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Abstract Stochastic 2D Euler equations with transport noise are considered; more
precisely, a variant with regularization of Biot-Savart law is investigated. The para-
meter of regularization is chosen so that the equation is not well posed without noise.
An attempt to prove uniqueness due to noise is shown but a full solution remains
open and the difficulties and partial results are discussed.
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1 Introduction

It is well known that the addition of noise to a deterministic ODE has a regularizing
effect in terms of well posedness: among several results, let us recall the celebrated
work of Veretennikov (1981) where it is proved that an SDE with only bounded
measurable drift and additive noise has the properties of pathwise uniqueness and
strong existence, false without noise. Additive non degenerate noise is the easiest
noise which allows one to reach this result.

In recent years there has been a considerable effort to improve and extend these
results, both to evenmore singular SDEs or more refined properties like the existence
of a stochastic flow, and to SPDEs, see a review in Flandoli (2011). Additive noise
remains the best choice in infinite dimensions when the drift has a generic kind of
irregularity, like being bounded measurable (see for instance Da Prato et al. (2013))
and it has been the main choice to attempt proving well posedness of stochastic 3D
Navier–Stokes equations (see for instance Albeverio and Ferrario (2008); Da Prato
and Debussche (2003); Flandoli and Romito (2008)). But its effect on specific PDEs
of fluid dynamics remain relatively unclear.

If we start from a deterministic PDE without parabolic regularization, like Euler
equations or the simpler linear inviscid transport equations, additive noise does not
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seem to introduce interesting new phenomena, perhaps because it breaks useful con-
servation laws. From the viewpoint of the question of regularization by noise, linear
inviscid transport equations with irregular drift have been proved to be regularized
by a Stratonovich multiplicative noise of transport type: uniqueness of weak solu-
tions and no blow-up of regular solutions have been proved, in the noisy case, under
assumptions on the drift which, in the deterministic case, allow for non-uniqueness
and blow-up examples; see Flandoli (2011), Maurelli (2016). For nonlinear inviscid
equations, like 2D Euler equations and 1D Vlasov–Poisson equation, in the special
case of distributional solutions concentrated in point masses, again we have observed
a regularization by noise due to a Stratonovich multiplicative noise of transport type,
see Flandoli et al. (2011), Delarue et al. (2014). Therefore this seems to be the most
promising noise for regularization purposes and it is the case investigated in the
present work. Let us recall that this kind of noise has been used in the theory of tur-
bulence and of advection of passive scalars (see for instance Falkovich et al. (2001)),
and occupies a special position also in the geometric studies of fluid mechanics, see
Cruzeiro et al. (2007), Holm (2015), Cruzeiro (2015).

The main aim of this note is to present an open problem in this framework. The
reason why this particular problem is stated (among so many other open problems
concerning fluid dynamic equations) is that there are fragments of solution, which
indicate that maybe there is a chance to solve it. We shall present these partial
progresses.

The problem stated here is alsomotivated by the positive result proved byBarbato–
Bessaih–Ferrario (2014) for the so called Leray α-model; see also similar results for
dyadic models, Barbato et al. (2010), Bianchi (2013).

2 Deterministic 2D Euler Equations

In the sequel, given a closed set D ⊂ R
d , given p ≥ 1 and α ∈ (0, 1), we denote by

L p (D) the usual spaces of Lebesgue p-integrable functions on D, by Cα
b (D) the

set of bounded α-Hölder continuous functions f : D → R, and by C1,α
b (D) the set

of differentiable functions f : D → R, bounded with bounded derivatives, such that
the derivatives are α-Hölder continuous.

To understand the relevance of the stochastic open problem formulated below, let
us outline a few classical results and open problem for the 2D Euler equations of
fluid mechanics. General very useful references on this topic are Majda and Bertozzi
(2002),Marchioro and Pulvirenti (1994), Lions (1996). Consider the Euler equations
in dimension 2 (u is the velocity and p the pressure):

∂u

∂t
+ u · ∇u + ∇ p = 0

div u = 0
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with, say, periodic boundary conditions on a torus to simplify the exposition. Let us
formulate it for the scalar vorticity field

ξ = curl u := ∂2u1 − ∂1u2.

