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Abstract. In this paper, we address the problem of recognizing domain-
specific queries from general search engine’s query log. Unlike most
previous work in query classification relying on external resources or
annotated training queries, we take query log as the only resource for
recognizing domain-specific queries. In the proposed approach, we repre-
sent query log as a heterogeneous graph and then formulate the task of
domain-specific query recognition as graph-based transductive learning.
In order to reduce the impact of noisy and insufficient of initial anno-
tated queries, we further introduce an active learning strategy into the
learning process such that the manual annotations needed are reduced
and the recognition results can be continuously refined through inter-
active human supervision. Experimental results demonstrate that the
proposed approach is capable of recognizing a certain amount of high-
quality domain-specific queries with only a small number of manually
annotated queries.

Keywords: Query classification · Active learning · Transfer learning ·
Search engine · Query log

1 Introduction

General search engines, although being an indispensable tool in people’s infor-
mation seeking activities, are still facing essential challenges in producing sat-
isfactory search results. One challenge is that general search engines are always
required to handle users’ queries from a wide range of domains, whereas each
domain often having its own preference on retrieval model. Taking two queries
“steve jobs” and “steve madden” for example, the first query is for celebrity
search, thus descriptive pages about Steve Jobs should be considered relevant;
whereas the second one is for commodity search, thus structured items of this
brand should be preferred. Therefore, if domain specificity of search query was
recognized, a targeted domain-specific retrieval model can be selected to refine
search results [1,2]. In addition, with the increasing use of general search engines,
search queries have become a valuable and extensive resource containing a large
number of domain named entities or domain terminologies, thus domain-specific
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query recognition can be viewed as a fundamental step in constructing large
scale domain knowledge bases [3].

Domain-specific query recognition is essentially a query classification task
which has been attracting much attention for decades in information retrieval
(IR) community. Many traditional work views query classification as a supervised
learning problem and requires a number of manually annotated queries [4,5].
However, training queries are often time-consuming and costly to obtain. In order
to overcome this limitation, many studies leveraged both labeled and unlabeled
queries in query classification [6,12]. The intuition behind is that queries strongly
correlated in click-through graph are likely to have similar class labels.

In this paper, inspired by semi-supervised learning over click-through graph
in [6,7], we propose a new query classification method that aims to recognize
queries specific to a target domain, utilizing search engine’s query log as the only
resource. Intuitively, users’ search intents mostly remain similar in short search
sessions and most pages concentrate on only a small number of topics. This
implies the queries frequently issued by same users or retrieve same pages are
more likely to be relevant to the same domain. In other words, domain-specificity
of each queries in query log follows a manifold structure. In order to exploit the
intrinsic manifold structure, we represent query log as a heterogenous graph with
three types of nodes, i.e., users, queries and URLs, and then formulate domain-
specific query recognition as transductive learning on heterogenous graph.

The performance of graph-based transductive learning is highly rely on the
set of manually pre-annotated nodes, named as seed domain-specific queries in
the domain-specific query recognition task. We further introduce a novel active
learning strategy in the graph-based transductive learning process that allows
interactive and continuous manual adjustments of seed queries. In this way, the
recognition process can be started from an insufficient or even noisy initial set of
seed queries, thus alleviating the difficulty of manually specifying a complete seed
set for recognizing domain-specific queries. Moreover, through introducing inter-
active human supervision, the seed set generated during the recognition process
tend to be more informative than the one given in advance, and is beneficial to
improve the recognition performance.

We evaluate the proposed approach using query log of a Chinese commer-
cial search engine. We provide in-depth experimental analyses on the proposed
approach, and compare our approach with several state-of-the-art query classifi-
cation methods. Experimental results conclude the superior performance of the
proposed approach.

