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Abstract. The widespread application of mobile positioning devices has
generated big trajectory data. Existing disk-based trajectory manage-
ment systems cannot provide scalable and low latency query services any
more. In view of that, we present TrajSpark, a distributed in-memory
system to consistently offer efficient management of trajectory data. Tra-
jSpark introduces a new abstraction called IndexTRDD to manage tra-
jectory segments, and exploits a global and local indexing mechanism to
accelerate trajectory queries. Furthermore, to alleviate the essential par-
titioning overhead, it adopts the time-decay model to monitor the change
of data distribution and updates the data-partition structure adaptively.
This model avoids repartitioning existing data when new batch of data
arrives. Extensive experiments of three types of trajectory queries on
both real and synthetic dataset demonstrate that the performance of
TrajSpark outperforms state-of-the-art systems.
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1 Introduction

Recently, with the explosive development of positioning techniques and popular
use of intelligent electronic devices, trajectory data of MOs (Moving Objects)
has been accumulated rapidly in many applications, such as location-based ser-
vices (LBS) and geographical information systems (GIS). For example, DiDi!,
the largest one-stop consumer transportation platform in China, now has 1.5
million registered active drivers, and provides services for more than 300 million
passengers. The total length of all trajectories generated in this platform reaches
around 13 billion kilometers in 2015. Moreover, the volume of trajectory data
increases in a surging way. In March 2016, the number of trajectories generated
in one day has already exceeded 10 million. It is challenging to provide real-time
service over such data. However, as almost all of existing trajectory manage-
ment systems are disk-oriented (e.g., TrajStore [4], Clost [13], and Elite [18]),
they cannot support low latency query services upon big trajectory data.

! http://www.xiaojukeji.com/en/taxi.html.

© Springer International Publishing AG 2017
L. Chen et al. (Eds.): APWeb-WAIM 2017, Part I, LNCS 10366, pp. 11-26, 2017.
DOI: 10.1007/978-3-319-63579-8_2


http://www.xiaojukeji.com/en/taxi.html

12 7. Zhang et al.

Recently, in-memory computing systems are a widely used to provide low
latency query services. For instance, Spark?, a distributed in-memory comput-
ing system, has been widely used. Spark provides a data abstraction called RDDs
(Resilient Distributed Datasets), to maintain a collection of objects that are par-
titioned across a cluster of machines. Users can manipulate RDDs conveniently
through a batch of predefined operations. However, Spark is lack of indexing
mechanism upon RDDs and needs to scan the whole dataset for a given query.
Recently, some Spark-based system prototypes have been proposed to process big
spatial data, including SpatialSpark [19], LocationSpark [14], GeoSpark [20] and
Simba [17]. Amongst them, SpatialSpark implements the spatial join query on
top of Spark, but it does not index RDDs. GeoSpark provides a new abstraction,
called SRDD, to represent spatial objects such as points and polygons. Although
it embeds a local index in each SRDD partition, global index is not supported.
LocationSpark proposes a solution to solve query skewness. In contrast of them,
Simba extends Spark SQL with native support to spatial operations. Meanwhile,
it introduces both global and local indexes over RDDs. However, these proto-
types view data as a set of spatial points and employ the point-based indexing
strategies. Such strategies decrease the trajectory query performance as points
of an MO need to be retrieved from different nodes and sorted to form a chrono-
logically ordered sequence [4]. Moreover, they are by nature designed to manage
a static dataset and cannot efficiently react to data distribution changes as data
increases. To handle a batch of new data, the whole dataset should be reparti-
tioned from scratch, which is quite computation costly.