The vorticity, being in dimension 2, fulfills the transport equation

∂ξ

∂t
+ u · ∇ξ = 0

u = curl−1 ξ

where here and below we understand that curl−1 ξ is a divergence free field.
A shortlist of well known results and open problem is:

• ξ (0) ∈ L p for some p ∈ [2,∞) implies existence of solutions ξ ∈ L∞ (0, T ; L p);
uniqueness is open

• ξ (0) ∈ L∞ implies existence and uniqueness of a solution ξ ∈ L∞ (0, T ; L∞).

Let us also mention that in dimension 3 only local results of well posedness for
regular initial conditions are known; the theory seems to be too difficult for the
exposition of a reasonable open problem having some hope to be solved.

The results recalled above are based on the a priori estimates for the vorticity. If
ξ (0) ∈ L p for some p ∈ [2,∞), we easily have the a priori estimate

sup
t∈[0,T ]

‖ξ (t)‖L p ≤ ‖ξ (0)‖L p

namely supt∈[0,T ] ‖u (t)‖W 1,p ≤ C which gives us compactness for u in suitable
topologies, hence strong convergence of u in L p which is needed to pass to the
limit and prove existence of solutions.

The explanation of the result of uniqueness for ξ (0) ∈ L∞ is much more difficult
but it is easy to understand if we assume a little more: ξ (0) ∈ Cε

b . In this case one

can build an iteration argument in the class u ∈ C
(
[0, T ] ;C1,ε

b

)
based on the fact

that the characteristics X ′ = u (t, X) have good properties; see for instance Majda
and Bertozzi (2002). The proof of uniqueness for ξ (0) ∈ L∞ is more tricky; beside
the celebrated proof given by Yudovich, see Marchioro and Pulvirenti (1994) for a
proof based on iteration and characteristics.

3 Stochastic 2D Euler Equations in Vorticity Form

Let us directly start from the equation in vorticity form. We perturb the equation by
means of a multiplicative transport term in Stratonovich form:
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dξ + u · ∇ξdt = ∇ξ ◦ dW (1)

u = curl−1 ξ.

The noiseW will, in general, depend on space; the structure is described below. The
Stratonovich form is the natural one as a limit of smooth-in-time noise and its precise
meaning will be understood below.

Let us consider again the problem with periodic boundary conditions on a torus
to simplify the exposition. The theory is at present entirely analogous to the deter-
ministic one, namely:

• if ξ (0) ∈ L p for some p ∈ [2,∞) then there exists at least one (weak) solution u
with trajectories of class L∞ (0, T ; L p); uniqueness is open

• if ξ (0) ∈ L∞ then pathwise uniqueness holds in the class of solutions with trajec-
tories of class L∞ (0, T ; L∞).

These results require assumptions on the noise, but, roughly speaking, they are
very general. The uniqueness result is proved in Brzezniak et al. (2016) following
the proof of Marchioro and Pulvirenti (1994); see references there for other results
on stochastic Euler equations.

4 Open Problem and Partial Results

Having in mind the previous results and limitations, a natural open problem could
be: do there exist a noise W and an exponent p ∈ [2,∞) such that uniqueness holds
for Eq. (1) with initial conditions ξ (0) ∈ L p?

The problem is still too difficult. In the sequel we modify the equation in such
a way that unfortunately the equation is no more a fundamental equation of fluid
dynamics - it is similar in spirit to the Leray α model. Technically speaking, we
replace the range of p ∈ [2,∞) with a range of regularity exponents γ ∈ [0, 1]. The
integrability index will be always p = 2.

Let us introduce a modified version of 2D Euler equations:

dξ + v · ∇ξdt = ∇ξ ◦ dW (2)

v = (1 − �)−γ/2 curl−1 ξ.

Here γ ≥ 0 and the Bessel operator (1 − �)−γ/2 is a well defined isomorphism (for
instance in the case of a torus) betweenW 1,2 andW 1+γ,2, preserving divergence free
fields. Let us concentrate on the uniqueness issue, for not so regular initial conditions.
To identify a correct open problem, assume ξ (0) ∈ L2. One can prove a bound on
trajectories of the solution ξ in L∞ (

0, T ; L2
)
, hence on trajectories of curl−1 ξ in

L∞ (
0, T ;W 1,2

)
and therefore, finally, on trajectories of v in L∞ (

0, T ;W 1+γ,2
)
. If

γ > 1, then W 1+γ,2 ⊂ C1,ε
b for some ε > 0 (we are in space-dimension 2) and, at
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least in the deterministic case, characteristic are well defined and reasonably regular
to construct a proof of uniqueness. This case is not interesting for our purposes, since
uniqueness is not an open problem in the deterministic case. So we work under the
restriction

γ ≤ 1

and pose the problem: do there exist a noise W and an exponent γ ≤ 1 such that
uniqueness holds for Eq. (2) with initial conditions ξ (0) ∈ L2?

