nextstate ∈ {0, ..., Nstates − 1}.
• move: move ∈ {0, 1} ≡ {wait, go}.
• turn: turn ∈ {0, 1, 2, 3}.

The new direction is D(t + 1) ← (D(t) + turn) mod 4.
• flip color: flipcolor ∈ {0, 1}.

The new color is L(t + 1) ← (L(t) + flipcolor) mod 2.

An agent has a moving direction D that also selects the cell in front as the
actual neighbor. What can an agent observe from a neighboring cell? In our
model it can only detect the blocking condition and the color in front. So the
agents’ sensing capabilities are weak.

All actions can be performed in parallel. There is only one constraint: when
the agent’s action is go and the situation is blocked, then an agent cannot move
and has to wait, but still it can turn and change the cell’s color. In case of a
moving conflict, the agent with the lowest identifier (ID = 0...k−1) gets priority.
Instead of using the identifier for prioritization, it would be possible to use other
schemes, e.g. random priority, or a cyclic priority with a fixed or space-dependent
base. The following input mapping was used, x ∈ {0, 1, . . . , 7}:

x = 0 + 4b, if color = 0 and frontcolor = 0
x = 1 + 4b, if color = 1 and frontcolor = 1
x = 2 + 4b, if color = 0 and frontcolor = 1
x = 3 + 4b, if color = 1 and frontcolor = 0

where b = 0 if free, otherwise b = 1 if blocked. This mapping was designed
by experience from former work. Of course, other input mappings are possible,
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with more or less x codes, or other assignments, e.g. more neighbors could be
taken into account, the blocking conditions could be distinguished (by border,
by agent, by conflict), or a part of the agent’s private control state could be
presented to the neighbors. Note that the sensing capabilities are quite limited,
and that makes the given task difficult to solve.

4 Livelock and Termination

The Livelock Problem. During the work of evolving FSP, it turned out that
livelocks may appear for systems with more than one agent. In a livelock the
agents act in a way that there is no more progress in the system’s global state
towards the aimed pattern. An analogy is when two people meet head-on and
each tries to step around the other, but they end up swaying from side to side,
getting in each other way as they try to get out of the way. Here livelocks
appeared when 2 or 4 agents were placed symmetrically in space. Then the
state/actions sequence was the same and the agents got stuck in cyclic paths.
Fortunately we found a simple way to avoid them. Three variants of an FSP
are used. Agents start in three different control states, depending on the agent’s
identifier: initial state = ID mod 3. By this technique we were able to find FSP
without livelocks, agents can now show three different behaviors. As we cannot
influence the structure of the evolved FSP, the FSP state’s graph may have
different prefix state sequences, or the FSP may even fall into three separate
graphs (co-evolution of up to three FSP). This means that the genetic algorithm
automatically finds the best choice of more equal or more distinct FSP under
the restriction of a given maximal number of states Nstates.

The Termination Problem. How can the multi-agent system be stopped in
a decentralized way after having reached the required degree of order? One idea
is to communicate the hits all-to-all. Thereby the difficulty is that pattern and
degree of order are usually changing over time, and the transportation of the
hit information is delayed in space. So it would be more elegant, if the system
state (pattern or hit-count) reaches automatically a fixed point. We define for
our multi-agent system that has reached a certain degree of order

(1) Soft-termination: The pattern is stable, and there exists one agent that is
active (moves and/or changes direction).

(2) Hard-termination: The pattern is stable, and all agents are passive (not
moving and/or not changing direction).

The termination problem has been studied for distributed systems, and now
it is under research also for multi-agent systems [38].

5 Evolving FSP by a Genetic Algorithm

An ultimate aim could be to find an FSP that is optimal for all possible ini-
tial configurations on average. This aim is very difficult to reach because it
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needs a huge amount of computation time. Furthermore, it depends on the ques-
tion whether all-rounders or specialists are favored. Therefore, in this work we
searched only for specialists optimized for (i) a fixed field size of N = n × n,
n = 12, (ii) 4 special initial configurations with 1, 2, 4 agents where the agents
are placed in the corners of the field. The number of different FSP which can
be coded by a state table is Z = (|s||y|)(|s||x|) where |s| is the number of control
states, |x| is the number of inputs and |y| is the number of outputs. As the search
space increases exponentially, we restricted the number of inputs to |x| = 8 and
the number of states to |s| = Nstates = 18. Experiments with lower numbers of
states did not yield the aimed quality of solutions.