Inspired by above observations, we design and implement TrajSpark (Trajec-
tory on Spark) system to support low-latency queries over big trajectory data.
TrajSpark proposes a new abstraction called IndexTRDD to manage trajecto-
ries as a set of trajectory segments. To accelerate query processing, it imports
the global and local indexing mechanism which embeds a local hash index in
each data partition and builds a global index over these partitions. Further-
more, TrajSpark tracts the change of data distribution by using a time decay
model to continuously support efficient management over the daily increasing
big trajectory data. Our main contributions can be summarized as follows:

— We first propose TrajSpark to mange the big trajectory data while existing
Spark-based systems only support a static big spatial dataset.

— We introduce IndexTRDD, an RDD of trajectory segments, to support effi-
cient data storage and management by incorporating a global and local index-
ing strategy.

— We monitor the change of data distribution by importing a time decay model
which alleviates the repartitioning overhead occurred in existing Spark-based
systems and gets a good partition result at the same time.

— We execute three types of trajectory queries on TrajSpark and conduct exten-
sive experiments to evaluate query performance. Experimental results demon-
strate the superiority of TrajSpark over other Spark-based systems.

2 http://spark.apache.org/.
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The rest of the paper is organized as follows. Section 2 reviews related works.
We give an overview of TrajSpark in Sect. 3, and detailed the system in Sects. 4
and 5. In Sect. 6, we introduce the implementation of three typical trajectory
queries in TrajSpark. Section7 provides an experimental study of our system.
Finally, we give a brief conclusion in Sect. 8.

2 Related Work

We review the work mostly related to our research in this section.

Centralized Trajectory Management Systems: There are many centralized
systems to manage trajectory data. PIST, an off-line system, supports indexes
over points. It first partitions data according to a spatial index, and then sup-
ports a temporal index in each partition [2]. SETI segments trajectories into
sub-trajectories with the guidance of a spatial index, and groups them into a
collection of spatial partitions [3]. It shows that supporting index over trajec-
tory segments is more efficient than indexing trajectory points. TrajStore not
only uses an I/0O cost model to dynamically segment trajectories, but also uses
clustering and compressing techniques to reduce storage overhead. But it only
supports range query [4]. These systems can not meet the requirement of big
data processing as they adopt the centralized architecture.

Disk-Based Distributed Spatial and Spatio-Temporal Data Manage-
ment Systems: Recently, some distributed disk-based systems have been pro-
posed to manage spatial data by utilizing the Hadoop® framework. Spatial-
Hadoop [5] pushes spatial data inside Hadoop core by adopting a layered
design and supports efficient spatial operations by employing a two-level index
structure. AQWA [1] is an improved version of SpatialHadoop by proposing
a workload-aware partition strategy which divides those frequently accessed
regions into more fine-grained subregions. There are also some systems particu-
larly designed for big spatio-temporal/trajectory data management. PRADASE
[10] and Clost [13] are directly built on top of Hadoop and accelerate queries
through a global spatio-temporal index. MD-HBase [11], RHBase [6] and GeMesa
[7] are built on top of distributed key/value stores, and they use space-fill curves
[6,11] and Geohash [7] algorithms to map spatio-temporal points into single-
dimension space separately. Different from above works, Elite [18] is built on top
of OpenStack® for big uncertain trajectorie. Nevertheless, all the above systems
are disk-based, and none of them can provide low latency query services.

Memory-Based Spatial Data Management Systems: SharkDB [16] pro-
poses a column-wise storage format to manage trajectory within main memory.
However, it is deployed on a big-memory machine and cannot scale out to the
distributed environment. Besides, some distributed in-memory spatial data man-
agement systems have been proposed. SpatialSpark [19] and GeoSpark [20] are

3 http://hadoop.apache.org/.
4 http://www.openstack.org/.
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two systems built on top of Spark. SpatialSpark is specifically designed for spa-
tial join queries. GeoSpark proposes a new RDD called SRDD to support typical
spatial queries. It supports a local index for each partition of SRDD. In com-
parison of GeoSpark, LocationSpark proposes a solution to solve query skewness
by using Bloom Filter [14]. Simba, built on top of Spark SQL, supports multi-
dimensional data queries [17]. Moreover, both a query optimizer which leverages
indexes and some spatial-aware optimizations are imported in Simba to improve
query efficiency. The above systems process spatial data as independent data
points, while trajectory data are usually viewed as a collection of time series.
Directly using these systems to process trajectories queries may sacrifice the
query efficiency. Moreover, these systems cannot scale well when a new batch of
data is imported to the system.

