CHAPTER 2

Double- and Single-Sided Risk Measures

2.1  DOUBLE-SIDED MEASURES OF VOLATILITY,
VARIANCE, AND BETA

Traditional specifications of volatility, variance, covariance, and beta form
the basis of the CAPM and related branches of finance.! Since portfolios
are typically constructed with multiple assets or asset classes, it is useful
to speak of covariance between returns on an asset (or an entire asset
class) and market-wide returns:

o(a,m) =cov(a,m) = E[(xg — tha) Xm — m)] = ((Xa — ta) Xm — m))

where 2 indicates the asset or asset class, m indicates the market as a
whole, x, indicates returns on either the asset-specific or the market-wide
portfolio (p € {a,m}), and pu, indicates mean returns on either portfolio.
For compactness in notation, I shall henceforth use angle brackets, (), to
express the expectation operator, or mean:

(f(0)) = E[f (0] = pre

The variance of a single distribution can be understood as a special
case of covariance, where the two variables are identical:

op.p) = apz =cov(p,p) = ((xp — p) (xp — 11p)) = <(x,, - /‘LP)2>
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Volatility, or standard deviation, is the positive square root of variance:

2
Op = <(xp = i) >
Normalizing covariance according to the product of asset-specific and
market-wide volatility yields the correlation between those returns:
__cov(a,m) ((Xa = wa)Xm — m))

P((L m) - -
%aom = 1)) o — m)?)

Squaring the correlation yields the coefficient of determination, more
popularly known as 72, or 7-squared:

)2

2 _ 2 _ ((Xq — a)Cm — m)
r° = p(a,m) (e — ,Ma)2><(xm — Mm)2>

The product of (1) the ratio of asset-specific volatility to market-wide
volatility and (2) the correlation between returns on that asset and
market-wide returns is the beta of that asset:

L ou ou cov@m)  cov(@am)  ((a— o) G — o))
o= ™ = G owom o (G — tm)?)

When beta is broken down into these components, it is readily under-
stood as correlated relative volatility.?

2.2  SINGLE-SIDED RISk MEASURES

Traditional, two-tailed risk measures give dangerous guidance during
bear markets because they implicitly assume that returns are normally
distributed and because they treat upside and downside volatility as equal
constituents of risk.> Skewed returns and fatter-than-normal tails reveal
departures from normality in, respectively, the third and fourth moments
of the distribution of returns.*

Beyond this basic descriptive case against the conventional CAPM, a
persuasive behavioral model of finance begins with the recognition that
risk on either side of expected returns may exert pressure of different
sorts and unequal magnitudes on investor psychology.® Investors “are
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subject to sentiment,” or “belief[s] about future cash flows and invest-
ment risks that [are] not justified by the facts at hand.”®

Theories of behavioral finance become necessary only in the presence
of uninformed investors and noise traders.” A “market composed solely
of information traders” is a market “where price efficiency and the CAPM
hold,” where “[r]isk premia are determined solely by beta and distribu-
tion of returns on the market portfolio,” and where option prices® and
the term structure of bonds® follow mathematically beautiful models
reflecting comparably rational assumptions about those corners of the
financial marketplace.!? Although “noise trad[ing] weaken[s] the relation
between security returns and beta,” it also “create[s] a positive condi-
tional correlation between abnormal returns and beta.”!! Betting against
noise traders through arbitrage is theoretically possible, but expensive,
risky, and often ineffective in practice.!? As behavioral anomalies exert
“steady and forceful” pressure upon “the twin paradigms of price effi-
ciency and the CAPM,” a corresponding need arises for a “behavioral the-
ory of capital asset prices and the volume of trade.”!3

As an outgrowth of Louis Jean-Baptiste Bachelier’s early twentieth-
century work,'* mathematical finance has served as the leading embodiment
of econophysics and its deepest reservoir of scientific insights. The earliest
approaches to mathematical finance assumed that asset pricing proceeds
according to the random walk, that Brownian motion and the Wiener pro-
cess suffice to describe the cross section of stock prices.'®> Fama and French
identified predictable departures from such beautiful but brittle modeling
of complex financial behavior. In varying degrees of departure from Eugene
Fama’s own efficient market hypothesis, temporally and spatially imperfect
diffusion of market information may generate significant but systematic
violations of the random walk in ways that carefully bifurcated, “baryonic”
subcomponents of beta can measure. Mindful that the distinct psychology
of upside gain and downside loss may imply distinct relationships of risk to
asset pricing on either side of expected returns, I now turn to a considera-
tion of single-sided risk measures.

