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Abstract. Although motor primitives (MPs) have been studied exten-
sively, much less attention has been devoted to studying their generaliza-
tion to new situations. To cope with varying conditions, a MP’s policy
encoding must support generalization over task parameters to avoid learn-
ing separate primitives for each condition. Local and linear parameterized
models have been proposed to interpolate over task parameters to provide
limited generalization.

In this paper, we present a global parametric motion primitive
(GPDMP) which allows generalization beyond local or linear models.
Primitives are modeled using a linear basis function model with global
non-linear basis functions. The model is constructed from initial non-
parametric primitives found using a single human demonstration and sub-
sequent episodes of reinforcement learning to adapt the demonstrated skill
to other task parameters. The initial models are then used to optimize the
parameters of the global parametric model. Experiments with a ball-in-a-
cup task with varying string lengths show that GPDMP allows greatly
improved extrapolation compared to earlier local or linear models.

1 Introduction

Learning from demonstration (LfD) is a parametric supervised learning frame-
work; the parameters of a model [1–5] are fine-tuned, thus fitting the model to
the training data (demonstrations). Developing a model capable of adapting and
generalizing to new unseen situations is one of the main challenges and objectives
of supervised learning. In the context of motor primitives (MPs), a generalizable
model can be translated into a model achieving a successful reproduction of an
imitated task in a perturbed environment. For example, a generalizing model
can reproduce a ball-in-a-cup task for a different string length unseen in the
demonstrations; the model is interpolating when this new string length is in the
range of demonstrations set; otherwise, it is extrapolating.

Recently, researchers have shown interest in generalizing MPs to new situa-
tions [6–9]. Such a generalization is achieved by parametrizing a policy encoding
with respect to an evaluated environment condition. Although these paramet-
ric models are capable of interpolation, they are not guaranteed to extrapolate.
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Fig. 1. (a) Ball-in-a-cup game with two different string lengths. (b) Models fit to
7 points of a non-linear function. Only the second order model captures the global
pattern, while the GPR model tends to the mean when extrapolating, and the linear
model is either (when trained with all samples) leaning toward the mean, or finds only
the local pattern when fit to only two points marked by the green color. (Color figure
online)

In fact, very few researchers have considered global policy encoding capable of
extrapolation [10,11].

In this paper, we propose a new parametric LfD approach for generalizing
an imitated task to new unseen situations. We selected the ball-in-a-cup task to
assess how effective our method is in generalizing from initial demonstration with
certain string length to changed lengths. The kinematics of the initial demon-
stration are encoded using a Dynamic Movement Primitive (DMP). Afterwards,
the shape parameters of the DMP are optimized using PoWER [12] to adapt
the skill to a few other string lengths. These training data are then used to
build a global parametric model of the skill. Then, the global model can be used
for generalizing model parameters (e.g. shape parameters of DMP) to new task
parameters (e.g. string lengths) without re-learning the generalized model.

The main contribution of this paper is a novel global parametric MP model
(GPDMP) based on DMPs which employs a linear basis function model with
global non-linear basis functions. The representative power of the model can
be controlled to avoid the over-fitting problem. We also show that the PDMP
method proposed by Matsubara et al. [10] can be reduced to a linear special case
of our parametric model. Furthermore, we propose a new mechanism for explor-
ing the DMP’s policy space. Experiments with a ball-in-a-cup task show that
the proposed model greatly improves extrapolation capability over the existing
local or linear models.

2 Related Work

To adapt LfD models to new environments, the model parameters need to be
adjusted according to parameters characterizing the new environment or task.
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Existing generalizable LfD models can be categorized as (i) generalization by
design where the parameters are explicit in the model structure such as the goal
of a DMP; (ii) generalization based on interpolation which uses a weighted com-
bination of training models; and (iii) generalization by global linear models where
the model parameters depend linearly on the environment/task parameters.

Kober et al. [13] utilized a cost regularized kernel regression (based on
Gaussian process regression) for learning the mapping of new situations to meta-
parameters including the initial position, goal, amplitude and the duration of
the MPs; they model the automatic adjustment of the meta-parameters as a RL
problem. The approach allows then adjusting these designed aspects of motion
based on the task but does not enable modifying other characteristics of the
trajectory (policy), making the approach suitable for learning tasks where the
DMPs are adapted spatially and temporally without changing the overall shape
of the motion, but unsuitable for tasks where the dynamics during motion are
changed such as in this paper.