In the next subsections we show that one can go very close to the solution, but
the full picture is missing - we find contradictory conditions on the noise, to solve
the different pieces of the story. We start, however, by a counterexample.

4.1 Too Simple Noise Cannot Help

In this section we recall a well known counter-example to a naïve hope for regular-
ization by noise. For simplicity we go back to (1). The hope may come from the fact
that the same simple noise regularizes linear inviscid equations, see Flandoli et al.
(2010). But for nonlinear problems it has no effect. Consider the case when the noise
W in Eq. (1) is just a 2-dimensional Brownian motion

Wt = (
W 1

t ,W 2
t

)

independent of space. Set

ũ (t, x) := u (t, x − Wt )

ξ̃ (t, x) := ξ (t, x − Wt ) .

A formal computation by Stratonovich calculus gives us

∂ξ̃

∂t
+ ũ · ∇ ξ̃ = 0

ũ = curl−1 ξ̃

because

∂ξ̃

∂t
= ∂ξ

∂t
− ∇ξ ◦ dW

dt
= −u · ∇ξ = −ũ · ∇ ξ̃.

The transformation is invertible. Although we have described it only at formal level,
it is clear that we cannot expect any improvement by this noise: any kind of pathology
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like non-uniqueness or singularities shift formone formulation to the other andmakes
the stochastic Euler equations equivalent to the classical deterministic ones.

The problem is that the noise is just space-independent. Due to the results of
Flandoli et al. (2011) and Delarue et al. (2014) we believe that only a noise with very
rich space structure can improve the theory.

4.2 The Noise

Let T = [0, 2π]2 be the 2D-torus. The space HC of L2
(
T ;C2

)
vector fields, closure

in L2
(
T ;C2

)
of smooth divergence free, zero average fields, is a Hilbert space with

the scalar product 〈 f, g〉 = Re
∫
T f (x) g (x)dx and the family

{
k⊥
|k| e

ik·x , k ∈ Z
2\ {0}

}

is an orthonormal system (up to a constant). Every element v of the real sub-
space HC ∩ L2

(
T ;R2

)
can be developed in series, v (x) = ∑

k∈Z2\{0} vk
k⊥
|k| e

ik·x , with
v−k = vk in order to have v real valued. Let � be any subset of Z2\ {0} such that
{�,−�} is a partition of Z2\ {0}. Consider the vector fields {

ek (x) , k ∈ Z
2\ {0}}

defined as

ek (x) = k⊥

|k|
eik·x + e−ik·x

2
= k⊥

|k| cos k · x, k ∈ �

ek (x) = k⊥

|k|
eik·x − e−ik·x

2i
= k⊥

|k| sin k · x, k ∈ �c.

They are real valued, orthonormal (up to a constant), zero average, divergence free;
moreover they are a complete system for L2

(
T ;R2

)
:

v (x) =
∑

k∈Z2\{0}
vk

k⊥
|k| e

ik·x = 2
∑
k∈�

Re (vk)
k⊥
|k| cos k · x − 2

∑
k∈�c

Im
(
v−k

) k⊥
|k| sin k · x .

Hence
{
ek (x) , k ∈ Z

2\ {0}} is a complete orthonormal system of H , the Hilbert
space obtained as closure in L2

(
T ;R2

)
of smooth divergence free, zero average

vector fields.
We take the R2-valued random field

W (t, x) =
∑

k∈Z2\{0}
σkek (x)Wk

t

where ∑
k∈Z2\{0}

σ2
k < ∞, (3)

and
{
Wk

t

}
k∈�

is a family of independent Brownian motions. Since
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∑
k∈Z2\{0}

σ2
k |ek (x)|2 < ∞ for every x ∈ T

the series defining the random field W converges in mean square; we may introduce
the matrix-valued function Q (x, y) defined componentwise as

Qαβ (x, y) =
∑

k∈Z2\{0}
σ2
k e

α
k (x) eβ

k (y)

and check it has the form Q (x − y) (this fact is equivalent to ask that the randomfield
W (t, x) has law invariant by space-translation). Multiplying the σk’s by a constant,
we may have

Q (0) = I d.