The rest of the paper is organized as follows. Section 2 describes the graph
representation of query log. Section 3 gives a formal definition of domain-specific
query recognition problem together with the details of the proposed approach.
Section 4 presents the experimental results. We discuss related work in Sect. 5
and conclude the paper in Sect. 6.
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2 Graph Representation of Query Log

In modern search engines, the interaction process between search users and
search engine is recorded as so-called query log. Despite of the difference between
search engines, query log generally contains at least four types of information:
users, queries, search results w.r.t. each query and user’s click behaviors on
search results. Table 1 gives an example of a piece of log that is recorded for an
interaction between a user and search engine.

In this work, we make use of heterogenous graph, as shown in Fig. 1, to
formally represent the objects involved in the search process. More specifically,
a tripartite graph composed of three types of nodes, i.e., users, queries and URLs
is constructed according to the interaction process recorded in query log. There
are two types of links (shown by dashed line and dotted line) in the tripartite
graph that indicate query issuing behavior of search users and click-through
behavior between queries and URLs, respectively. In addition, the timestamps
of query issuing behaviors are attached on each links between the corresponding
user and query.

Based on the graph representation, the inherent domain-specificity mani-
fold structure in query log implies that the strongly correlated queries, through
either user nodes or URL nodes, are highly likely to be relevant to the same
domain. Therefore, with a set of manually annotated domain-specific queries

Table 1. Query log example

Field Content Description

UserId bc3f448598a2dbea The unique identifier of the search user

Query piglet prices sichuan The query issued by the user

URL alibole.com/57451.html URL of the webpage retrieved by the query

Timestamp 20111230114640 The time when the query was issued

ViewRank 4 The rank of the URL in search results

ClickRank 1 The rank of the URL in user’s click sequence

Fig. 1. User-Query-URL tripartite graph representation
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(e.g., depicted as a SEED gray rectangle in Fig. 1), the domain-specificity of
other queries can be derived through transductive learning on the tripartite
graph (e.g., in Fig. 1, the gray level of each nodes indicates the mass of domain-
specificity propagated from the seed node).

In the next section, we will describe the graph-based transductive learning
process in more details.

3 Domain-Specific Query Recognition

3.1 Problem Definition

Formally, let Gtri = 〈U ∪ Q ∪ L,E(UQ) ∪ E(QL)〉 be the tripartite graph of query
log, where U = {u1, · · · , u|U |}, Q = {q1, · · · , q|Q|} and L = {l1, · · · , l|L|} denote
the set of search users, queries and click-through URLs, respectively.

The links in E(UQ)∪E(QL) are weighted according to strength of the relation.
Intuitively, if a user repeatedly issued the same query or only a few users issued
that query, the relation between them would be strong. We thus calculate the
weight of link between ui ∈ U and qj ∈ Q as follows:

W
(UQ)
i,j =

N
(UQ)
i,j

∑|U |
i′=1 N

(UQ)
i′,j

· log
|Q|

∑|Q|
j′=1 I

(UQ)
i,j′

(1)

where N
(UQ)
i,j denotes the times ui issued qj . I

(UQ)
i,j′ is an indicator function that

equals to 1 if these is a link between ui and qj in Gtri, and 0 otherwise.
The weight of links in E(QL) dependents on frequency and rank of the URL

clicked w.r.t the query and the number of the queries bringing click-through on
the URL. Similarly as Eq. 1, the weight of link between qj ∈ Q and lk ∈ L can
be calculated by URL frequency w.r.t. the query and inverse query frequency of
the URL:

W
(QL)
j,k =

N
(QL)
j,k /Rj,k

∑|L|
k′=1 N

(QL)
j,k′ /Rj,k′

· log
|Q|

∑|Q|
j′=1 I

(QL)
j′,k

(2)

where N
(QL)
j,k and Rj,k denote the times and rank of lk clicked w.r.t. qj , respec-

tively. I
(QL)
j,k is an indicator function that equals to 1 if these is a link between

qj and lk in the graph, and 0 otherwise.
In addition, Each link in E(UQ) is associated with a set of timestamps

Ti,j = {ti,j}, where ti,j is the time when user ui issued query qj . Note that
|Ti,j | = N

(UQ)
i,j .

