
2Software Reliability and Dependability

Key Topics

Software reliability
Software reliability model
System availability
Dependability
Computer security
Safety critical systems
Cleanroom

2.1 Introduction

This chapter gives an introduction to the important area of software reliability and
dependability, and it discusses important topics in software engineering such as
software reliability; software availability; software reliability models; the Clean-
room methodology; dependability and its various dimensions; security engineering;
and safety critical systems.

Software reliability is the probability that the program works without failure for
a period of time, and it is usually expressed as the mean time to failure. It is
different from hardware reliability, in that hardware is characterized by components
that physically wear out, whereas software is intangible and software failures are
due to design and implementation errors. In other words, software is either correct
or incorrect when it is designed and developed, and it does not physically deteri-
orate with time.

© Springer International Publishing AG 2017
G. O’Regan, Concise Guide to Formal Methods, Undergraduate Topics
in Computer Science, DOI 10.1007/978-3-319-64021-1_2

27



Harlan Mills and others at IBM developed the Cleanroom approach to software
development, and the process is described in [1]. It involves the application of
statistical techniques to calculate a software reliability measure based on the
expected usage of the software.1 This involves executing tests chosen from the
population of all possible uses of the software in accordance with the probability of
its expected use. Statistical usage testing is more effective in finding defects that
lead to failure than coverage testing.

Models are simplifications of the reality, and a good model allows accurate
predictions of future behaviour to be made. A model is judged effective if there is
good empirical evidence to support it, and a good software reliability model will
have good theoretical foundations and realistic assumptions. The extent to which
the software reliability model can be trusted depends on the accuracy of its pre-
dictions, and empirical data will need to be gathered to judge its accuracy. A good
software reliability model will give good predictions of the reliability of the
software.

It is essential that software that is widely used is dependable, which means that
the software is available whenever required, and that it operates safely and reliably
without any adverse side effects. Today, billions of computers are connected to the
Internet, and this has led to a growth in attacks on computers. It is essential that
computer security is carefully considered, and developers need to be aware of the
threats facing a system and techniques to eliminate them. The developers need to be
able to develop secure systems that are able to deal with and recover from external
attacks.

2.2 Software Reliability

The design and development of high-quality software has become increasingly
important for society. The hardware field has been very successful in developing
sound reliability models, which allow useful predictions of how long a hardware
component (or product) will function to be provided. This has led to a growing
interest in the software field in the development of a sound software reliability
model. Such a model would provide a sound mechanism to predict the reliability of
the software prior to its deployment at the customer site, as well as confidence that
the software is fit for purpose and safe to use.

Definition 2.1 (Software Reliability)
Software reliability is the probability that the program works without failure for

a specified length of time, and it is a statement of the future behaviour of the
software. It is generally expressed in terms of the mean time to failure (MTTF) or
the mean time between failure (MTBF).

1The expected usage of the software (or operational profile) is a quantitative characterization
(usually based on probability) of how the system will be used.

28 2 Software Reliability and Dependability



Statistical sampling techniques are often employed to predict the reliability of
hardware, as it is not feasible to test all items in a production environment. The
quality of the sample is then used to make inferences on the quality of the entire
population, and this approach is effective in manufacturing environments where
variations in the manufacturing process often lead to defects in the physical
products.

There are similarities and differences between hardware and software reliability.
A hardware failure generally arises due to a component wearing out due to its age,
and often a replacement component is required. Many hardware components are
expected to last for a certain period of time, and the variation in the failure rate of a
hardware component is often due to variations in the manufacturing process, and to
the operating environment of the component. Good hardware reliability predictors
have been developed, and each hardware component has an expected mean time to
failure. The reliability of a product may then be determined from the reliability of
the individual components.

Software is an intellectual undertaking involving a team of designers and pro-
grammers. It does not physically wear out as such, and software failures manifest
themselves from particular user inputs. Each copy of the software code is identical,
and the software code is either correct or incorrect. That is, software failures are due
to design and implementation errors, rather than to the software physically wearing
out over time. The software community has not yet developed a sound software
reliability predictor model.