In the sequel, to clarify some aspects of the exposition, we assume

σk = |k|−α

for some

α > 1

(needed to have condition (3)).

Remark 1 The restriction α > 1, or more precisely the condition (3), seems to be
essential everywhere to give ameaning to our objects. However, since we are looking
for a regularizing noise, we cannot exclude the possibility that better regularizing
properties would be true for a more singular noise, namely when condition (3) is not
true. We do not have any precise argument in support of this idea, only the fact that
for SPDEs with additive noise, the case of cylindrical, or space-time, noise is the
one where the better regularization properties occur, see for instance Da Prato et al.
(2013). Here however, in the case of Stratonovich multiplicative noise of transport
type, opposite to the additive noise case of Da Prato et al. (2013), there is even a
problem of interpretation of the stochastic term; it has a classical meaning only under
condition (3). The recent frequent use of renormalization ideas to define rigorously
apparently meaningless quantities in the realm of SPDEs arise the question whether
there is a suitable - possibly renormalization - procedure which allows to define our
equations also when condition (3) is replaced by some weaker one.
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4.3 Itô-Stratonovich correction and definition of solution

Consider the formal Eq. (1). Let us clarify the meaning of the Stratonovich term by
reformulating it in Itô form. Formally

∇ξ ◦ ∂W

∂t
= ∇ξ

∂W

∂t
+ 1

2
�ξ. (4)

Indeed, for j = 1, 2 we have

∑
k

σkek · ∇ξ ◦ dWk =
∑
k

σkek · ∇ξdWk + 1

2

∑
k

∑
j

σke
j
k (x) d

[
Wk, ∂ jξ

]
t

∂
(
∂ jξ

)

∂t
=

∑
k ′

σk ′∂ j (ek ′ · ∇ξ) ◦ dWk ′

dt
+ BV -terms = 0

d
[
Wk, ∂ jξ

]
t = σk∂ j (ek · ∇ξ) dt

∑
k

∑
j

σke
j
k d

[
Wk, ∂ jξ

]
t =

∑
k

∑
j

σke
j
kσk∂ j (ek · ∇ξ) dt

=
∑
k

∑
i, j

σ2
k e

j
k

(
∂ j e

i
k∂iξ + eik∂i∂ jξ

)
dt

We have

∑
k

σ2
k e

i
k (x) e j

k (x) = Qi j (0) = δi j

hence

∑
k

∑
i, j

σ2
k e

j
k e

i
k∂i∂ jξ = �ξ.

As to the other term, it is zero, because, for each i = 1, 2,

∑
k

∑
j

σ2
k e

j
k (x) ∂ j e

i
k (x) =

∑
j

∂ j

(∑
k

σ2
k e

i
k (x) e j

k (x)

)
=

∑
j

∂ j Q
i j (0) = 0.

This computation, yielding (4), is not new; see for instanceCoghi and Flandoli (2016)
for more details.

Thus a more plain formulation of Eq. (1) is
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∂ξ

∂t
+ v · ∇ξ = ∇ξ

∂W

∂t
+ 1

2
�ξ

v = (1 − �)−γ/2 curl−1 ξ

Let S2 (ξ0) be the class of adapted processes ξ such that

sup
t∈[0,T ]

‖ξ (t)‖L2 ≤ ‖ξ0‖L2

with probability one. Motivated by the previous computations, we give the following
definition of solution.

Definition 2 We call weak solution of class S2 (ξ0) of Eq. (1) a filtered probabil-
ity space (�, F, Ft , P), a noise W (t, x) on this probability space satisfying the
assumptions of Sect. 4.2, an adapted process (ξ (t))t∈[0,T ] of class S2 (ξ0) such that

〈ξt ,φ〉 − 〈ξ0,φ〉 −
∫ t

0
〈ξs , v · ∇φ〉 ds = −

∑

k∈Z2\{0}
σk

∫ t

0
〈ξs , ek · ∇φ〉 dWk

s + 1

2

∫ t

0
〈ξs ,�φ〉 ds

for all φ ∈ C∞, where v = (1 − �)−γ/2 curl−1 ξ.

4.4 Reduction to a Linear Equation by Girsanov

The idea used here is due, in the opinion of the author, to Paul Malliavin, although a
precise reference cannot be given; the author became aware of it from Malliavin at
the time when the paper Cruzeiro et al. (2007) was written.