As for a target domain, suppose vectors f ∈ [0, 1]|U |, g ∈ [0, 1]|Q| and
h ∈ [0, 1]|L| denote the predicted domain-specificity of each user, query and
URL in query log, respectively. The closer the value is to 1, the more confi-
dent the corresponding object is relevant to the target domain. Besides, vector
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y ∈ {0, 1}|Q| denotes the pre-annotated domain-specificity of queries. Specifi-
cally, if query qj is manually selected as a domain-specific one, i.e. seed query,
yj = 1; otherwise, yj = 0. Using the above notations, the problem of learning
domain-specificity is defined as follows:
Problem Definition I (Domain-specific query recognition): Given a
tripartite graph Gtri with its associated link weight matrices W(UQ) and W(QL)

for a query log, and a set of manually specified seed queries y, the aim is to
estimate f , g and h as the prediction of domain-specificity of each objects in
query log.

3.2 Tranductive Learning on Tripartite Graph

The assumption for learning domain-specificity of objects in query log is that
the domain-specificity distribution exhibits strong manifold structure, i.e., two
objects tend to have similar domain-specificity if they are strongly associated
with each other. Besides, the domain-specificity learned should be consistent
with that pre-annotated on the seed queries. We formally design the following
objective function:

Otri(f ,g,h) = α ·
|U |∑

i=1

|Q|∑

j=1

W
(UQ)
ij (fi − gj)2 + β ·

|Q|∑

j=1

|L|∑

k=1

W
(QL)
ij (gj − hk)2

+ γ ·
|Q|∑

j=1

|Q|∑

j′=1,j′ �=j

|U |∑

i=1

W
(UQ)
ij · W

(UQ)
ij′

Δτ
i,j,j′

(gj − gj′)2

+ δ ·
|Q|∑

j=1

I
(seed)
j (gj − yj)2

(3)

where I
(seed)
j is an indicator function that equals to 1 if query qj is specified as

a seed query, and 0 otherwise. Δi,j,j′ is the minimum timespan of ui issuing qj

and qj′ and is calculated as:

Δi,j,j′ = min
t∈Ti,j ,t′∈Ti,j′

|t − t′| (4)

In Eq. 3, α, β, γ and δ (α, β, γ, δ ≥ 0 and α + β + γ + δ = 1) are parameters
that balance the contributions of the four items in the objective function. τ ≥ 0
is the parameter controlling the shrinkage effect on query weights. The larger τ
gives more penalty to pair of queries with long issuing timespan, which are more
likely to belong to different search sessions.

The first two items in Eq. 3 evaluate how smooth are the predictions of each
objects in query log w.r.t. the manifold structured in the tripartite graph Gtri.
The third item evaluate the smoothness of predicted query domain-specificity
w.r.t. search session. The forth item evaluates how the predicted domain-
specificity of seed queries fit with that pre-annotated and it can be viewed as a
soft constraint for the predictions on the seed queries.
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Based on the objective function in Eq. 3, the optimal domain-specificity of
each user, query and URL can be derived through the following optimization
problem:

min
f ,g,h

1
2

Otri(f ,g,h)

s.t. f ∈ [0, 1]|U |, g ∈ [0, 1]|Q|, h ∈ [0, 1]|L|
(5)

As for the optimization problem in Eq. 5, it is possible to derive a closed form
solution. However, the closed form solution requires matrix inversion operations,
which will be computationally inefficient since there are generally huge amount
of objects, i.e., unique users, queries and URLs in query log. Therefore, we
propose an efficient iterative algorithm to approximately solve the optimization
problem in Eq. 5 based on Stochastic Gradient Descent (SGD). The basic idea is
to iteratively update the domain-specificity of each objects towards the direction
of negative gradient of O(f ,g,h), when observing each 〈user, query,URL〉 trinity
in query log. More precisely, through computing the derivatives of O(f ,g,h)
w.r.t. f , g and h, we derive the update formulas for 〈ui, qj , lk〉 as follows:

fi ← fi − μ · α · W
(UQ)
ij (fi − gj)

gj ← gj − μ · (
α · W

(UQ)
ij (gj − fi) + β · W

(QL)
jk (gj − hk)