The software population to be sampled consists of all possible execution paths of
the software, and since this is potentially infinite, it is generally not possible to
perform exhaustive testing. The way in which the software is used (i.e. the inputs
entered by the users) will impact upon its perceived reliability. Let If represent the
fault set of inputs (i.e. if 2If if and only if the input of if by the user leads to failure).
The randomness of the time to software failure is due to the unpredictability in the
selection of an input if 2If. It may be that the elements in If are inputs that are rarely
used, and therefore, the software will be perceived as reliable.

Statistical usage testing may be used to make predictions on the future perfor-
mance and reliability of the software. This requires an understanding of the
expected usage profile of the system, as well as the population of all possible usages
of the software. The sampling is done in accordance with the expected usage
profile, and a software reliability measure is calculated.

2.2.1 Software Reliability and Defects

The release of an unreliable software product may result in damage to property or
injury (including loss of life) to a third party. Consequently, companies need to be
confident that their software products are fit for use prior to their release. The
project team needs to conduct extensive inspections and testing of the software, as
well as considering all associated risks prior to its release.

2.2 Software Reliability 29



Objective product quality criteria may be set (e.g. 100% of tests performed and
passed) that must be satisfied prior to the release of the product. This provides a
degree of confidence that the software has the desired quality, and is fit for purpose.
However, these results are historical in the sense that they are a statement of past
and present quality. The question is whether the past behaviour and performance
provides a sound indication of future behaviour.

Software reliability models are an attempt to predict the future reliability of the
software, and to assist in deciding on whether the software is ready for release.
A defect does not always result in a failure, as it may occur on a rarely used
execution path. Studies indicate that many observed failures arise from a small
proportion of the existing defects.

Adam’s 1984 case study [2] indicates that over 33% of the defects led to an
observed failure with mean time to failure greater than 5000 years, whereas less
than 2% of defects led to an observed failure with a mean time to failure of less than
5 years. This suggests that a small proportion of defects often lead to almost all of
the observed failures (Table 2.1).

The analysis shows that 61.6% of all fixes (groups 1 and 2) were for failures that
will be observed less than once in 1580 years of expected use, and that these
constitute only 2.9% of the failures observed by typical users. On the other hand,
groups 7 and 8 constitute 53.7% of the failures observed by typical users and only
1.4% of fixes.

This case study showed that coverage testing is not cost effective in increasing
MTTF. Usage testing, in contrast, would allocate 53.7% of the test effort to fixes
that will occur 53.7% of the time for a typical user. Harlan Mills has argued [3] that
the data in the table shows that usage testing is 21 times more effective than
coverage testing.

There is a need to be careful with reliability growth models, as there is no
tangible growth in reliability unless the corrected defects are likely to manifest
themselves as a failure.2 Many existing software reliability growth models assume
that all remaining defects in the software have an equal probability of failure, and
that the correction of a defect leads to an increase in software reliability. These
assumptions are questionable.

Table 2.1 Adam’s 1984 study of software failures of IBM products

Rare Frequent

1 2 3 4 5 6 7 8

MTTF (years) 5000 1580 500 158 50 15.8 5 1.58

Avg % fixes 33.4 28.2 18.7 10.6 5.2 2.5 1.0 0.4

Prob failure 0.008 0.021 0.044 0.079 0.123 0.187 0.237 0.300

2We are assuming that the defect has been corrected perfectly with no new defects introduced by
the changes made.

30 2 Software Reliability and Dependability



The defect count and defect density may be poor predictors of operational
reliability, and an emphasis on removing a large number of defects from the
software may not be sufficient to achieve high reliability.

