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Abstract. In this paper, we present a new method to fast approximate the
hypervolume measurement by improving the classical Monte Carlo sampling
method. Hypervolume value can be used as a quality indicator or selection
indicator for multiobjective evolutionary algorithms (MOEAs), and thus the
efficiency of calculating this measurement is of crucial importance especially in
the case of large sets or many dimensional objective spaces. To fast calculate
hypervolume, we develop a new Monte Carlo sampling method by decreasing
the amount of Monte Carlo sample points using a novel decomposition strategy
in this paper. We first analyze the complexity of the proposed algorithm in
theory, and then execute a series experiments to further test its efficiency. Both
simulation experiments and theoretical analysis verify the effectiveness and
efficiency of the proposed method.

Keywords: Hypervolume -+ MOEAs - Multiobjective optimization
Performance metrics

1 Introduction

In this paper we consider the problem of approximate hypervolume of the space
dominated by a set of d—dimensional points. This hypervolume is often used as quality
indicator in multi—objective evolutionary algorithms (MOEAs). Multi—objective evo-
Iutionary algorithms such as NSGA-II [1], MOEA/D [2, 3] have been successfully
applied in various bi—objective and tri—objective optimization scenarios. However, they
all appear to encounter difficulties when the number of objectives increases to more
than three, which is known as many—objective optimization problems (MaOPs) [4].

As a consequence, researchers have tried to develop some alternative methods, and
one of them is to use set quality measures [5], or quality indicators as the measurement
to select the next generation population. Hypervolume [6] (or S—metric, Lebesgue)
measure is one of the most popular quality indicator that can be fully sensitive to Pareto
dominance and population diversity even when more than three objectives are
involved. It was originally proposed and employed by Zitzler et al. [6] to quantitatively
compare the outcomes of different EMO algorithms. In [6], the indicator was denoted
as ‘size of the space covered’, and later also termed as ‘S—metric’, ‘hypervolume
indicator’ [7], and hypervolume measure [8].
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It has been identified that the computational effort of computing hypervolume
metric increases exponentially with the increasing number of objectives. Almost all the
recent studies about hypervolume indicator are about how to fast calculate the
hypervolume.

The “HV4D” algorithm [10, 11] is the most efficient in the case d = 4, see the
computational results e.g. [12]. Above d = 4, the walking fish group (WFG) [13] and
quick hypervolume (QHV) [12] are currently two of the most efficient with the com-
putational experiments. Although both the complexity of them are exponential, they
have acceptable runtime within d = 14.

Recently, some improved version about these two algorithms were proposed. Quick
hypervolume was extended in computing the contributor of each point and speed it up
with parallel computation [15]. Jaszkiewicz used a similar scheme as in the original
quick hypervolume algorithm called QHV-II [14]. IWFG algorithm was proposed in
[23] which used the adaptive slicing scheme, it processes less than a second that sets
containing a thousand points in 10-13 objectives. On the other hand, Lacour [16]
proposed another approach called ‘HBDA’ to calculate the computation of the
hypervolume indicator. There are a couple of other methods that partly perfect the
analysis and provement of computing runtime, e.g. [9, 17, 24].

In this paper, we mainly discuss not the exact hypervolume but the approximation.
A first attempt in this direction presented in [18, 22]. The main idea is to estimate—by
means of Monte Carlo simulation—the ranking of the individuals that is induced by the
hypervolume indicator and not to determine the exact indicator values in the opti-
mization problems. In [25] there are some performance analysis about this approxi-
mation method and hence proved the effectiveness of Monte Carlo simulation. This
method is widely used such as HypE [19], SMS-EMOA [8], but few researchers give it
a performance boost (e.g. [21] is one of them).