The conventional CAPM’s descriptive and behavioral pitfalls have
been recognized, if not effectively addressed, since the earliest days of
mathematical finance.!® In grudging acceptance of the computational
limitations of their time, the pioneers of mathematical finance adopted
traditional, two-tailed risk measurements as a statistical shortcut.!” Vastly
improved computation and greater mathematical sophistication have
created multiple ways to measure risk on either side of a target return.
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Contemporary financial literature speaks freely of semivariance, semide-
viation, semicovariance, semicodeviation, and single-sided beta. Leading
contributions include those by William Hogan and James Warren
(1974),'8 Vijay Bawa and Eric Lindenberg (1977),' and W.V. Harlow
and Ramesh Rao (1989).20 Postmodern Portfolio Theory: Navigating
Abnormal Markets and Investor Bebavior, another book in this series,
devotes greater attention to diverse descriptions of single-sided risk.?!

This book’s baryonic model of beta will adopt Javier Estrada’s 2002
specification of conditional covariance on the downside of expected
return as the product of #wo conditional shortfalls: that of returns on an
asset relative to its mean, and that of the market-wide portfolio relative
to expected market-wide returns:??

o_(a,m) = {(xg — fa | Xa < ta) - Xm — tm | Xm < tm))

where () again is the expectation operator. Estrada’s definition of downside
covariance satisfies the reflexive property that characterizes ordinary vari-
ance: the covariance of returns on a specific asset and market-wide returns
is equal to the covariance of market-wide returns and returns on that
asset, cov(a, m) = cov(m, a).?® This specification avoids the “problematic”
suggestion “that covariance between securities 7 and j is different from”
covariance “between securities 7 and 2.72*

To facilitate the calculation of conditional, single-sided versions of
deviation, variance, covariance, correlation, and beta, I adopt the organi-
zational logic of Javier Estrada’s downside risk framework,?® as extended
by Andrew Ang’s recognition of “relative upside beta” and “relative
downside beta.”?% Specifying semivariance and semideviation carries the
added benefit of generalizing conventional CAPM and reducing that
model into a special case of mean-semivariance analysis.?” At a minimum,
projections based on semivariance and semideviation can do no worse
than those based on conventional CAPM as a special case.?® We define
upside and downside covariances between two portfolios, p and g, as
conditional functions:

o+ (p,q) = cov(p,q | xp > pp,xg > ,uq)
o-(p.q) = cov(p.q | xp < tp.Xg < Hq)
In the case of downside covariance, risk increases only when &oth portfo-

lios fail to meet their mean returns: x, < pp, x4 < fig.2° Downside covar-
iance as a measure of risk increases only when asset-specific returns fall
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below their mean and returns on the market as a whole falls below the
market-wide mean.
It may be easier to understand semicovariances in terms of expected
values:
o4 (p,q) = (max[(x, — up),0] - max|[(x, — pq),0])
o-(p,q) = (min[(x, — up),0] - min[(x; — 1q),0])

Upside or downside semivariance within a single portfolio is merely a
special case of the corresponding form of semicovariance:

Up2,+ =var(p | xp > wp) = <max[(x,, - “p)’0]2>
Oy = var(p | x, < p) = <min[(xp - /*p)’o]2>

Taking the square root of these values immediately yields upside and
downside semideviations:

opt = \/var(p | xp > 1) = \/<max[(xp - /‘LP)’O]2>

Op— =1/ var(p | xp < pp) = \/<min[(xp - Mp)’0]2>

Upside and downside semicovariances between asset-specific and mar-
ket-wide portfolios are other special cases of general semicovariance:

oy(a,m) =cov(a,m | xg > g, Xm > Um)
= (max[(xa — ia), 0] - max[(xm — m),0])
o_(a,m) =cov(a,m | x; < g, Xm < m)
= (min[(xg — f44), 0] - min[(x — ), 01)
Dividing each form of semicovariance among asset-specific and mar-

ket-wide portfolios by the product of the corresponding form of semide-
viation produces upside and downside semicorrelations:

ot+(a,m) covy (a,m)
P+ (av m) = =
Oa.+ Om.+ Oa.+ Om.+

(max[(xg — fq),0] - max[(x,; — pm),0])
(max[(xq — 11a),01%) - (max[(xm — ttm).01*)

p+(a,m) =
v
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o_(a,m) _ cov_(a,m)

p—(a,m) =
Oq,— Om,— Oq,—Om,—

(min[(xu — a), 0] - min[(xm — Hm), o7
V/ (minl(xg — 120).01) - (min{Con — ). OF)