The correction of defects in the software leads to a newer version of the soft-
ware, and many software reliability models assume reliability growth; i.e. the new
version is more reliable than the older version as several identified defects have
been corrected. However, in some sectors such as the safety critical field, the view
is that the new version of a program is a new entity, and that no inferences may be
drawn until further investigation has been done. There are a number of ways to
interpret the relationship between the new version of the software and the older
version (Table 2.2).

The safety critical industry (e.g. the nuclear power industry) takes the conser-
vative viewpoint that any change to a program creates a new program. The new
program is therefore required to demonstrate its reliability, and so extensive testing
needs to be performed.

2.2.2 Cleanroom Methodology

Harlan Mills and others at IBM developed the Cleanroom methodology as a way to
develop high-quality software [3]. Cleanroom helps to ensure that the software is
released only when it has achieved the desired quality level, and the probability of
zero defects is very high.

The way in which the software is used will impact on its perceived quality and
reliability. Failures will manifest themselves on certain input sequences, and as the
input sequences will vary among users, the result will be different perceptions of the
reliability of the software among the users. The knowledge of how the software will
be used allows the software testing to focus on verifying the correctness of common
everyday tasks carried out by users.

Therefore, it is important to determine the operational profile of the users to
enable effective software testing to be performed. This may be difficult to determine
and could change over time, as users may potentially change their behaviour as
their needs evolve. The determination of the operational profile involves identifying
the common operations to be performed, and the probability of each operation
being performed.

Table 2.2 New and old
version of software

Similarities and differences between new/old version

• The new version of the software is identical to the previous
version except that the identified defects have been corrected

• The new version of the software is identical to the previous
version, except that the identified defects have been corrected,
but the developers have introduced some new defects

• No assumptions can be made about the behaviour of the new
version of the software until further data is obtained

2.2 Software Reliability 31



Cleanroom employs statistical usage testing rather than coverage testing, and
this involves executing tests chosen from the population of all possible uses of the
software in accordance with the probability of its expected use. The software
reliability measure is calculated by statistical techniques based on the expected
usage of the software, and Cleanroom provides a certified mean time to failure of
the software.

Coverage testing involves designing tests that cover every path through the
program, and this type of testing is as likely to find a rare execution failure as well
as a frequent execution failure. However, it is essential to find failures that occur on
frequently used parts of the system.

The advantage of usage testing (that matches the actual execution profile of the
software) is that it has a better chance of finding execution failures on frequently
used parts of the system. This helps to maximize the expected mean time to failure
of the software.

The Cleanroom software development process and calculation of the software
reliability measure is described in [1], and the Cleanroom development process
enables engineers to deliver high-quality software on time and on budget. Some of
the benefits of the use of Cleanroom on projects at IBM are described in [3] and
summarized in Table 2.3.

2.2.3 Software Reliability Models

Models are simplifications of the reality, and a good model allows accurate pre-
dictions of future behaviour to be made. It is important to determine the adequacy of
the model, and this is done by model exploration, and determining the extent to
which it explains the actual manifested behaviour, as well as the accuracy of its
predictions.

A model is judged effective if there is good empirical evidence to support it, and
more accurate models are sought to replace inadequate models. Models are often
modified (or replaced) over time, as further facts and observations lead to

Table 2.3 Cleanroom results in IBM

Project Results

Flight control project (1987) 33KLOC Completed ahead of schedule
Error-fix effort reduced by factor of five
2.5 errors KLOC before any execution

Commercial product (1988) Deployment failures of 0.1/KLOC
Certification testing failures 3.4/KLOC
Productivity 740 LOC/month

Satellite Control (1989) 80 KLOC
(partial cleanroom)

50% improvement in quality
Certification testing failures of 3.3/KLOC
Productivity 780 LOC/month
80% improvement in productivity

Research project (1990) 12 KLOC Certified to 0.9978 with 989 test cases

32 2 Software Reliability and Dependability



aberrations that cannot be explained with the current model. A good software
reliability model will have the following characteristics (Table 2.4).