We design an new approximate hypervolume calculation method which greatly
improve the approximate speed. The main idea is to decrease the number of Monte
Carlo sample points under the precondition of retaining the precision by a novel
decomposition strategy. This novel decomposition strategy is also an exact hypervol-
ume calculation method and is similar to QHV but different. The accordingly com-
plexity analyses will be given and this method will compare with the previous Monte
Carlo simulation method [22] to show the faster calculating speed.

This paper is organized as follows. Section 2 briefly introduces the many—objective
optimization problems and some basic concept of hypervolume. Section 3 gives a
detail description of the proposed hypervolume calculation method. Some theoretical
analysis proposes in Sect. 4. At last we conduct simulation experiments in 8, 10, 13
dimensional space respectively, and compare with the Monte Carlo simulation method
in Sect. 5 to verify the effectiveness and efficiency of proposed method. Section 6
concludes this paper.
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2 Problem Definition

Without loss of generality, the multi—objective optimization problem can be stated as
follows

minF (x) = (f; (x),(x), ... fa(x))"
(1)
s.tx € Q.

Where Q C R™ is the decision space and m is the dimensionality of the decision
variable x. F : Q — R consists d real-value objective functions and R? is called the
objective space. When d >4, the problem (1) is regarded as a many—objective opti-
mization problem.

Let u = (uy,...,uq)" and v = (vy,...,vq) € R? are images of two solutions in the
objective space, u is said to dominate v (u < v) if and only if u; <v;foralli=1,...,d
and u # v. x* is called Pareto optimal solution if there is no solution x € Q such that
F(x) < F(x*). The set of all Pareto optimal solutions in Q is denoted as E(f, D) and we
called that Pareto Front (PF) in the objective space.

According to the definition above, in the d—dimensional objective space, we define
the dominated region namely hypervolume measure for given any set F of n points as

follows

HV(F) = VOL U bl x . x [, bl (2)

(x1,%2,+ xa)EF

where (by,b,,- -+, by) is a bound of F which is dominated by all the solutions in F and
d d

VOL(x) = [] (x;). Similarly, we define VOL(x|b) =[] (b; —x;) for convenience.
i=1 i=1

Actually, hypervolume measure is the volume of the union of the boxes which is made

up by the region between a point and the coordinate axis. This metric value is to be

maximized, the larger measure of a population, the better it is.

3 The Proposed Fast Approximate Hypervolume Algorithm

In this section, we describe how our algorithm to fast calculate the approximate
hypervolume indicator in high dimensions objective space. The main idea of our
algorithm is that we use a novel decomposition strategy called “partial precision and
partial approximation (PPPA)” to decrease the number of points that need to be
sampled for hypervolume calculation.
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3.1 A Calculating Exact Hypervolume Algorithm

First of all, we will introduce a pivot divide and conquer method which provides
accurate calculation of hypervolume measure, and it works as follows:

1. Select a pivot point which matches certain definition or condition, calculate the
volume of pivot point and add up the hypervolume measure;

2. To produce the sub—problems, we divide the space according to the pivot, classify
other points into the possible space regions;

3. Recursively solve each of the sub—problems.

The methodology of this method is similar to QHV and QHV-II, but in a different
way. The differences are mainly reflected in the splitting way and the pivot selecting
way. Figure 1 illustrates the proposed method in an 3—dimension example for maxi-
mize objectives. In Fig. 1, each dimension d; of pivot point would be segmented. The
points which greater than the Pivot in one dimension will divide into two parts, one part
get added to subset Q;, while the other part join the segmentation of next segmentation.
The method is presented in Algorithm 1, where F[i] represents the individual i in
population F and we denote as F'.

SubSet3
SubSetl<— 48 VW T

SubSet2
<

Fig. 1. Tllustration of dividing a set in 3D case with Maximizing in three objectives relative to
the origin.