Researchers have recently shown interest also in generalizing DMP shape
parameters to new situations [7–9,14–16]. The approaches are primarily based
on local regression methods. For example, Da Silva et al. [7] extract lower dimen-
sional manifolds (latent space) from learned policies using ISOMAP algorithm;
they achieve a generalizable policy by mapping the manifolds (representing task
parameters) to DMPs shape parameters. Support Vector Machines with local
Gaussian kernels are used for learning the mapping. Similarly, Forte et al. [8]
utilize Gaussian process regression (GPR) to learn the mapping of task parame-
ters to DMP shape parameters. Ude et al. [9] and Nemec et al. [15] utilize Locally
Weighted Regression (LWR) and kernels with positive weights for learning the
mapping. Stulp et al. [14] learn the original shape parameters and generalize
it with one single regression using Gaussian kernels. Mülling et al. [16] propose
a linear mixture of MPs for generalization and refine the generalized behavior
using RL.

Although the local regression approaches might interpolate within the range
of demonstrations, their extrapolation capability is not guaranteed, which is
mainly because of the kernels learning the local structure; thus they typically
tend towards the mean of training data when extrapolating. This problem is
illustrated using a simple example in Fig. 1(b) which shows local (GPR) and
global (linear, second order) models fit to a set of points. When a line is fit to two
points close to each other, it learns the local pattern allowing interpolation and
extrapolation in a small neighborhood. If the line fit is made using all points, the
fit tends to become poor everywhere. A local regression such as GPR performs
well in interpolation, but not in extrapolation. When a well fitting higher order
global model can be found, it typically outperforms the others in extrapolation.

Carrera et al. [6] developed a parametric MPs model based on a mixture of
several DMPs. First, they record multiple demonstrations. A DMP model is fit to
each demonstration, and a parametric value is assigned to it representing the task
environment in which the demonstration was recorded. Then, they calculate the
influence of each model using a distance function between the model parameters
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and the parametric value describing the current environment perturbation. Using
the influence of each model as its mixing coefficient, the mixture of models is
computed at the acceleration level. Since it is a linear combination with positive
coefficients, the mixture model is not expected to be capable of extrapolation.
In fact, we have observed in our experiments (see Sect. 4.3) that this model is
incapable of extrapolation in a Ball-in-a-Cup task.

Calinon et al. [11] proposed an MPs model based on a Gaussian mixture
model and generalize it to new situations using expectation maximization.
Although their model is capable of linear extrapolation, it is only applicable
when the task parameters can be represented in the form of coordinate systems.

All things considered, few researchers [10] have considered the extrapolation
capability in generalizing task parameters to model parameters, which is the
main focus of this paper. We show (see Sect. 3.3) that the model proposed by
Matsubara et al. [10] is a linear special case of the proposed parametric model.

3 Method

In this section, we review dynamic movement primitives (DMPs). After that, we
clarify our global parametric dynamic movement primitives (GPDMPs) method
which incorporates both linear and non-linear parametric models. Besides that,
we reformulate the parametric DMP method proposed by Matsubara et al. [10]
and demonstrate how it can be reduced to a linear special case of the proposed
approach.

3.1 Dynamic Movement Primitives

DMPs encode a policy for a one-dimensional system using two differential equa-
tions. The first differential equation

ż = −ταzz (1)

formulates a canonical system where z denotes the phase of a movement; τ = 1
T

represents the time constant where T is the duration of a demonstrated motion,
and αz is a constant controlling the speed of the canonical system. This first
order system resembles an adjustable clock driving the transform system

1
τ

ẍ = αx(βx(g − x) − ẋ) + f(z;w) (2)

consisting of a simple linear dynamical system acting like a spring damper per-
turbed by a non-linear component (forcing function) f(z;w). x denotes the state
of the system, and g represents the goal. The linear system is critically damped
by setting the gains as αx = 1

4βx. The forcing function

f(z;w) = wT g (3)
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controls the trajectory of the system using a time-parameterized kernel vector g
and a modifiable policy parameter vector (shape parameters) w. Each element
of the kernel vector

[g]n =
ψn(z)z

∑N
n=1 ψn(z)

(g − x0) (4)

is determined by a normalized basis function ψn(z) multiplied by the phase
variable z and the scaling factor (g − x0) allowing for the spatial scaling of the
resulting trajectory. Normally, a radial basis function (RBF) kernel

ψn(z) = exp(−hn(z − cn)2) (5)

is selected as the basis function. The centres of kernels (cn) are usually equi-
spaced in time spanning the whole demonstrated trajectory. It is also a common
practice to choose the same temporal width (hn = 2

3 |cn − cn−1|) for all kernels.
Furthermore, the contribution of the non-linear component (3) decays exponen-
tially by including the phase variable z in the kernels. Hence, the transform
system (2) converges to the goal g.