3 System Overview

The architecture of TrajSpark, as shown in Fig. 1, is composed of four layers:
(1) Apache Spark Layer, where regular operations and fault tolerance mecha-
nisms are supported by Apache Spark, (2) Trajectory Presentation Layer, where
a new abstraction called IndexTRDD is designed to support indexes over tra-
jectory data. (3) Assistant Data Layer, which monitors the change of data dis-
tribution and guides the partitioning of forthcoming data. A global index which
indexes partitions of IndexTRDD is maintained. (4) Query Processing Layer,
which processes trajectory queries in an efficient way by utilizing indexes.

— Apache Spark Layer: This layer is directly inherited from Apache Spark,
and the description of it is omitted in this paper.

— Trajectory Presentation Layer: In this layer, the trajectory segments that
are spatio-temporally close will be grouped into the same data partition. In
each partition, segments belonging to the same MO are depicted in a space-
efficient format. A new abstract called IndexTRDD is proposed to organize

Query Processing Layer h
SO-based ST-based KNN-based
Query Query Query )
it it
Trajectory Presentation Layer Assistant Data Layer
IndexTRDD Data Distribution Monitor
TrajectorY & Ind.exTRDD Index Manager
Operations Library
7
it ir
[ Apache Spark Layer ]

Fig. 1. System overview
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all those segments, and a rich operations library is provided to manipulate
trajectories and IndexTRDD. As the core of TrajSpark, we give a detailed
description in Sect. 4.

— Assistant Data Layer: A few statistics are maintained in this layer to record
the change of data distribution. This layer also maintains a global index which
indexes all partitions of IndexTRDD. This layer is detailed in Sect. 5.

— Query Processing Layer: We introduce the implementation of three typical
trajectory quires in this layer (detailed in Sect. 6).

4 Trajectory Presentation Layer

4.1 Trajectory Segment Presentation

Instead of storing trajectories as a time series directly, the raw trajectories gen-
erated from data sources are usually stored as GPS logs and each log record
corresponds to a trajectory point. The schema of such points can be viewed as
a table with the following form: (M OID, Location, Time, Ay, - -+, A,), where
MOID is the identification of an MO, Time and Location are the temporal and
spatial information. The rest attributes vary in different data sources. Although
it is simple to represent the trajectories as an RDD of points by directly loading
the raw data into Spark, it leads to a high storage overhead due to the limitation
of row-stores. Moreover, as analyzed in [4], trajectory segment based technologies
can improve the query efficiency more significantly than point based ones.

MOID [ Lon | Lat [Time[ A, [ A, MOID |Lcn Time Range | MBR
Lon] | ]_|at| | |Ti1lne|
100 114.31 (2532 0 32 1
41|
100 114.31 [2535] 13 [ 63| O
100 114.32 (2536 23 |42 | 2 11431 Fixed Bits
100 | 11432]2531] 31 [33] 1 0 Delta Length
Encodi .
101 | 11432 (2531 1 |33 1 1 feoding Encoding
1
(a) Raw Trajectory Data (b) Trajectory Storage Format

Fig. 2. Trajectory presentation

To covert raw data into trajectory segments, TrajSpark partitions points that
are spatio-temporally close into the same partition firstly (detailed in Sect.4.2).
Then, points of the same MO are sorted to form a trajectory segment and the
segment is packed into a space-efficient format as shown in Fig.2(a). In this
format, values of the same attribute are stored and compressed continuously. For
numberic attributes (such as time and location attribute), data are compressed
by delta encoding [4]. For an enum attribute (As in Fig. 2(b)), fixed bits length
encoding is used. For other attributes, such as the string, we simply use the gzip
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compression. Besides, we maintain other sketch data such as the MOID, Len
(length) and M BR (Minimum Bounding Rectangle) of the segment to achieve a
quick pruning for queries. Finally, data in each partition are changed to a set of
compressed trajectory objects, and the whole dataset is transformed to an RDD
of such objects (we call this RDD as TRDD).