A relatively simple genetic algorithm similar to the one in [17] was used in
order to find (sub)optimal FSP with reasonable computational cost. A possible
FSP solution corresponds to the contents of the FSM’s state table. For each
input combination (x, state) = j, a list of actions is assigned:

actions(j) = (nextstate(j), move(j), turn(j), flipcolor(j))

as displayed on the FSP genome in Fig. 4.
The fitness is defined as the number t of time steps which is necessary to

emerge successfully a target pattern with a given degree htarget of order, aver-
aged over all given initial random configurations. “Successfully” means that a
target pattern with h ≥ htarget was found. The fitness function F is evaluated
by simulating the system with a tentative FSPi on a given initial configura-
tion. Then the mean fitness F (FSPi) is computed by averaging over all initial
configurations of the training set. F is then used to rank and sort the FSP.

In general it turned out that it was very time consuming to find good solutions
with a high degree of order, due to the difficulty of the agents’ task in relation
to their capabilities. Furthermore the search space is very large and difficult
to explore. The total computation time on a Intel Xeon QuadCore 2 GHz was
around 4 weeks to find all needed FSP.

Evolved Finite State Programs. The used fields are of size N = n × n. The
cell index (ix, iy) starts from the top left corner (0, 0) to the bottom right corner
(n − 1, n − 1). The top right corner is (n − 1, 0). The index K defines a set of
initial configurations. Here only 4 initial configurations are used:

K = 1: 1 agent with direction →, placed at (0, 0)
K = 2: 2 agents, one placed like in configuration K = 1, and another with

direction ← placed at (n − 1, n − 1)
K = 4: 4 agents, two of them placed like in configuration K = 2, and another

with direction ↓ placed at (n − 1, 0), and another with direction ↑ placed at
(0, n − 1)

K = 124: This index specifies a set of configurations, the union of K = 1, K = 2,
and K = 4
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Fig. 4. FSP genome with Nstates = 18 states and Nx = 8 inputs.

The best found FSP is denoted by

FSPn,K,h: for field size n, configuration K, and a reached order hmax. The
reached order can also be given relatively as hrel with percent suffix

The following four FSP were evolved by the genetic algorithm:

FSP12,1,100% = FSP12,1,56

FSP12,2,100% = FSP12,2,56

FSP12,4,100% = FSP12,4,56

and the more general mixed one FSP12,124,100% that is 100% successful on each
of the 3 initial fields for K = 1, 2, 4. Its genome is displayed in Fig. 4. Note that
hmax = 56 for n = 12 according to Table 1 whence hrel = 100%.

6 Simulation and Performance Evaluation

Simulation. Firstly, the agent-system was simulated and observed for the first
three evolved programs (FSP12,1,56, FSP12,2,56, FSP12,4,56). Figure 5 shows the
time evolution of the domino pattern for the system with 1, 2, and 4 agents. The
strategy of 1 agent is to move along the border clockwise (Fig. 5a) and then after
one cycle moving inwards. Roughly the path is close to a spiral. Looking to the
path in detail, the agent moves more or less back and forth in order to build the
optimal pattern. Thereby already built dominoes can be destructed and rebuilt
in a different way. An optimal pattern with hmax = 56 is built at t = 215.

The systems with two agents (Fig. 5b) and four agents (Fig. 5c) follow a
similar strategy, but the work is shared and each agent cooperates in building
the optimal pattern. The cooperation is achieved by detecting dominoes already
in place and then rearrange them in a better way or move just inwards to the
empty area in order to create new dominoes. The optimal pattern is built at
t = 154 for the 2-agent-system, and at t = 51 for the 4-agent-system.
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Fig. 5. Dots are marking the hits. Inner squares in light grey are marking visited cells,
the darker the more often visited. (a) 1-agent-system. The agent starts in the left corner
and moves mainly clockwise, and from the border to the centre. At t = 215 an optimal
pattern with h = 56 is formed. For t ≥ 236 the pattern remains stable with h = 48.
(b) 2-agent-system. The agents are building the pattern together. Agent 0 and 1 use
a slightly different algorithm, see configuration at t = 18. For t ≥ 158 the agents run
in a cycle without changing the optimal pattern. (c) 4-agent-system. The agents 0, 1,
2 use slightly different algorithms, see configuration at t = 12. At (t = 98, h = 37) all
agents have stopped their activities.
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Termination. What happens after having built the optimal pattern?
1-agent-system: During t = 215 . . . 235 the agent continues its walk in the

direction of the right border, thereby changing the pattern’s order in the sequence
h = 56, 52, 56, 54, 56, 54, 52, 50, 48. Then, for t ≥ 236 the pattern remains stable
with h = 48, and then for t ≥ 240 the agent is running a 4-step-cycle within a
block of 2×2 cells. So we have a non-optimal soft-termination with hrel = 48/56.