Squaring these values produces the coefficient of determination, or
7-squared, above and below the mean return:

p—(a,m) =

(max[(xq — 1ta), 0] - max[(xm — ), 01)>
max[(xg — ia), 01%) - (max[(xm — pm), 01%)

i =pram)’ = <

2 = p(amy? = {minlGa = pa). 01 - minlCo — ). 0D
- (min[(xy — 1£4),01%) - (min[(xy — pm). 01*)

Reassembling these single-sided measures into upside and downside
beta is now a straightforward exercise in applying the basic definition of
beta as correlated relative volatility:3°

Ty = T V@) ov@m) (G = ta) G — i)
,Ba = Gm,O am) = o . P = 0',%, = <(xM _ 'um)2>

Multiplying upside and downside semicorrelations by the ratio of upside
or downside semideviation for the asset-specific portfolio to upside or
downside semideviation for the entire market, as appropriate, produces
upside and downside beta:

Ou+ 04+ O4(a,m) covy (a,m)
B+ = ——p+(a,m) = ’ = B
Om,+ Om+ Oa+O0m+ Om,+

(max[(xqs — ta), 0] - max[(xy — tm),01)

Pr= (max[ (o — ). OF)
b = Oy — o (a.m) = 04— O- (a,m) _ cov_2(a, m)
Om,— Om,— Oaq—Om,— Opm,—
5 = (min[(xg — ia), 0] - min[(xm — pm), 01)

{min[ (X — pm), 01?)
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2.3 TuHE TRIGONOMETRY OF SEMIDEVIATION

A surprisingly easy and elegant generalization connects measures of semi-
deviation to trigonometry.3! Some sources misleadingly describe the
relationship between upside and downside volatility as one of the sim-
ple arithmetic although “the lower semideviation” is equal to “half the
standard deviation” in a purely symmetrical distribution of returns.3?
Proper specification of semivariance and semideviation demonstrates oth-
erwise. Upside and downside semideviations are related to standard devi-
ation according to the Pythagorean theorem.

Recall the general definitions of upside and downside semicovariances
between two portfolios, p and ¢

o+ (p.q) =cov(p.q | xp > pp,xg > [ig)
Gf(P’CI) = COV(p,q | Xp < Up,Xq < 'u’q)

It should be evident from this definition that upside and downside covar-
iances are straightforwardly additive.3® In other words, overall covariance
is the sum of upside and downside covariances:

cov(p,q) = o (p,q) = o4 (p,q) +0-(p,q)

Since the variance of a single distribution is merely a special case of
covariance, where both variables are the same, the same additive relation-
ship holds for upside and downside semivariances:

2 _ 2 2
COV(p’p) = Gp = Up,+ +o —

Volatility in any of its guises is the positive square root of the cor-
responding form of variance. This insight confirms what should be evi-
dent from the foregoing equation: The relationship between upside and
downside semideviations is exactly that of the legs of a right triangle to
the hypotenuse under the Pythagorean theorem. The sum of the squares
of the upside and downside semideviations is equal to the square of
standard deviation, or overall variance. Or more simply:

2_ 2 2
o —a_+a+

o =1/o2 —i—cnzr
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The applicability of the Pythagorean theorem to semideviation sub-
jects single-sided measures of volatility to the entire apparatus of
trigonometry. This property proves extremely useful for evaluating asym-
metrical financial returns. Trigonometric tools enable us to evaluate
the relationship between upside (o,) and downside (0_) semideviations
in interesting and useful ways. To the extent that financial returns are
negatively skewed,?* we may expect downside semideviation to exceed its
upside counterpart.