4.2 Indexing for Trajectory Data

In the above section, we introduce how to transform the GPS logs into TRDD.
While TRDD only supports sequential scan for queries which is very expensive
as it needs to access the whole dataset. Hence, we need to support indexing
strategy to improve the query efficiency and at the same time without changing
the core of Spark. To overcome these challenges, we propose IndexTRDD which
changes the storage structure of TRDD by embedding a local hash index in each
partition, and get O(1) computation to retain the trajectory of a given MO.
Furthermore, we build a global index over data partitions of IndexTRDD to
prune irrelevant partitions. Figure 3 details the indexing mechanism which can
be divided into three phases: partitioning, local indexing, and global indexing.

Partitioning Local Indexing Global Indexing
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Fig. 3. Indexing from raw data

Partitioning. In this phase, TrajSpark loads the raw dataset from disk into
memory as an RDD of trajectory points. This RDD needs to be repartitioned
according to the following three constraints: (1) Data Locality. Trajectory points
that are spatio-temporally close to each other should be assigned to the same
partition. (2) Load Balancing. All partitions should be roughly of the same size.
(3) Partition Size. Each partition should have a proper size so as to avoid memory
overflow. Spark provides two predefined partitioners for one-dimensional keys,
including range and hash partitioner. However, they cannot fit well for multi-
dimensional data such as trajectory. To address this problem, TrajSpark defines
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a new partitioner named STPartitioner which contains a spatial Quad tree
or k-d tree index. The spatial index can be learned from data distribution and
ensures that each leaf node contains the same amount of data. STPartitioner uses
the boundaries of those leaf nodes to partition points. Then, trajectory points
located in the same boundary are grouped together. Finally, due to the constraint
of partition size, TrajSpark splits points belonging to the same boundary into
a few data partitions according to MOID (in default) or time attribute, and
makes sure each partition satisfy the above constraints.

Local Indexing. After the partitioning phase, the dataset is still an RDD of
trajectory points. In this step, we transform the above RDD into TRDD by
grouping and packing such points firstly. Then, we add a local index at the head
of each partition which maps the MOID of each trajectory to its subscripts. We
call the combined data structure of index and trajectory array as TPartition. So
the whole dataset is transformed into an RDD of TPartitions, where the RDD
is IndexTRDD. Finally, we collect the ID (each partition of RDD has a unique
ID), the spatial and temporal ranges of each data partition (a TPartition object)
to construct the global index.

Global Indexing. The last phase is to build the global index gIndex over all
partitions. As shown in Fig.3, gIndex is a three-level hybrid index. Data is
divided by the level-0 coarse time ranges according to its temporal attribute
firstly. Each coarse time range corresponds with a level-1 spatial index which
is used by STPartitioner. To index partitions that belong to the same spatial
boundary, a level-2 BT-Tree is used. When TrajSpark is initialized with the first
batch of data, level-0 index contains only one value (the beginning timestamp
of that batch of data), and the level-1 spatial index is the same one used in
STPartitioner. The spatial and temporal information collected from all partitions
are used to construct the level-2 indexes. Each spatial range in level-1 index
corresponds with a level-2 index. TrajSpark keeps gIndexr in the memory of
master node and updates it when new data partitions arrive. Even for a big
trajectory dataset, the number of partitions is not very large (shown in Fig. 4(c)).
Thus, the global index can be easily fitted in the memory of master node.