Girsanov theorem gives us the following result which looks very close to the
solution of the open problem.

Lemma 3 Assume that the pair (α, γ) satisfies

1 < α ≤ 1 + γ.

Then, in the class S2 (ξ0), equation is equivalent in law to the linear SPDE

dξ = ∇ξ ◦ dW̃ = 1

2
�ξdt + ∇ξdW̃ (5)

where W̃ is a new random field with the properties listed in Sect.4.2. Moreover, a
weak solution exists for both equations.

We do not give all the details of the proof but only the idea. Assume v is a solution.
Let W̃ k be the processes defined as
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W̃ k
t := Wk

t +
∫ t

0

(
1

σk

∫
v (s, x) ek (x) dx

)
ds

so that we have

v (t, x) +
∑

k∈Z2\{0}
σkek (x)

dWk

dt
=

∑
k∈Z2\{0}

σkek (x)
dW̃ k

dt
.

Novikov condition for Girsanov would be satisfied if the random variable

∫ T

0

∑
k∈Z2\{0}

1

σ2
k

∣∣∣∣
∫

v (s, x) ek (x) dx

∣∣∣∣
2

ds (6)

is exponentially integrable, multiplied by a suitable constant. From the assumption
σk = |k|−α we have

∑
k∈Z2\{0}

1

σ2
k

∣∣∣∣
∫

v (s, x) ek (x) dx

∣∣∣∣
2

∼
∑
k

|k|2α |̂v (s, k)|2 ∼ ‖v (s, ·)‖2Wα,2

where ∼ means that the expressions control each other by a constant and v̂ (s, k)
denoted Fourier transform of v (s, x) in x . For ξ ∈ S2 (ξ0) we have

sup
t∈[0,T ]

‖v (t)‖W 1+γ,2 ≤ C ‖ξ0‖L2 .

Hence we have

sup
t∈[0,T ]

‖v (t)‖Wα,2 ≤ C ‖ξ0‖L p

under the assumption α ≤ 1 + γ and therefore the random variable in (6) is not only
exponentially integrable, it is even bounded above with probability one. Hence we
may apply Girsanov. The proof of the equivalence claim of the lemma is based on
this argument.

Concerning the existence claim, thanks to the property div ek (x) = 0 and the a
priori estimate supt∈[0,T ] ‖ξ (t)‖L2 ≤ ‖ξ0‖L2 which holds true for the linear equation,
we can prove existence for the linear equation in S2 (ξ0) (weak convergence is suf-
ficient to pass to the limit) and thus also for the nonlinear one. Notice that, for the
linear equation, also strong existence is true.
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4.5 Discussion

Until now we have rigorously formulated the stochastic Euler equation and we have
“transformed” it into a linear transport equation, when the pair (α, γ) - which char-
acterize the noise and the regularization - satisfies

1 < α ≤ 1 + γ.

Moreover, we impose

γ ≤ 1

otherwise the deterministic problem is already well posed. This implies that γ, the
regularization parameter of the modified Euler equation (2), must satisfy

0 < γ ≤ 1

(in particular it cannot be equal to zero; the true Euler equation is ruled out) and α,
the degree of regularity of the noise, must satisfy

1 < α ≤ 2.

It remains to prove a uniqueness result for the linear transport equation, for some
1 < α ≤ 2 (the parameter γ does not enter the linear equation). If we discover α ∈
(1, 2] such that uniqueness holds for the linear SPDE, then we may choose γ ≤ 1
such that α ≤ 1 + γ, and the pair (α, γ) so determined satisfies all conditions.

Let us give two uniqueness results for the linear SPDEwhich however, as we shall
see, are not sufficient to complete the proof.

4.6 Uniqueness by Commutators

Assume we can prove that, given two solutions ξ(1)
t , ξ(2)

t of the linear equation (5)
with initial conditions ξ(1)

0 , ξ(2)
0 , the difference ξ(1) − ξ(2) satisfies a bound like

sup
t∈[0,T ]

∥∥∥ξ(1)
t − ξ(2)

t

∥∥∥
L2

≤
∥∥∥ξ(1)

0 − ξ(2)
0

∥∥∥
L2

. (7)

Then pathwise uniqueness would hold. Unfortunately, we may prove this fact under
a restriction on α which spoils the final result (see the last sentences of the previous
section):

Lemma 4 If
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α > 2

then (7) is true.