There are several software reliability predictor models employed (Table 2.5).
Some of them just compute defect counts rather than estimating software reliability
in terms of mean time to failure. They may be categorized into:

• Size and Complexity Metrics
These are used to predict the number of defects that a system will reveal in
operation or testing.

• Operational Usage Profile
These predict failure rates are based on the expected operational usage profile of
the system. The number of failures encountered is determined, and the software
reliability is predicted (e.g. Cleanroom and its prediction of the MTTF).

• Quality of the Development Process
These predict failure rates are based on the process maturity of the software
development process in the organization (e.g. CMMI maturity).

The extent to which the software reliability model can be trusted depends on the
accuracy of its predictions, and empirical data will need to be gathered to make a
judgment. It may be acceptable to have a little inaccuracy during the early stages of
prediction, provided the predictions of operational reliability are close to the
observations. A model that gives overly optimistic results is termed “optimistic”,
whereas a model that gives overly pessimistic results is termed “pessimistic”.

The assumptions in the reliability model need to be examined to determine
whether they are realistic. Several software reliability models have questionable
assumptions such as:

• All defects are corrected perfectly.
• Defects are independent of one another.
• Failure rate decreases as defects are corrected.
• Each fault contributes the same amount to the failure rate.

Table 2.4 Characteristics of
good software reliability
model

Good theoretical foundation

Realistic assumptions

Good empirical support

As simple as possible (Ockham’s Razor)

Trustworthy and accurate

2.2 Software Reliability 33



Table 2.5 Software reliability models

Model Description Comments

Jelinski/Moranda
model

The failure rate is a Poisson processa

and is proportional to the current
defect content of program. The
initial defect count is N; the initial
failure rate is Nu; it decreases to
(N − 1)u after the first fault is
detected and eliminated, and so on.
The constant u is termed the
proportionality constant

Assumes defects are corrected
perfectly, and no new defects are
introduced
Assumes each fault contributes the
same amount to failure rate

Littlewood/Verrall
model

Successive execution time between
failures is independent
exponentially distributed random
variablesb. Software failures are the
result of the particular inputs, and
faults are introduced from the
correction of defects

Does not assume perfect correction
of defects

Seeding and
tagging

This is analogous to estimating the
fish population of a lake (Mills).
A known number of defects are
inserted into a software program,
and the proportion of these
identified during testing is
determined
Another approach (Hyman) is to
regard the defects found by one
tester as tagged, and then to
determine the proportion of tagged
defects found by a second
independent tester

Estimate of the total number of
defects in the software but not a not
s/w reliability predictor
Assumes all faults are equally likely
to be found and introduced faults
representative of existing

Generalized
Poisson model

The number of failures observed in
ith time interval si has a Poisson
distribution with mean /(N − Mi−1)
si
a, where N is the initial number of
faults; Mi−1 is the total number of
faults removed up to the end of the
(i − 1)th time interval; and / is the
proportionality constant

Assumes faults are removed
perfectly at end of time interval

aThe Poisson process is a widely used counting process, and especially in counting the occurrence
of certain events that appear to happen at a certain rate but at random. A Poisson random variable
is of the form P{X = i} = e−k ki/i!
bThe exponential distribution is used to model the time between the occurrence of events in an
interval of time. The density function is given by f(x) = ke−kx

34 2 Software Reliability and Dependability



2.3 Dependability

Software is ubiquitous and is important to all sections of society, and so it is
essential that widely used software is dependable (or trustworthy). In other words,
the software should be available whenever required, as well as operating properly,
safely and reliably, without any adverse side effects or security concerns. It is
essential that the software used in systems in the safety critical and security critical
fields is dependable, as the consequence of failure (e.g. the failure of a nuclear
power plant) could be massive damage leading to loss of life or endangering the
lives of the public.