5 Assistant Data Layer

5.1 Data Distribution Monitor

In real applications, new batches of data are appended on an hourly or daily
basis [1], and the data distribution changes accordingly. On one hand, a static
partitioning strategy results in unbalanced data partitions. On the other hand,
if we repartition the whole dataset (required in existing systems [14,17,19,20])
when each batch of data arrives, it leads to an expensive workload. Meanwhile,
it is worthless to repartition the old data, because new data are more valuable
than those old ones. So, when a new batch of data arrives, TrajSpark tries to
only partition this batch of data without touching existing data which differs
from the target of AQWA [1] who needs to repartition part of existing data.
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Moreover, TrajSpark focuses on long term data distribution changes and also
tries to alleviate the influence of temporal changes.

In the light of above considerations, TrajSpark adopts the time decay model
to depict the change of data distribution by giving the recent data a higher
weight. TrajSpark divides the whole spatial area into m * m fine-grained cells
and computes the data distribution by counting the number of points in each cell.
When a new batch of data arrives, TrajSpark maintains two matrices: Aczisting
and A, ., which separately record the distribution of data that have been loaded
in TrajSpark and the new one. After loading the new batch of data, Aczisting
decays weight by dividing « firstly (v is the decay factor, which gives older data
lower weights). Then, A, is added to Acgisting and set to zero. Observe that
after a batch of data is appended, A¢gisting changes accordingly. To better depict
the change of Acyisting, we use the notation Af,; ., to represent the spatial
distribution of data after n batches of data are appended.

To depict the adaptivity of our partitioning strategy, we define a new matrix
PA. (Partition with A) which is initialized with A2 . 4> and create the spatial
index of STPartitioner from PA, by partitioning the whole spatial area into
subregions with equal number of points. After the n-th batch of data is loaded,
if the difference between Af,; ., and PA. is larger than a given threshold, it
means that the distribution of recently loaded data has greatly changed, TrajS-
park updates the value of PA. with A7, ;.. and updates STPartitioner using
a new spatial index created from the new PA, to partition the incoming data. In
TrajSpark, we use the JSD distance to measure the difference between two data
distributions [12] (both the distribution matrices should be normalized before
computing). The lazy-update property of time decay model enables TrajSpark

to resist abrupt or temporary data distribution changes.

5.2 Index Manager

Index manager mainly supports the update and persistence of the gIndex. Two
cases will lead to the update of gIndex. The first is when the STPartitioner
updates its spatial index. At this case a new time range will be added to level-0
index, and the spatial index will be added to level-1 as its children. The second
case is when all partitions of the new data have been added to IndexTRDD,
the information of these partitions will be added to the level-2 index of gIndex.
The index manger stores gIndex in the memory of the master node. Besides,
TrajSpark also chooses to persist it into the file system (after its updating) and
has the option of loading it back from the disk. This enables TrajSpark to load
indexes back to the system even after system failure. It needs to mention that,
TrajSpark supports spatio-temporal operations for glndez, such as intersect,
overlap and so on, to find partitions satisfying the query constraints.

6 Query Processing Layer

Typical trajectory queries include SO (Single Object)-based query [8,10,13],
STR (Spatio-Temporal Range)-based [8,15,16] query and KNN (K Nearest
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Algorithm 1. SO-based query

Input: moid, tRange;

Output: one trajectory;

1: pids = glndex.intersect(tRange);

2: ts = IndexTRDD.PartitionPruningRDD(pids)
.getTraWithID(moid).mapValues(sub(tRange));

3: return ts.reduceByKey(merge).collect();

Neighbor)-based query [8,11,16]. In this section, we introduce how TrajSpark
efficiently processes these queries by utilizing indexes and the operation libraries.