The ratio of upside to downside semideviation provides a crude
gauge of asymmetry in volatility: o4 /o_. The Pythagorean relationship
between standard deviation and upside and downside semideviations
enables us to express asymmetry in volatility in angular terms. The angle
formed by the downside semideviation and the standard deviation, 6, can
be derived from the ratio between semideviation and standard deviation:

o_
cosf = —
o
6 = cos™! (G—_)
o

Equivalently, in terms making use of upside semideviation:

. 0. _ O.
6 = sin~! (—Jr) = tan~! <+)
o o_
2.4  THE BEHAVIORAL IMPLICATIONS OF SINGLE-SIDED
Risk MEASURES

The development of single-sided risk measures—upside and downside
volatility, covariances, and correlations—facilitates the testing of hypoth-
eses reflecting market and behavioral factors that may change when
returns cross above or below critical thresholds. Although the original
impetus for devising single-sided risk measures arose from the intuition
that downside risk is the true driver of investor expectations, these meas-
ures apply with equal force to either side of mean returns.

To name just one possibility, the explicit specification of upside volatil-
ity, covariance, and correlation in § 2.2 supports research into the risks
that lurk when returns exceed investor expectations. Perhaps surprisingly,
upside potential poses a behavioral risk in its own right. Investor prefer-
ences for positively skewed investments offering lottery-like payouts pose
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a particularly treacherous pitfall.3® Tennessee Williams called this phe-
nomenon “the catastrophe of success.”3® Investors and institutions shred
their investment plans in the presence (or even the mere anticipation) of
upside gain.3”

Other variations on the theme of the catastrophe of success abound.
Properly measured upside volatility may improve portfolio performance.
For instance, one source promotes upside semideviation as a measure of
active portfolio managers’ performance that does not punish performance
exceeding a benchmark rate of return.3® This criticism is often leveled at
the “information ratio,” which is “the ratio of the expected annual resid-
ual return to the annual volatility of the residual return.”3? In an exercise
that may be colorfully described as beta hedging, other sources encour-
age portfolio managers to combine stocks with relatively low downside
beta (to temper exposure to declining markets) and stocks with relatively
high upside beta (to capture potential gains in rising markets).*

Econophysics is not explicitly behavioral. At least in the first instance,
econophysics seeks answers in economic fundamentals before embrac-
ing explanations resting exclusively on human psychology. Nevertheless,
certain applications of econophysics do have behavioral implications.
Financial markets are descriptively abnormal, and the investors whose
preferences drive those markets are notoriously irrational. We should not
expect the conventional capital asset pricing model, or any of its sym-
metrically specified components, to provide an accurate description of
financial markets. A fortiori, any expectation that symmetrical beta mod-
els irrational investor behavior is even more forlorn.

Single-sided risk measures alleviate the pressure on mathematical
finance to predict asset prices and to anticipate (if not neutralize) inves-
tor psychology. Devising distinct measures of upside and downside vol-
atility, covariances, and correlations facilitates the testing of hypotheses
reflecting market and behavioral factors that may change as returns cross-
critical thresholds.

Risk measures with clear physical interpretations provide readily
understandable, easily quantifiable, and statistically verifiable support or
contradiction for intuitions about risk management and portfolio design.
The range of potential applications includes the identification and con-
tainment of systemic risk among interrelated financial institutions.*! A
quest for the psychological roots of financial behavior requires the elabo-
ration of even more comprehensive approaches, such as prospect theory
and a generalized higher-moment capital asset pricing model. Examining
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the psychophysics of finance thus leads to a more complete formulation
of the econophysics of beta.

Remarkably, this book’s approach to econophysics provides persua-
sive, perhaps even compelling, explanations for anomalies such as Fama
and French’s three-factor model, the low-volatility anomaly, the equity
premium puzzle, and short-term price continuation anomalies such as
momentum and post-earnings announcement drift without resort to
more sophisticated tools such as a generalized higher-moment capital
asset pricing model,*? the Yilmaz-Diebold model of volatility transmis-
sion,*3 error correction through cointegration,** or wavelet analysis.*
The econophysics of baryonic beta opens the door to more explicitly
behavioral accounts of abnormal markets and irrational investors, such
as prospect theory,*¢ SP/A theory,*” and behavioral portfolio theory.*8
Baryonic beta also offers considerable value in its own right. Bifurcating
beta into its constituent “subatomic” particles offers great explanatory
power merely through a fuller specification of a two-moment model
known to all academic experts, requiring no more algorithmic firepower
than is available to most financial professionals.
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