In order to prove (7) we must be able to compute d
∫

ξ2t dx when ξt satisfies in the
weak sense Eq. (5) and supt∈[0,T ] ‖ξt‖L p ≤ C with probability one for some constant

C > 0, (then we apply this to ξt = ξ(1)
t − ξ(2)

t ). The problem is that we only know
an identity for 〈ξt ,φ〉 over test functions φ:

〈ξt ,φ〉 − 〈ξ0,φ〉 −
∑
k

σk

∫ t

0
〈ξs, ek · ∇φ〉 dWk

s = 1

2

∫ t

0
〈ξs,�φ〉 ds.

One possibility is to compute

d 〈ξt , ek〉2

and then take the sum in k, but the rigorous control of this computation is tricky.
Another possibility is to mollify and make the computations. The difficulty is similar
to the one for deterministic transport equations of the form ∂ξ

∂t + b · ∇ξ = 0, where
it is not sufficient to assume div b = 0 without any regularity, to have uniqueness
(recall the theory of DiPerna and Lions (1989); Ambrosio (2004)).

Let ξ ∈ Sp (ξ0) be a weak solution of

dξ +
∑
k

σkek · ∇ξdWk = 1

2
�ξdt.

We have, for ξε = θε ∗ ξ,

dξε +
∑
k

σkek · ∇ξεdW
k = 1

2
�ξεdt +

∑
k

σk R
k
ε dW

k

where

Rk
ε = ek · ∇ξε − θε ∗ (ek · ∇ξ) .

For each single k, we have Rk
ε → 0 in quite a strong way. The question is about the

series. More precisely, assume we perform the computation
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dξ2ε = 2ξεdξε + d [ξε]

= −
∑
k

σkek · ∇ξ2ε dW
k

+ 2ξεν�ξεdt

+ 2
∑
k

σkξεR
k
ε dW

k

+ d [ξε] .

Integrating, the first term disappears and the second is negative. It remains to under-
stand

∑
k

σk

∫ t

0

(∫
ξεR

k
ε dx

)
dWk

s

and
∫ t
0 [ξε]s ds. Let us discuss the first one. Unfortunately we have

∫
ξεR

k
ε dx ∼ |k|

as one can realize from the computations

Rk
ε (x) = ek (x) · ∇

∫
θε (x − y) ξ (y) dy −

∫
θε (x − y) ek (y) · ∇ξ (y) dy

=
∫

(∇θε) (x − y) (ek (x) − ek (y)) ξ (y) dy −
∫

θε (x − y) div ek (y) ξ (y) dy

=
∫

|x − y| (∇θε) (x − y)
ek (x) − ek (y)

|x − y| ξ (y) dy

and the fact that |x − y| (∇θε) (x − y) is of order one and ek (x)−ek (y)
|x−y| is of order |k|.

Therefore we need

∑
k

σ2
k |k|2 < ∞

namely α > 2.

4.7 Wiener Uniqueness

The problem of uniqueness for the linear equation

∂ξ

∂t
+

∑
k

σkek · ∇ξ ◦ dWk

dt
= 0
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is not new: see Le Jan–Raimond (2002). Using Wiener-chaos decomposition, they
prove uniqueness in the class of solutions adapted to the Brownian motions. This
proof has been adapted byMaurelli (2011) to stochastic transport equations with non
regular drift and a variant, for such a case, has been developed by Fedrizzi–Neves–
Olivera (2017). We follow here, for the case of irregular diffusion coefficients, the
idea of proof of Fedrizzi et al. (2017); see also Flandoli and Olivera (2017).

The limitation of these approaches is that it gives us only “Wiener uniqueness”.

Lemma 5 If

α > 1

and ξ(1)
t , ξ(2)

t are two solutions of Eq. (5) corresponding to the sameBrownianmotions(
Wk

)
and adapted to them, then ξ(1)

t = ξ(2)
t .

Proof For every n ∈ N and h ∈ L2 (0, T ;Rn) consider the stochastic exponential

e f (t) = exp

(∫ t

0
hs · dW (n)

s − 1

2

∫ t

0
|hs |2 ds

)

where W (n) = (
W 1, ...,Wn

)
. Recall that

de f (t) = e f (t) ht · dW (n)
t .