+ γ ·
|Q|∑

j′=1,j′ �=j

|U |∑

i=1

W
(UQ)
ij · W

(UQ)
ij′

Δτ
i,j,j′

(gj − gj′)

+ δ · I
(seed)
j (gj − yj)

)

hk ← hk − μ · β · W
(QL)
jk (hk − gj) (6)

where μ is the learning rate.
From the update formulas in Eq. 6, it can be seen that in each itera-

tion the domain-specificity of each object is updated by taking into account
domain-specificity of its associated objects in query log; in other words, domain-
specificity of each object propagates along the tripartite graph during the opti-
mization process. This implies that the optimization process is guided by the
manifold structure on domain-specificity.

3.3 Active Learning Strategy

In the above domain-specificity learning problem, the seed queries y have a direct
effect on the prediction accuracy. If noisy queries (i.e., queries irrelevant to the
target domain) are included in the seed set, the mistake will propagate along the
graph during the learning process, which has negative influence on recognition
precision; whereas limited or unrepresentative seed set cannot guarantee the
coverage of recognized domain-specific queries. In order to construct a high-
quality seed query set with the least human annotation efforts, we introduce an
active learning strategy into the domain-specificity learning process.
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In recent years, many active graph-based transductive learning approaches
have been proposed [8–11]. Most of the existing efforts in the literature aim
to develop active learning algorithms for general graph data, irrespective of
the characteristics of graphs in particular applications. In this work, instead of
employing existing approaches, we propose a novel graph-based active learning
algorithm, specially tailored for domain-specificity learning task.

The proposed active learning algorithm works in a batch mode: a number
of the informative queries are selected and annotated in each round of active
learning. The possible informative queries are divided into two types: informa-
tive domain-specific queries and informative domain-irrelevant queries, which are
named as DS-set and DI-set respectively. Formally, given two informativeness
criterion functions I+ : 2Q → R and I− : 2Q → R, the aim is to identify a
DS-set Q(DS) ⊆ Q and a DI-set Q(DI) ⊆ Q (Q(DS) ∩ Q(DI) = ∅) such that
I+(Q(DS)) and I−(Q(DI)) are maximized, respectively.

There are two keys to the active domain-specificity learning algorithm: (1)
informativeness criterion and (2) query selection algorithm. We will give the
details in the following subsections.

Informativeness criterion. In order to measure the informativeness brought
by annotating domain-specificity of a set of queries, three factors: prediction
reliability, redundancy and authority, of each query are taken into account.

Prediction reliability. Intuitively, domain-specificity prediction accuracy can be
promoted if mistakenly predicted queries were corrected and added into seed set.
The informativeness criterion thus should prefer the queries that are unreliably
predicted. However, it is hard to evaluate prediction reliability due to the lack of
ground truth of domain-specificity for the queries beyond seed set. In this work,
we make an assumption that Queries from the same domain statistically have
higher lexical similarity than that from different domains. Thus DS-set should
prefer the queries has low lexical similarity with seed queries while predicted
as domain-specific; whereas DI-set should prefer the queries has high lexical
similarity with seed queries while predicted as domain-irrelevant.

Redundancy. With limited annotation budget, it is better to select diverse rather
than redundant queries for domain-specificity judgement because undesirable
redundant queries in DS-set and DI-set will lead to unnecessary repetitive
annotation efforts.

Authority. As for graph-based transductive learning, each node in the graph
generally has different levels of importance. A central node generally has more
influence on other part of the graph than non-central ones, because the domain-
specificity of a central node can be more easily propagated along the graph
during the learning process. The informativeness criterion should thus prefer
the queries with high authority in the tripartite graph.