The function FindPivot (F, B) in line 5 is to find the pivot. In Algorithm 1, the
pivot is produced by the maximum-minimum method because this point is the mid-
point of the set. That means F7? satisfies

gte(]:i) :max{}—il’]:;v”'? ZI}

3
§EFT) = min{g(F1), g (F")}. @

In Algorithm 2, maximum volume point is chosen as pivot as it would reduce
volume which needs to be approximate as larger as possible. In other words, F”
satisfies following equation

VOL(F" |b) = max{VOL(F"|b),-- -, VOL(F"|b)}. (4)
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Algorithm 1. Pivot Divide to Calculate Hypervolume in d Dimension
PDC_HV(F,B)
Input
F: A set of n points;
B: the point of computational boundary in Eq.(2);

Output
HV: the value of hypervolume measure for F;
Begin
If(n == 1)
HV := VOL(F[1],B); //Direct calculation of volume
Else

p = FindPivot(F,B); //Find the pivot
HV := VOL(F[p],B);
For(i=1tod)
Q=1 //nitialize the subset of F
For(j = 1ton)
If(F[j1[] < FlpIliD
F[jlli] := B[i] - (FIpllil- F[jliD);
Q = [Q F[jIT; F[jIli] := Flpl[il;
End If
End For
HV:=HV + PDC_HV(Q,B)
End For
End If
Return HV;
end

3.2 The Proposed Approximate Hypervolume Method in High
Dimension

We introduce a new approximate hypervolume method according to above description.
Notice that the Algorithm 1 is also a good strategy to approximate hypervolume
measure. After k layers recursion, d* subsets can be obtained. Besides every recursion,
this method would calculate a new volume of pivot and add to total volume of
hypervolume. Therefore, we have the following formula

HV(F) = 3" VOL(Pivot|b) + iHV(Qi) =V,+ Vg (5)

Where V, = >~ VOL(Pivot|b) is the sum of the volume of all pivots, Q; traverses
all subsets which is obtained by the k—layer segmentation and Vg is the sum of the
hypervolume measure of all subsets. That is why we call this novel decomposition
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strategy “partial precision and partial approximation”. Because after k layers recursion,
Eq. (5) could be regarded as an equation with error term that approximate hypervolume
measure. The former is the precise calculation of partial hypervolume and the latter is
error term. Obviously, the former is easy to calculate for it is the multiplication of a
series of number continuously, and the latter is difficult to calculate. Thus, a new
method is proposed to approximate to the error term of Eq. (5).

In Eq. (5), k represents the layer of recursion that needs be presented. The larger the
k value is, the more the layers of recursion is and the more accurate results are. But it
also the more complex of computation because the more subsets will be generated.
According to Eq. (5), the volume of this series of subsets have been reduced and then
we can approximately compute them by the method as follows.

Algorithm 2. Partial Precision and Partial Approximation of Hypervolume
PPPA_HV(F,B,p,Iter)
Input
F and B is the Same as Algorithm 1;
p: the number of sample points in unit volume;
Iter: the layer of recursion;
Output
Same as Algorithm 1;
Begin
If(Iter <= k)
Execute Algorithm 1 line 4 to 13;
HV :=HV + PPPA_HV(F,B,p,Iter+1);
Else
S:=1]; //nitialize the set of Sample
For(i = 1ton)
Delete points in S which is dominated by F[i];
s :=p * VOL(FIi],B); //Sample size of F[i]
Produce S’ which Contains s points within F[i];
S:=1[S,S’];
End For
End If
Return ISl/p;
end

We now consider the Monte Carlo simulation method which is mentioned in [18,
19]. If the set F accounts for a small proportion in sample range [0, 1] X ... x [0, b,],
most of the sample points will tend to be beyond the set F, and it will waste com-
putation effort. The subsets O; obtained by Eq. (5) also have this situation. Therefore,
Monte Carlo simulation has disadvantage in computing the above mentioned subsets.
To overcome this, we develop a new method to compute the hypervolume measure of
this class of subsets like Q;. The method associates the numbers of sample points with
the size of hypervolume, and hence can reduce the numbers of sample points. It is
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described in Algorithm 2, where k is the default of max recursive layer, which often
greater than 2, the parameter Izer is set as 1 and |S| represents the number of S.