2-agent-system: For t = 154, 155, 156, 157, 158+ the agents change slightly
the order to h = 56, 52, 52, 52, 56. Then for t ≥ 158 each of them runs in a cycle
of period 8 following a square path within a block of 3×3 cells without changing
the optimal pattern. This means an optimal soft-termination with hrel = 100%.
This result was not expected and was not explicitly forced by the genetic. But
it shows that optimal terminations in such multi-agent-systems are possible and
can be evolved.

4-agent-system: For t = 51, 52, . . . 98+ the agents are reducing the order
to h = 56, 50, . . . 37 with fluctuations. At (t = 60, h = 49) agent 1 stops its
activities, and then at (t = 63, h = 47) agent 0 stops its activities, and then
at (t = 75, h = 44) agent 3 stops its activities, and then at (t = 98, h = 37)
agent 2 stops its activities. For t ≥ 98 all agents have stopped their activities,
this means a non-optimal hard-termination (see last snapshot in Fig. 5c). Agent
with ID = 0, 1, 2, 3 started at position (0, 0), (n − 1, 0), (n − 1, n − 1), (0, n − 1)
respectively. Agents 0 and 3 are using the same variant of the FSP whereas
agents 1 and 2 use other variants.

Table 2. Performance of the k–agent systems, especially evolved for each k. The 4–
agent system is almost 4 times faster than the 1–agent system.

Program Agents k Time tk Time per cell tk/N Speedup S = t1/tk Efficiency S/k

FSP12,1,100% 1 215 1.49 1.00 1.00

FSP12,2,100% 2 154 1.07 1.40 0.70

FSP12,4,100% 4 54 0.38 3.98 0.99

Comparison with the More General, Mixed FSP12,124,100%. The mixed
FSP was evolved to work with 1, 2, or 4 agents, therefore it is more general.
Now the time to reach 100% success is longer, t124 = 255, 180, 105 for k = 1, 2, 4.
Compared to the optimal time of the special FSP presented before and given in
Table 2 the ratio is t124/t(k) = 1.19, 1.17, 1.94. That means that special evolved
algorithms may save significant computation time, in our example up to 94%.

Performance of the Mixed FSP for Other Field Sizes. Now it was tested
how sensitive the mixed FSP is against a change of the field size. It was required
that all k–agent systems (k = 1, 2, 4) are successful to the up most reachable
degree hmax

rel . It was found by incrementing hrel to the point where at least
one agent-system was not successful. Table 3 shows the times tk to order the
systems up to hmax

rel (refer to Eq. 3 and Table 1 for hmax). In order to compare
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Table 3. Used was the mixed FSP evolved for field size 12 × 12. The times tk for
different field sizes was recorded for the maximal reachable degree of order.

Field size 4 × 4 6 × 6 8 × 8 10 × 10 12 × 12 14 × 14 16 × 16

Reached hmax
rel 4/8=50% 14/16=88% 22/26=85% 34/40=85% 56/56=100% 72/74=97% 88/96=92%

t1 10 52 82 125 255 303 351

t2 13 30 42 62 180 216 272

t4 4 19 21 32 105 123 161

Fig. 6. Time steps per cell needed to order the fields with a degree hrel ≥ 85%.

the performance for different field sizes the metric t/N (time steps per cell) was
used. Furthermore a fixed bound for hrel = 85% was used. Then the time was
measured for this bound. The outcome is depicted in Fig. 6. The normalized time
t/N is minimal at n = 16, 10, 10 for k = 1, 2, 4 and the 4-agent system is around
3 times faster than the 1-agent-system.

7 Conclusion

The class of the aimed domino patterns was defined by four templates (3×3 local
patterns). Four FSP were evolved for multi-agent systems with 1, 2, 4 agents
initially placed in the corners of the field. The reached degree of order was 100%
for the 12 × 12 training field, and greater than 85% for field sizes between 6 × 6
and 16 × 16. Livelocks were avoided by using up to three different variants of
the FSP depending on the agent’s identifier. These variants use different initial
control states and may show a totally different individual behavior. This can
be interpreted as a co-evolution of three cooperating behaviors. It was observed
that the achieved pattern can reach a stable fixed point, and then the agents
run in small cycles or even stop their activities totally. Further work is directed
to the termination problem, the co-evolution, and the problem of finding robust
multi-agent systems that can order fields of any size perfectly.
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