6.1 SO-Based Query

An SO-based query retrieves the trajectory of a given MO by receiving two para-
meters: moid and tRange, where moid denotes the ID of an MO and tRange
is the temporal constraint. Spark expresses this query as an RDD filter action,
which requires scanning the whole dataset. TrajSpark can achieve better perfor-
mance by utilizing indexes. It leverages two observations: (1) The level-0 index
is sufficient to prune irrelevant partitions, and the level-2 index can find the par-
titions whose time ranges are intersected with tRange. (2) For each partition,
the trajectory of moid can be filtered quickly according to the local hash index.

Based on the above observations, Algorithm 1 introduces the detailed steps.
Firstly, TrajSpark traverses the global index to find data partitions whose time
ranges are intersected with the tRange (line 1). It needs to mention that, the
global index gIndex is a spatio-temporal index, and the input parameter for
intersect operation can also contain a spatial constraint. Next, IndexTRDD
calls a Spark API— PartitionPruningRDD, to mark required partitions. Then,
TrajSpark randomly accesses the trajectory in each partition according to the
given moid and finds the sub-trajectory located in the tRange (line 2). Finally,
all sub-trajectories of the given MO are merged into one. Note that TrajSpark
provides the merge function to merge two trajectory segments of the same MO.

6.2 STR-Based Query

An STR-based query retrieves trajectories within a spatio-temporal range. It
receives two parameters tRange and sRange. By utilizing the indexes, TrajS-
park can also achieve better performance than the filter operation of Spark.

Algorithm 2. STR-based query
Input: tRange, sRange;
Output: a set of trajectories;
1: pids = glndex.intersect(tRange, sRange);
2: ts = IndexTRDD.PartitionPruningRDD(pids)
ilter(tRange, sRange).mapValues(sub(tRange, SRange));
3: return ts.reduceByKey(merge).collect();
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Algorithm 3. KNN-based query
Input: IndexTRDD, disM;
Output: the k most similar trajectories to tr;
1: mbr = tr.M BR, tRange = tr.T'imeRange;
2: repeat
3:  pids = glndex.intersect(mbr, tRange);
4:  ts = IndexTRDD.PartitionPruningRDD (pids)
ilter(mbr, tRange).reduceBykey(merge);
mbr.expand(1l + «);
until (ts.size > k)
candidate=ts.collect();
return candidate.map(t —(disM(¢, tr),t)).sortByKey.top(k);

Algorithm 2 sketches basic steps to process such queries. At first, TrajSpark tra-
verses the global index to filter partitions that are intersected with the given
spatio-temporal range (line 1). Then, for each partition, TrajSpark filters candi-
dates whose spatial bounding box and temporal range are intersected with the
given spatio-temporal constraint. Furthermore, it finds a sub-trajectory which is
bounded by the spatio-temporal constraint for each candidate (line 2).

6.3 KNN-Based Query

There are many variations of KNN-based query, and we focus on finding top-k
trajectories who are most similar to the reference one. This kind of query is very
common in trajectory patten analysis, and we represent it with KINN (tr, disM).
Here, tr refers to the query reference, and disM refers to the distance/similarity
metric between trajectories (popular metrics such as Euclidean distance, DTW
and LCSS are supported in TrajSpark). The processing procedure is shown in
Algorithm 3. TrajSpark gets the MBR and time range of ¢r firstly (line 1). This is
because candidate results are spatio-temporally close to the reference, the using
of mbr and tRange facilitates the pruning of candidate. Then, TrajSpark filters
candidate partitions using the global index (line 3). After that, sub-trajectories
are further pruned and merged into complete trajectories (line 4). These tra-
jectories are the candidates of the final result. However, if the number of these
candidates is smaller than k, TrajSpark expands the region of mbr (the center
of mbr will not change, while the width and length become 1+ a (0 < a < 1)
times) and re-executes the spatio-temporal query until the number of candidates
is larger than k. Here, the default value of « is set to 0.2. Finally, TrajSpark
measures the similarity for those candidate trajectories and selects k smallest
ones as the final result.