Dependability engineering is concerned with techniques to improve the
dependability of systems, and it involves the use of a rigorous design and devel-
opment process to minimize the number of defects in the software. A dependable
system is generally designed for fault tolerance, where the system can deal with
(and recover from) faults that occur during software execution. Such a system needs
to be secure, and able to protect itself from accidental or deliberate external attacks.
Table 2.6 lists several dimensions of dependability.

Modern software systems are subject to attack by malicious software such as
viruses that change the behaviour of the software, or corrupt data causing the
system to become unreliable. Other malicious attacks include a denial of service
attack that negatively impacts the system’s availability.

The design and development of dependable software needs to include protection
measures that protect against external attacks that could compromise the availability
and security of the system. Further, a dependable system needs to include recovery
mechanisms to enable normal service to be restored as quickly as possible fol-
lowing an attack.

Dependability engineering is concerned with techniques to improve the
dependability of systems, and in designing dependable systems. A dependable
system will generally be developed using an explicitly defined repeatable process,
and it may employ redundancy (spare capacity) and diversity (different types) to
achieve reliability.

There is a trade-off between dependability and the performance of the system, as
dependable systems will need to carry out extra checks to monitor themselves and
to check for erroneous states, and to recover from faults before failure occurs. This
inevitably leads to increased costs in the design and development of dependable
systems.

Table 2.6 Dimensions of dependability

Dimension Description

Availability System is available for use at any time

Reliability The system operates correctly and is trustworthy

Safety The system does not injure people or damage the environment

Security The system prevents unauthorized intrusions

2.3 Dependability 35



Software availability is the percentage of the time that the software system is
running, and is a measure of the uptime/downtime of the software during a par-
ticular time period. The downtime refers to a period of time when the software is
unavailable for use (including planned and unplanned outages), and many com-
panies aim to develop software that is available for use 99.999% of the time in the
year (i.e. a downtime of less than 5 min per annum). This goal is known as five
nines, and it is a common goal in the telecommunications sector.

Safety-critical systems are systems where it is essential that the system is safe for
the public, and that people or the environment is not harmed in the event of system
failure. These include aircraft control systems and process control systems for
chemical and nuclear power plants. The failure of a safety critical system could in
some situations lead to loss of life or serious economic damage.

Formal methods are discussed in Chap. 3, and they provide a precise way of
specifying the requirements of the proposed system, and demonstrating (using
mathematics) that key properties are satisfied in the formal specification. Further,
they may be used to show that the implemented program satisfies its specification.
The use of formal methods generally leads to increased confidence in the correct-
ness of safety critical and security critical systems.

The security of the system refers to its ability to protect itself from accidental or
deliberate external attacks, which are common today since most computers are
networked and connected to the Internet. There are various security threats in any
networked system including threats to the confidentiality and integrity of the system
and its data, and threats to the availability of the system.

Therefore, controls are required to enhance security and to ensure that attacks are
unsuccessful. Encryption is one way to reduce system vulnerability, as encrypted
data is unreadable to the attacker. There may be controls that detect and repel
attacks, and these controls are used to monitor the system and to take action to shut
down parts of the system or restrict access in the event of an attack. There may be
controls that limit exposure (e.g. insurance policies and automated backup strate-
gies) that allow recovery from the problems introduced.

It is important to have a reasonable level of security as otherwise all of the other
dimensions of dependability (reliability, availability and safety) are compromised.
Security loopholes may be introduced in the development of the system, and so care
needs to be taken to prevent hackers from exploiting security vulnerabilities.

Risk analysis plays a key role in the specification of security and dependability
requirements, and this involves identifying risks that can result in serious incidents.
This leads to the generation of specific security requirements as part of the system
requirements to ensure that these risks do not materialize, or if they do materialize
then serious incidents will not materialize.

36 2 Software Reliability and Dependability



2.4 Computer Security

The introduction of the Internet in the early 1990s transformed the world of
computing, and it led inexorably to more and more computers being connected to
the Internet. This has subsequently led to an explosive growth in attacks on com-
puters and systems, as hackers and malicious software seek to exploit known
security vulnerabilities. It is therefore essential to develop secure systems that can
deal with and recover from such external attacks.