If ξ is a weak solution of the equation

dξ +
∑
k

σkek · ∇ξdWk = 1

2
�ξdt

with ξ0 = 0 then, over test functions that we omit for simplicity,

d
(
e f (t) ξt

) = (
e f (t) ξt

)
ht · dW (n)

t + e f (t)

(
1

2
�ξdt −

∑
k

σkek · ∇ξdWk

)

+ e f (t) ht · (σkek · ∇ξ)k=1,...,n dt

hence E
[
e f (t) ξt

]
is a weak solution of the deterministic parabolic equation

∂

∂t
E

[
e f (t) ξt

] = 1

2
�E

[
e f (t) ξt

] + Bk · ∇E
[
e f (t) ξt

]

for a suitable new regular drift Bk . The advantage of this approach is that this equation
is truly parabolic. With proper arguments one can show that E

[
e f (t) ξt

] = 0, being
E

[
e f (0) ξ0

] = 0. �
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Unfortunately, the result of this lemma is not applicable to Euler equation (1).
Indeed, assume ξ(1)

t , ξ(2)
t are two solutions of Eq. (1). They are also solutions of

Eq. (5) with respect to new stochastic processesW (1) (t, x) ,W (2) (t, x). A part from
the fact that they are different - while the lemma requires they are equal, but maybe
this detail can be overcome by the concept of solution in law - the main limitation
is that ξ(i)

t is not adapted to W (i) (t, x). The combination of Girsanov and Wiener
uniqueness does not work.

4.8 The SDE with that Noise

Let us consider the characteristics associated to Eq. (1) or (5):

dXt =
∑
k

σkek (Xt ) ◦ dWk
t .

The aim of this section is simply to interpret the conditions α > 2 and 1 < α < 2,
found above, in terms of solvability of this equation. This may be relevant for other
potential approaches to the SPDEs, not discussed further here.

As in Coghi and Flandoli (2016), one can show that under our assumptions they
are equivalent to

dXt =
∑
k

σkek (Xt ) dW
k
t . (8)

If α > 2, this equation is well posed in the classical sense. An easy prototype of
computation to see this is the following one. Assume Xx

t , X
y
t are solution associated

to the initial conditions x, y. Then

Xx
t − X y

t = x − y +
∑
k

σk

∫ t

0

(
ek

(
Xx
s

) − ek
(
X y
s

))
dWk

s

E
[∣∣Xx

t − X y
t

∣∣2] ≤ 2 |x − y|2 +
∑
k

σ2
k

∫ t

0
E

[∣∣ek
(
Xx
s

) − ek
(
X y
s

)∣∣2] ds

≤ 2 |x − y|2 +
∑
k

σ2
k |k|2

∫ t

0
E

[∣∣Xx
s − X y

s

∣∣2] ds

so we may apply Gronwall lemma if
∑

k σ2
k |k|2 < ∞, namely when α > 2. Path-

wise uniqueness and existence of stochastic flows can be proved by this or similar
computations.

What happens forα ≤ 2 is less clear. Due to certain similarities of Eq. (5) with the
problem studied by Le Jan–Raimond (2002), it is perhaps possible to establish some
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properties for α ≤ 2 along the lines of that work. This is however a quite delicate
issue, not treated here.

4.9 Conclusions

The previous computations show that a suitable regularization of the 2-dimensional
Euler equations is a goodexamplewhere one could investigate the efficacyof different
ideas. It looks at the boundary of what can be done.

Let us summarize some of the ideas discovered above.
The case α > 2 could be called “regular noise”, giving well posedness of char-

acteristics. Girsanov approach requires α ≤ 1 + γ; if α > 2 then we must have
γ > 1, but we argued that for γ > 1 the deterministic regularized Euler equations
have already a unique solution. Maybe other approaches, different from Girsanov,
for instance based on characteristics, have a chance to work without the condition
α ≤ 1 + γ and thus for some γ ≤ 1. Recall that strong uniqueness for the linear
SPDE holds in this case (independently of γ).

The case 1 < α ≤ 2 is very intriguing because it allows us to choose a γ ≤ 1 such
that α ≤ 1 + γ and thus Girsanov approach works. Wiener uniqueness for the linear
SPDE also work when 1 < α ≤ 2, but it is not sufficient, because Girsanov requires
to be paired to a uniqueness statement for solutions not adapted to the noise. At the
Lagrangian level, notice that it is a very delicate case, 1 < α ≤ 2, because diffusion
without hitting holds.
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