7 Experiments

7.1 Experimental Setup

We evaluate the performance of TrajSpark in this section. All experiments are
conducted on a 12-node clustering running Spark 1.5.2 over Ubuntu 12.0.4. Each
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node is equipped with an 8 cores Intel E5335 2.0 GHz processor and 16 GB
memory. The Spark cluster is deployed in standalone mode.

Two trajectory datasets of Beijing taxis [9], including a real dataset and
a synthetic one, are used to evaluate the performance. The real one, gathered
by 13,007 taxis in 3 months (from October to December in 2013), has 2.5 bil-
lion records and comprises about 190 GB. Each record contains the following
attributes: taxi ID, time, longitude, latitude, speed and many other descriptive
information. To better show the scalability of TrajSpark, we generate the syn-
thetic dataset by extending the real one. In the synthetic one, every taxi reports
its location every five seconds when it is taken by passengers, and the number
of records is 18 billion comprising about 1.4 TB. It needs to mention that the
former dataset can be completely loaded into the distributed memory, while
the storage overhead of the latter one far exceeds the memory capability of our
cluster. Thus, only partial of the synthetic data can be loaded in memory.

We compute the MBR of the spatial range of Beijing and split the rectangle
into 1,000 1,000 cells where each cell covers an area of nearly 180 m * 180 m.
We compare the performance of TrajSpark with GeoSpark and Simba in terms of
query latency and scalability. The latency is represented by the average running
time of a few queries, and the scalability is evaluated when different amount of
data is loaded into those systems.

7.2 Performance of Data Appending

Firstly, we study the performance of data appending when batches of data are
loaded into those systems. Figure4(a) gives the running time when batches of
real dataset are appended (each batch comprises about 32G). In GeoSpark and
Simba, the time cost of appending a batch of data increases linearly as the
volume of existing data increases, because they should repartition both existing
and the new batch of data. While TrajSpark requires less time and the loading
time keeps steady with the increase of data volume. This is because TrajSpark
only needs to partition the new batch of data and also can reach balanced data
partitions. So, in real big data applications where the volume of data grows
rapidly, TrajSpark outperforms GeoSpark and Simba significantly.
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Next, we investigate the storage overhead of different systems using the real
dataset and show the results with the RDD size of loaded data in Fig.4(b).
TrajSpark has the lowest storage cost due to data compression, while Simba and
GeoSpark consume more storage space (about 2-3X), because they should store
both the original data and the index tree in each partition. Simba requires more
space consumption than GeoSpark since the temporal dimension is also used to
index data. We also evaluate the size of global index in these systems. Global
index is not supported in GeoSpark, so we only show the results of TrajSpark and
Simba. Figure4(c) indicates that both TrajSpark and Simba have small global
index storage overhead (in order of KB). The size of global index in TrajSpark
is so small that it can be easily fitted into the memory of the master node.
Moreover, there are fewer partitions in TrajSpark due to data compression, so
the size of global index in TrajSpark is only about 1/3 that of Simba.