Synthesizing the above three factors, the informativeness of a query set X
selected as DS-set and DI-set is calculated as:

I+(X;S) =
∑

q∈X

wt(q)
(∑

p∈S

(
1 − sim(q, p)

) − η ·
∑

(o∈X)∧(o�=q)

sim(q, o)
)

(7)
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I−(X;S) =
∑

q∈X

wt(q)
(∑

p∈S

sim(q, p) − η ·
∑

(o∈X)∧(o�=q)

sim(q, o)
)

(8)

where S is the current seed set, and sim(·, ·) is the lexical similarity between
pair of queries. Following the prediction reliability assumption, 1−sim(q, p) and
sim(q, p) are used as rough measures of the reliability of predicting p as domain-
irrelevant or not. sim(q, o) is used to measure the redundancy of the selected
query set. wt(q) is the function quantifying authority of each query q. We simply
apply Google’s PageRank on the tripartite graph and take the ranking score of
each node as wt(q). η is the parameter balancing the contributions of prediction
reliability and redundancy in the informativeness criterion.

Query selection algorithm. Given seed set S, selecting DS-set and DI-set
composed of k queries can be formulated as the following optimization problems:

Q(DS) = argmax
(X⊆P+)∧(|X|=k)

I+(X;S) (9)

Q(DI) = argmax
(X⊆P −)∧(|X|=k)

I−(X;S) (10)

where P+ and P− are the query pools that consist of queries predicted as
domain-specific and domain-irrelevant using current seed set S, respectively.
Since the prediction of domain-specificity learning algorithm is a rank of all the
queries according to the predicted domain-specificity w.r.t. the target domain,
P+ and P− can be practically constructed by fixed number of the queries in the
top and rear of the rank list, respectively.

Essentially, the optimization problems in Eqs. 9 and 10 are knapsack packing
problems and NP-hard in general. We develop a polynomial time greedy heuristic
solution. The overall algorithm can be found in Algorithm 1. In what follows, for
brevity we shall only consider the DI-set selection problem in Eq. 10. The same
conclusions can be easily derived for the DS-set selection problem in Eq. 9.

Algorithm I. (Greedy Algorithm for DI-set Selection)

Input: Seed set S;
Query pool P−, in which each queries are predicted as irrelevant
to the target domain;
The number of queries k selected for annotation;

Output: The set of queries for annotation Q(DI), subject to |Q(DI)| = k
1: Initialize Q(DI) ← ∅
2: while |Q(DI)| ≤ k do
3: foreach q ∈ P− − Q(DI) do
4: I−(q) = wt(q) · ( ∑

p∈S sim(q, p) − γ
∑

q′∈Q(DI) sim(q, q′)
)

5: end
6: q∗ = argmaxq∈P −−Q(DI) I−(q)
7: Q(DI) = Q(DI) ∪ {q∗}
8: end
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Simply speaking, Algorithm 1 iteratively selects the most informative query
q∗ out of the query pool P− − Q(DI) and adds it into the result set Q(DI) (line
2–8). The computational complexity of the algorithm is O(|P−| · |Q(DI)|2). Prac-
tically, the size of query pool and DI-set (usually varies from tens to thousands)
are far less than the total number of queries in query log. Thus algorithm 1 can
scale well to real-world query log with millions of objects.

Although Algorithm 1 is an approximate solution to the optimization prob-
lems in Eq. 10, it is guaranteed to have a fix error bound because of the submod-
ular object function I−(X;S). Due to space limitation, we only give the error
bound of Algorithm1 in the following theorem:

Theorem I: Let X be the query set selected using Algorithm I, and Q(DI) be
the optimal solution of the problem in Eq. 10, then,

I−(X;S) ≥
(
1 − 1

e

)
· I−(Q(DI);S) (11)

4 Experiments

4.1 Experiment Settings

Query log. We performed experimental evaluation of the proposed approach
using a publicly available query log of a Chinese commercial search engine1.
In the experiment, we selected Science:Agriculture in the open web directory
DMOZ2 as the target domain. Before used for domain-specific query recognition,
the query log was sampled by filtering out a number of queries that are obviously
irrelevant with the domain of agriculture. Table 2 shows the statistics of the query
log corpus used in the experiment.