It is obvious that the complexity of the Algorithm 2 is highly related to the size of
volume. The complexity of Algorithm 2 will be discussed in the next section. The
essential principle of this method is the relationship of density and volume. As is well
known, the mass equals the density times the volume. With density unchanged, we add
points to the dominated region which is consisted by the set Q; and the boundary b,
until the dominated region is saturated. Then the hypervolume measure equals the
numbers of total points in the dominated region divided by the density. It can be
concluded that when the hypervolume measure of a set F satisfies VOL(F'|b) < 1, the
algorithm would need less number of sample points, and computing efficiency can be
increased.

4 Theoretical Analysis of the Proposed Algorithms

We prove that the complexity of Algorithm 2 is O(dnp(Vo)' ™ + (dn)*), where the
definition of Vg is similar to the last term (error term) of Eq. (5), ¢ is an arbitrarily small
number and p is the sample points per unit volume. The greater the p, the more
accurate the measured value will be, and vice versa.

Proposition 1. As described, the computational complexity of Algorithm 2 is
O(dnp(Vo)' ™" + (dn)").

Proof{of proposition). In general, let the sample boundary be (by,--,bs) = (1,---,1)
because arbitrary point set can be mapped in [0, l]d by scaling. Let
F={xl,x% -, x"}, Vi = VOL(x'|b), V; <1, i=1,2,---,n. Notice that in Algo-
rithm 2 if we guarantee

AT S
i v, Ty f
And then we uniformly generate S;(i = 1,2,---,n) sample points in the sample

range [xi,b]d and add into the set S. So we just need to compare the dominated
relationship between x' and the sample points which in the S, if the set S contains |S|
sample points, the computational complexity is O(|S|d). Besides, because |S|/p
converges to the measure value iv of hypervolume which means ||S|/p — hv| <.
Therefore |S| < p(hv)' ™ can be deduced. Such an operation have to be repeated n
times, so the complexity of approximate calculation in Algorithm 2 is O(dnp(hv)' *%).

According to Algorithm 1, the cost of one time segmentation is O(dn). A seg-
mentation can generated d subsets. After k layers segmentation, d* subsets are gen-
erated and the cost of segmentation is equal to 1 +d + --- +d*' = O((dn)").

We suppose that after segmentation the hypervolume measure of subset Q; is hv;,
then the cost of calculate a subset Q; is O(dnp(hvi)1+8). Meanwhile the cost of cal-
culate all subsets Q1,Qs,- -, Oz is
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d* d*
> O(dnp(hv)' **) < 0 (dnp (Z (hv;)! *)) < O(dnp(Vg)' ™) (6)

i=1 i=1

So the complexity of Algorithm 2 is O(dnp(Vg)' ™%+ (dn)").

5 Experimental Studies

In order to demonstrate the feasibility and effectiveness of the proposed method, we do
a series of comparative experiments. To be specific, the proposed Algorithm 2 is
compared to Monte Carlo simulation method in terms of speed and accuracy. We
calculate each instances set 20 times from 8 to 13 dimension, instances include the
following four instance types:

(C) Concave or so-called spherical instances;

(X) Convex instances;

(L) Linear instances;

(D) Degeneration instances;

Instances are obtained by drawing uniformly points from the open hypercube
(0,1). Then each point z is modified as follows:
©) zj Z; , for each j € {1,...,d}, i.e. the component values of z are divided
k=1

by their {,—norm.
X) zj+—1——"~— foreachje{l,....d}.

d
2
Z %k
k=1

(L) gz« % foreachje {1,...,d}, i.e. the component values of z are divided by

S
k=1

their #;—norm.