Hackers will often attempt to steal confidential data and to disrupt the services
being offered by a system. Security engineering is concerned with the development
of systems that can prevent such malicious attacks, and recover from them. It has
become an important part of software and system engineering, and software
developers need to be aware of the threats facing a system, and develop solutions to
eliminate them.

Hackers may probe parts of the system for weaknesses, and system vulnera-
bilities may lead to attackers gaining unauthorized access to the system. There is a
need to conduct a risk assessment of the security threats facing a system early in the
software development process, and this will lead to several security requirements
for the system.

The system needs to be designed for security, as it is difficult to add security after
it has been implemented. Security loopholes may be introduced in the development
of the system, and so care needs to be taken to prevent these as well as preventing
hackers from exploiting security vulnerabilities. There may be controls that detect
and repel attacks, and these monitor the system and take appropriate action to
restrict access in the event of an attack.

The choice of architecture and how the system is organized is fundamental to the
security of the system, and different types of systems will require different technical
solutions to provide an acceptable level of security to its users. The following
guidelines for designing secure systems are described in [4]:

– Security decisions should be based on the security policy.
– A security critical system should fail securely.
– A secure system should be designed for recoverability.
– A balance is needed between security and usability.
– A single point of failure should be avoided.
– A log of user actions should be maintained.
– Redundancy and diversity should be employed.
– Organization information in system into compartments.

It is important to have a reasonable level of security, as otherwise all of the other
dimensions of dependability are compromised.

2.3 Dependability 37



2.5 System Availability

System availability is the percentage of time that the software system is running
without downtime, and robust systems will generally aim to achieve 5-nines
availability (i.e. 99.999% availability). This is equivalent to approximately 5 min of
downtime (including planned/unplanned outages) per year. The availability of a
system is measured by its performance when a subsystem fails, and its ability to
resume service in a state close to the original state. A fault-tolerant system continues
to operate correctly (possibly at a reduced level) after some part of the system fails,
and it aims to achieve 100% availability.

System availability and software reliability are related, with availability mea-
suring the percentage of time that the system is operational, and reliability mea-
suring the probability of failure-free operation over a period of time. The
consequence of a system failure may be to freeze or crash the system, and system
availability is measured by how long it takes to recover and restart after a failure.
A system may be unreliable and yet have good availability metrics (fast restart after
failure), or it may be highly reliable with poor availability metrics (taking a long
time to recover after a failure).

Software that satisfies strict availability constraints is usually reliable. The
downtime generally includes the time needed for activities such as rebooting a
machine, upgrading to a new version of software, planned and unplanned outages.
It is theoretically possible for software to be highly unreliable but yet to be highly
available. Consider, for example, software that fails consistently for 0.5 s every
day. Then, the total failure time is 183 s or approximately 3 min, and such a system
would satisfy 5-nines availability. However, this scenario is highly unlikely for
almost all systems, and the satisfaction of strict availability constraints usually
means that the software is also highly reliable.

It is possible that software that is highly reliable may satisfy poor availability
metrics. Consider the upgrade of the version of software at a customer site to a new
version, where the upgrade path is complex or poorly designed (e.g. taking 2 days).
Then, the availability measure is very poor even though the product may be highly
reliable. Further, the time that system unavailability occurs is relevant, as a system
that is unavailable at 03:00 in the morning may have minimal impacts on users.
Consequently, care is required before drawing conclusions between software reli-
ability and software availability metrics.

2.6 Safety Critical Systems

A safety critical system is a system whose failure could result in significant eco-
nomic damage or loss of life. There are many examples of safety critical systems
including aircraft flight control systems and missile systems. It is therefore essential
to employ rigorous processes in their design and development, and testing alone is
usually insufficient to verifying the correctness of a safety critical system.