Evaluation method. For a specified target domain, it is always practically
hard to find a comprehensive set of queries specific to the domain that is qual-
ified to evaluate the coverage of the recognized results. In the experiments, we
thus mainly focus on evaluating domain-specific query recognition approaches
in terms of precision. In particular, we evaluated the proposed approach and
baselines in terms of Precision@n (or P@n for short). P@n measures the per-
centage of true domain-specific queries in the top-n recognized results. Given a

Table 2. Dataset statistics

Node type Number

User 1,608,222

Query 3,971,977

URL 7,341,534

1 http://www.sogou.com/labs/dl/q.html.
2 https://www.dmoz.org/.

http://www.sogou.com/labs/dl/q.html
https://www.dmoz.org/
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recognized domain-specific query list r = 〈t1, · · · , tn〉, P@n is calculated as:

P@n =
1
n

·
n∑

i=1

I
(specific)
i (12)

where I
(specific)
i is an indicator function that equals to 1 if ti is judged as specific

to the target domain, and 0 otherwise.
In the experiment, correctness of recognized domain-specific queries are man-

ually justified by two volunteers. Given a recognized query, the volunteers are
asked to answer “yes” or “no” depending on their judgments on whether the
query is relevant to the target domain – DMOZ Science:Agriculture. If they gave
different answers, domain-specificity of the query would be finally determined
by an agriculture expert, i.e., a master student majored in agriculture hired for
the experiment. In all the following experiments, top-500 queries recognized by
each methods were manually examined for evaluation.

4.2 Parameter Sensitivity Analysis

The parameters that control the contributions of different items in the learning
objective, i.e., α, β, γ and δ in Eq. 3 are the main parameters of the proposed app-
roach. We perform sensitivity analysis of these parameters. Firstly, we evaluated
the impact of the fitness constraint in Eq. 3 on domain-specific query recogni-
tion, while keeping the relative contributions of user-side, URL-side and session
smoothness constraints (the first three items in Eq. 3) as constant. In particu-
lar, we fixed α = β and γ = 0 empirically, and varied δ from 0 to 1 with the
step of 0.1. Secondly, we evaluated the relative impact of user-side and URL-side
smoothness constraints in Eq. 3, while keeping session smoothness constraint and
fitness constraint as constant. In particular, we fixed δ = 0.2 and γ = 0 empiri-
cally, and varied α

α+β from 0 to 1 with the step of 0.1. Thirdly, we evaluated the
impact of session smoothness constraint, while keeping relative impact of other
constraints in Eq. 3 as constant. In particular, we fixed α = β = δ empirically,
and varied γ from 0 to 1 with the step of 0.1.

In each of the three experiments, we utilized a fixed seed set with 200 manual
annotated domain-specific queries. For the sake of simplicity, we didn’t introduce
the proposed active learning strategy in the learning process. Tables 3, 4 and 5
show domain-specific queries recognition results in terms of P@n with different
parameters.

From Table 3, it can be seen that domain-specific query recognition perfor-
mance is quite stable across a wide range of δ (from 0.2 to 0.7). Besides, when δ is
quite small (δ < 0.1), the performance drops heavily. It indicates the importance
of seed queries to graph-based transductive learning.

From Table 4, it can be seen that smaller α ( α
α+β < 0.5) achieves bet-

ter domain-specific query recognition performance in terms of P@n (n ≤ 50),
whereas the performance in terms of P@n (n > 100) drops heavily when

α
α+β < 0.3. Besides, larger α (0.8 ≤ α

α+β ≤ 0.9) achieves relatively consistent
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Table 3. Domain-specific query recognition results with varying δ

δ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P@10 0 0.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

P@50 0 0.38 0.88 0.88 0.92 0.92 0.92 0.92 0.92 0.92 0.72

P@100 0.02 0.16 0.5 0.80 0.80 0.75 0.75 0.82 0.78 0.90 0.41

P@200 0.01 0.11 0.27 0.58 0.59 0.59 0.63 0.63 0.65 0.61 0.23

P@500 0.01 0.10 0.20 0.35 0.35 0.35 0.38 0.34 0.37 0.12 0.08

Table 4. Domain-specific query recognition results with varying α
α+β

α
α+β

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P@10 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.80 0.90 0.90 0.50