D ! .
® 2+ 1>z foreach j € {1,...,1}, then z; «— —*~— foreach j € {1,...,d},
k=1 ‘

is the degree of degradation, in experiment we let [ = [%]

We followed the suggestion of Russo and Francisco [12] to project uniformly
distributed points on a hypersphere. In our study, 10, 000, 000 sample points per unit
volume are used to ensure the accuracy, and the max segmentation recursive layer k is
set 2. We use the following formula to calculate the accuracy

|hv' — HV(F)]
HV(F)

Accuracy =
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Where HV(F) is the exact hypervolume measure of the set F and hv* is the
approximation by proposed Algorithm 2 or Monte Carlo simulation. The results are
shown in Fig. 2 and Table 1, Fig. 2 shows the running time comparison, and Table 1
shows the accuracy comparison for four kinds of different non-dominated sets.
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Fig. 2. The running time comparison for 8D, 10D, 13D with different instances set (seconds).

From those figures and table, we can conclude that our approximation algorithm
outperforms Monte Carlo simulation in both speed and accuracy. The runtime of our
algorithm is 10 times or more faster than Monte Carlo simulation, we only takes less
than 10 s to perform a calculation and Monte Carlo simulation needs about 100 s or
more. Besides, the accuracy of our algorithm is also far better than Monte Carlo. When
the dimension is higher than 13, Monte Carlo simulation couldn’t meet the requirement
of accuracy, but our proposed algorithm is constant no matter what set it is.

We also have several disadvantages, As can be seen from the figure, our algorithm
is not quite stable and the runtime would be fluctuate. Despite the fluctuation is in a
certain range, it can’t be predict perfectly. The reason is that our algorithm is influenced
by the distribution and the number of the set. Obviously, this problem won’t happen to
Monte Carlo simulation.



A Fast Approximate Hypervolume Calculation Method 23

Table 1. The accuracy comparison in different instances set(%).

Instances Linear Convex

Algorithms Proposed algorithm | Monte Carlo | Proposed algorithm | Monte Carlo

8D 100 | 5.617E-05 7.901E-05 1.034E-04 2.078E-04
200 | 1.041E-04 7.350E-05 1.172E-04 2.336E-04
300 |4.763E-06 8.488E-05 3.945E-04 9.869E-05
10D | 100 |1.150E-04 1.051E-04 1.847E-04 1.013E-04
200 | 1.074E-04 8.830E-05 7.575E-05 3.284E-04
300 | 1.030E-04 1.084E-04 2.444E-04 2.764E-04
13D | 100 | 1.653E-04 1.458E-04 1.412E-04 2.653E-01
200 | 5.918E-06 1.364E-04 1.620E-04 5.381E-01
300 | 4.447E-05 1.546E-04 1.029E-04 2.832E-01
Instances Concave Degeneration

Algorithms Proposed algorithm | Monte Carlo | Proposed algorithm | Monte Carlo

8D 100 | 1.341E-04 6.840E-04 4.200E-05 7.664E-03
200 | 1.028E-04 7.542E-04 4.535E-05 3.335E-02
300 | 1.601E-04 5.772E-04 1.618E-04 2.803E-02
10D | 100 |6.850E-05 1.537E-03 5.371E-05 1.740E-01
200 | 2.349E-04 2.207E-03 6.587E-05 1.539E-01
300 | 2.089E-04 1.490E-03 2.889E-04 3.316E-01
13D | 100 |5.474E-04 1.531E-01 8.870E-04 4.279E-02
200 | 8.154E-05 2.601E-03 3.587E-05 1.539E-01
300 | 4.089E-04 1.287E-01 5.933E-04 3.240E-01

6 Conclusion

In this paper, we propose a new method to approximate the hypervolume value, which
can effectively decrease the running time of hypervolume indicator calculation in high
dimension objective space. The performance of the proposed approximation hyper-
volume calculation method is verified by comparing it with the classical Monte Carlo
sampling method on PFs of widely-used MaOPs test problems.
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