38 2 Software Reliability and Dependability



The safety critical industry takes the view that any change to safety critical
software creates a new program. The new program is therefore required to
demonstrate that it is reliable and safe to the public, and so extensive testing needs
to be performed. Other techniques such as formal verification and model checking
may be employed to provide an extra level of assurance in the correctness of the
safety critical system.

Safety critical systems need to be dependable and available for use whenever
required. Safety critical software must operate correctly and reliably without any
adverse side effects. The consequence of failure (e.g. the failure of a weapons
system) could be massive damage, leading to loss of life or endangering the lives of
the public.

Safety critical systems are generally designed for fault tolerance, where the
system can deal with (and recover from) faults that occur during execution. Fault
tolerance is achieved by anticipating exceptional events, and in designing the
system to handle them. A fault-tolerant system is designed to fail safely, and
programs are designed to continue working (possibly at a reduced level of per-
formance) rather than crashing after the occurrence of an error or exception. Many
fault-tolerant systems mirror all operations, where each operation is performed on
two or more duplicate systems, and so if one fails, then the other system can take
over.

The development of a safety critical system needs to be rigorous, and subject to
strict quality assurance to ensure that the system is safe to use and that the public
will not be in danger. This involves rigorous design and development processes to
minimize the number of defects in the software, as well as comprehensive testing to
verify its correctness.

Formal methods consist of a set of mathematical techniques to rigorously state
the requirements of the proposed system. They may be employed to derive a
program from its mathematical specification, and they may be used to provide a
rigorous proof that the implemented program satisfies its specification. The
advantages of a mathematical specification are that it is not subject to the ambi-
guities inherent in a natural language description of a system, and they may be
subjected to a rigorous analysis to demonstrate the presence or absence of key
properties.

2.7 Review Questions

1. Explain the difference between software reliability and system availability.
2. What is software dependability?
3. Explain the significance of Adam’s 1984 study of failures at IBM.

2.6 Safety Critical Systems 39



4. Describe the Cleanroom methodology.
5. Describe the characteristics of a good software reliability model.
6. Explain the relevance of security engineering.
7. What is a safety critical system?

2.8 Summary

This chapter gave an introduction to some important topics in software engineering
including software reliability and the Cleanroom methodology; dependability;
availability; security; and safety critical systems.

Software reliability is the probability that the program works without failure for
a period of time, and it is usually expressed as the mean time to failure. Cleanroom
involves the application of statistical techniques to calculate software reliability,
and it is based on the expected usage of the software.

It is essential that software used in the safety and security critical fields is
dependable, with the software available when required, as well as operating safely
and reliably without any adverse side effects. Many of these systems are fault
tolerant and are designed to deal with (and recover) from faults that occur during
execution.

Such a system needs to be secure and able to protect itself from external attacks,
and needs to include recovery mechanisms to enable normal service to be restored
as quickly as possible. In other words, it is essential that if the system fails, then it
fails safely.

Today, billions of computers are connected to the Internet, and this has led to a
growth in attacks on computers. It is essential that developers are aware of the
threats facing a system and are familiar with techniques to eliminate them.

References

1. G. O’Regan, Mathematical Approaches to Software Quality (Springer, 2006)
2. E. Adams, Optimizing preventive service of software products. IBM Res. J. 28(1), 2–14 (1984)
3. R.H. Cobb, H.D. Mills, Engineering software under statistical quality control. IEEE Softw.

(1990)
4. I. Sommerville, Software Engineering, 9th edn. (Pearson, 2011)

40 2 Software Reliability and Dependability



http://www.springer.com/978-3-319-64020-4


	2 Software Reliability and Dependability
	2.1 Introduction
	2.2 Software Reliability
	2.2.1 Software Reliability and Defects
	2.2.2 Cleanroom Methodology
	2.2.3 Software Reliability Models

	2.3 Dependability
	2.4 Computer Security
	2.5 System Availability
	2.6 Safety Critical Systems
	2.7 Review Questions
	2.8 Summary
	References