P@50 0.92 0.92 0.92 0.92 0.92 0.92 0.86 0.82 0.90 0.88 0.60

P@100 0.80 0.80 0.80 0.76 0.78 0.78 0.81 0.83 0.73 0.76 0.61

P@200 0.74 0.74 0.69 0.67 0.61 0.65 0.65 0.76 0.73 0.75 0.55

P@500 0.45 0.55 0.44 0.47 0.35 0.37 0.40 0.45 0.50 0.54 0.33

Table 5. Domain-specific query recognition results with varying γ

γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P@10 1.00 1.00 1.00 1.00 1.00 0.80 0.40 0.40 0.40 0 0

P@50 0.92 0.92 0.82 0.78 0.58 0.48 0.28 0.30 0.14 0.08 0

P@100 0.79 0.87 0.79 0.61 0.55 0.51 0.21 0.21 0.19 0.12 0

P@200 0.60 0.67 0.61 0.54 0.42 0.38 0.18 0.16 0.12 0.11 0

P@500 0.38 0.43 0.36 0.35 0.24 0.22 0.13 0.11 0.08 0.06 0

results over a large range of n. The probable reason is that for domain-specificity
learning, manifold structure embedded in the relations between queries and
URLs is more precious than that between queries and users, because the topic
of a page generally focus on a few domains whereas a user may have a variety
of interests involving a number of domains. On the other hand, the numbers
of unique URLs is much larger than that of users in the query log (as shown
in Table 2), making the relations between queries and URLs more sparse and
helpless in discovering wider range of domain-specific queries.

From Table 5, it can be seen that the proposed approach performs not as
well when γ > 0.3, so session smoothness constraint may be not so important as
other constraints in optimizing the objective function in Eq. 3. However, when
γ = 0.1 and 0.2, we can see improvements on P@n (n = 100, 200, 500) over
that achieved when γ = 0. It indicates that session information still contributes
in estimating domain-specificity of queries, especially when larger number of
candidate queries are taken into account.
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4.3 Effectiveness of Active Learning

We verified effectiveness of the proposed active learning algorithm for graph-
based transductive learning. In this experiment, we started from an initial seed
set consists of 50 domain-specific queries specified by an agriculture expert, and
then repeatedly selected a batch of 30 queries for which the agriculture expert
was inquired to annotate. Then the new queries were added into the seed set. In
order to avoid the bias caused by single trial, the agriculture expert was asked
to specify 200 agriculture queries as a query pool, and we conduct the active
learning experiments five times, each of which was based on an initial seed set
consists of 50 queries randomly sampled from the query pool. The average over
the five trials was used for evaluation. Figure 2 shows the results of domain-
specific query recognition based on active learning. We also show the result
achieved by graph-based transductive learning without active learning strategy,
which as labeled as “200 (fixed)”.

We can see that domain-specific query recognition performance in terms of
P@n continuously improves while new queries are selected and added into seed
sets, especially when the seed set already constructed is of smaller size. We
also see that the results based on actively selected 200 seed queries are roughly
better than those based on 200 fixed seed queries. More accurately, the improve-
ments are about 6.5%, 6.7% and 5.4% in terms of P@100, P@200 and P@500,
respectively. This indicates that the proposed active learning algorithm is help-
ful in selecting informative seeds for graph-based transductive learning and thus
improving the performance of domain-specific query recognition.

Fig. 2. Domain-specific query recognition
results of active learning

Fig. 3. Comparison of domain terminology
extraction results

4.4 Comparison with Baseline Methods

To demonstrate the effectiveness of the proposed approach, three state-of-the-art
methods exploiting inherent structure of query log for query classification, i.e.,
ARW [12], SemiReg [6] and QLTM [13], were chosen as baselines for comparison.
All the baselines are outlined in related work section.
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To make a fair comparison, all the methods made use of the pre-specified 200
agriculture queries as the only training data. We also investigated performance
of the proposed approach without/with active learning strategy (abbr. Trans
and TransActive, perspectively). The comparison of the proposed approach with
baselines is presented in Fig. 3.