7.3 Query Performance

We first examine the efficiency and scalability of SO-based query. The query
latency is represented by the average query time of 100 queries which retrieve
the whole history of the given MOs. We increase the volume of dataset by load-
ing the daily generated data. Figure5 demonstrates that TrajSpark is an order
of magnitude faster than Simba, and nearly two orders of magnitude faster
than GeoSpark, because GeoSpark needs to scan the whole dataset. Although
Simba can prune irrelevant partitions using the global index, it needs to tra-
verse all the content of the selected partitions. In contrast, TrajSpark not only
utilizes the global spatio-temporal index to prune partitions but also uses the
local hash index to support random access to trajectories. Note that these sys-
tems perform better on the real dataset than the synthetic one. This is mainly
because the real one can be completely loaded in memory, while only a small
part of the synthetic one can be loaded. So queries on the latter dataset require
extra I/O cost. Nevertheless, these systems still performs well on the synthetic
dataset due to the following reasons: (i) We persist data at the storage level of
“MEM_AND_DISK_SER”, so hot data can be cached in memory, (ii) By using
the global indexes, a huge amount unnecessary I/O costs can be avoided.
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Fig. 5. Performance of SO-based query
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Subsequently, we examine the impact of data size for the STR-based query.
Since the spatial area is a critical parameter for the query result due to the
unbalanced data distribution, we randomly select 100 areas as the spatial con-
straint for our queries, and each of these areas contains 20*20 cells. These queries
only select trajectories generated in the last week. Figure6(a) and (b) show the
performance of these algorithms. We can see that TrajSpark and Simba behave
steady, while the query latency of GeoSpark increases linearly. Without a global
index, GeoSpark needs to scan the whole dataset. While TrajSpark and Simba
utilize the global index to prune data partitions, and the number of data par-
titions to be scanned does not vary significantly since the query range has not
changed greatly. Moreover, both of the latter two systems use a local index to
prune trajectories in each partition. Consequently, TrajSpark and Simba are
about an order of magnitude faster than GeoSpark. Moreover, TrajSpark is 3-5
times faster than Simba, because it prunes candidates through the MBR and
time range of the trajectory. So it can find the result in O(log,,) (n is the length
of a segment) time as the segment is ordered. Differently, Simba needs to sort
points of the MO to restore the original segment which costs O(nlog,,).
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Fig. 6. Performance of STR-based query

Furthermore, we report the performance of our system on STR-based queries
under various spatio-temporal ranges. The spatial constraints are 10%, 1%, and
0.1% of the entire region. The temporal constraints are 100%, 50%, 10%, 5%
and 1% of the 3 months. As shown in Fig.6(c) and (d), a large spatial or tem-
poral range usually leads to a longer query latency. But the performance is not
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essentially linear to the query range, because the number of partitions to be
scanned and the amount of data to be accessed in each partition do not grow
in a linear way. For example, when the spatial-range is set to 0.01%, and the
temporal range increases from 1% to 100%, the query latency grows 30 times.
Similarly, when the temporal range is set to 1%, and the spatial range increases
from 0.01% to 10%, the query latency grows about 9 times.

Finally, we evaluate the performance of top-k similar trajectory query by
using the Euclidean distance as the similarity metric. In this experiment, the
trajectories of ten taxis from the same day are selected as the query reference.
Figure 7(a) and (b) shows the scalability of TrajSpark when different amount
of data is loaded into the system and the value of k is set to 10. TrajSpark is
two orders of magnitude faster than GeoSpark, and runs about 4-6x faster than
Simba. That is because TrajSpark and Simba prune data partitions with the
global index, while GeoSpark has no global index and needs to access all data
partitions. In comparison of Simba, TrajSpark does not need to sort the points
of each trajectory. This result is similar to that of STR-based query because the
core of this query is an iterative spatio-temporal query. Furthermore, we evaluate
the impact of the parameter k by varying it from 1 to 50. Figure 7(c) and (d)
show that the performance of these systems are not really affected by k. This
is due to the reason that when & = 1, data partitions which contain the most
similar result have already contain enough candidates for larger values of k.
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8 Conclusion

To process the massively increasing trajectory data and support near real-time
query services, this paper proposes a distributed in-memory system called TrajS-
park. This system is built on top of Spark, and proposes IndexTRDD structure
that incorporating a global and local indexing mechanism. Additionally, TrajS-
park utilizes the time-decaying model to monitor the change of data distribution
and enables the data-partition structure to adapt to data changes. We validate
the storage overhead, data loading and query latency of TrajSpark by exper-
iments on both real and synthetic datasets. Experimental results show that
TrajSpark outperforms existing systems in terms of scalability and efficiency.
For future work, we plan to support more complicated operations by utilizing
TrajSpark.
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