It can be seen that the proposed approach (Trans) outperforms all the base-
lines in term of P@n (n = 100, 200, 500) and the improvements are significant
especially when n gets larger: about +24% from the best baselines (QLTM) in
terms of P@500. Among all the methods, QLTM performs best when n is small
(n = 10, 50); however, the performance drops when n gets larger, even worse
than SemiReg when n = 500. QLTM is able to exploit multi-dimensional latent
relations inherent in query log and actually works under supervised learning
paradigm. Although supervised learning can leverage latent query features well,
but it suffers from the facts that the pre-annotated queries are rather limited
and the domain-specific queries are highly sparse. In this experiment, there are
only 200 positive queries and the percentage of Agriculture-specific queries in
the sampled query log amounts to only about 0.1%.

Besides, among all the graph-based semi-supervised learning methods (ARW,
SemiReg, Trans and TransActive), TransActive performs best in term of all
the evaluation measures. This provides strong evidence that active learning is
capable of guiding the semi-supervised learning process, thus beneficial to the
domain-specific query recognition task.

5 Related Work

Query classification, often referred to as search intent learning [6,13,18], query
topic mining [14], search task learning [15] and etc., has been extensively studied
in IR community for decades. From the learning techniques perspective, exist-
ing work on query classification can be put into three categories: supervised,
unsupervised and semi-supervised.

It is natural to view query classification as supervised learning; however, it is
also challenging to leverage supervised learning techniques in query classification
as search query is often short and ambiguous. Therefore, one key to supervised
query classification is to enrich feature representation of queries. Shen et al. used
the retrieved pages as expansion of the query [4]. Lee et al. found the statistics of
click distribution of a query is helpful to identify the underlying search goal [5].

When there is no query category predefined, query classification will turn out
to be an unsupervised learning task. Clustering techniques have been extensive
utilized in query classification. For example, Hu et al. conduct clustering on the
clicked URLs of queries and took each URL cluster as a subtopic of a query
[14]; Li et al. proposed a clustering framework with multiple kernel to identify
synonymous query intent templates [16]; Qian et al. used incremental cluster-
ing method to group clicked URLs in log stream and took each URL group as
constant or bursty query intents [17].

Recently, graph-based semi-supervised learning techniques have been exten-
sively used in query classification tasks, especially for those using query log as the
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resource. Fuxman et al. [12] modeled click-through graph of query log as Markov
Random Fields and employed absorbing random walks to compute probability of
a query to belong to a pre-defined class. Li et al. [6] formulated query classifica-
tion as semi-supervised learning on click graphs, with a content-based classifier
regularization to avoid erroneous propagation. In order to enhance classification
accuracy, the click-through graph of query log is expanded in many existing
work. For example, Jiang et al. [13] proposed a query log topic model to derive
latent relations between search queries, URL, session and term. Query classifiers
are learned using latent relations and further combined using several strategies
such as maximum confidence and majority voting.

Our work follows semi-supervised learning theme, but differs in the introduc-
tion of active learning strategy. To our best knowledge, no previous work lever-
ages active learning in query classification problem. Moreover, multiple types of
objects, i.e., users, queries, URLs and sessions, in query log are simultaneously
integrated in query classification task in a more principled way through using
tripartite graph representation.

6 Conclusion and Future Work

In this paper, we propose a novel approach to recognize domain-specific queries
from general search engine’s query log. There are mainly two advantages of
the proposed approach. Firstly, the manifold structure inherent in query log is
fully exploited through using heterogenous graph representation of query log.
Secondly, a novel active learning strategy is introduced into graph-based trans-
ductive leaning process to reduce the human annotation efforts and continu-
ously refine the recognition results. Experimental results on real-world query log
demonstrate the effectiveness of the proposed approach. Future work includes
evaluating the proposed approach on more target domains.
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