The shape parameter vector w can be learned using weighted linear regression
(LWR) [17]; firstly, the nominal forcing function fref is retrieved by integrating
the transform system (2) with respect a human demonstration xdemo; next, the
shape parameter for every kernel is estimated using

[w]n = (ZT ΨZ)−1ZT Ψfref (6)

where [fref ]t = fref
t , [Z]t = zt, and Ψ = diag(ψn

1 , ..., ψn
t , ..., ψn

T ).

3.2 Global Parametric Dynamic Movement Primitives

Using DMPs, a task can be imitated from a human demonstration; however,
the reproduced task cannot be adapted to different environment conditions. To
overcome this limitation, we have integrated a parametric model to DMPs cap-
turing the variability of a task from multiple demonstrations. We transform the
basic forcing function (3) into a parametric forcing function

f(z, l;w) = wT (l)g (7)

where the kernel weight vector w is parametrized using a parameter vector l of
measurable environment factors.

We model the dependency of the weights with respect to parameters as a lin-
ear combination of J basis vectors vi with coefficients depending on parameters
in a non-linear fashion,

w(l) =
J∑

i=0

φi(l)vi (8)

where φi(l) is a function describing the coefficient of the ith basis vector vi.
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For a chosen non-linear basis (known functions φi), the basis vectors can be
chosen by minimizing the difference between modeled and initial non-parametric
DMP shape parameters,

arg min
v0,...,J

K∑

k=1

∥
∥w(lk) − wk

∥
∥
2

(9)

where wk denotes the weight vector of a non-parametric DMP optimized for
parameter values lk. The initial weights can be merely imitated from a human
demonstration using (6) or improved using a policy search method [18]. In either
case, reproducing an imitated task using wk should lead to a successful perfor-
mance in an environment parametrized by lk.

The formulation captures linear models such as [10] as a special case. Con-
sidering a single parameter l for presentational simplicity, the linear model can
be written

w(l) = lv1 + v0. (10)

In the next section we show the equivalence of (10) to the mode presented in [10].
To optimize the linear model using DMPs for two parameter values, each

element of the weight vectors [v̂1]i and [v̂0]i can be estimated independently
using

[v̂1]i =
[w1]i − [w2]i

l1 − l2
(11)

[v̂0]i = [w1]i − li[v̂1]i (12)

The linear model requires thus 2N parameters where N refers to the number of
kernels g.

For a general polynomial model in one parameter, the non-linear basis is

φ(l) = (1 l l2... lJ). (13)

The number of initial DMPs must then be at least equal to or greater than the
order of the model to avoid unconstrained optimization problems. In the exper-
imental part of the paper, we consider a second order model in one parameter,
so that

w(l) = l2v2 + lv1 + v0. (14)

The model choice for a particular application is a compromise between com-
plexity of the attractor landscape that can be modeled and overfitting due to
insufficient data.

3.3 Relationship to Matsubara’s PDMP

Matsubara et al. [10] have proposed a PDMP method for learning parametric
attractor landscape by extracting a small number of common factors from M
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demonstrations. Firstly, these M demonstrations are aligned so that they have
the same size. Then, the nominal forcing function matrix is generated using

Fref
all =

(
fref
1 fref

2 ... fref
M

)
(15)

where fref
m represents the reference forcing function calculated for the m-th

demonstration xdemo
m . Next, using the singular value decomposition of the nom-

inal forcing functions matrix

Fref
all = UΣVT (16)

the matrix of desired basis Fbasis function is created from the first J columns of
V. They estimate the forcing function using

f̂(z, s;w) = ΣJ
j=1sjbj(z;w) (17)

where the basis function
bj = wT

j g (18)

is a weighted sum of kernels [g]n (4). The weight vector w can be calculated
using least square fitting or LWR as

[wj ]n = (ZT ΨZ)−1ZT ΨFbasis (19)

In addition, the hyper parameter is calculated using

sj = βj,1l + βj,2 (20)

where l represents an environment parameter. The structure of the basis function
(18) allows for further simplification of the forcing function (17). In fact, by
substituting (20) into (17), we get

f̂(z, s;w) = ΣJ
j=1(βj,1l + βj,2)bj(z;w)

= ΣJ
j=1(βj,1lwT

j g) + ΣJ
j=1(βj,2wT

j g)

= (ΣJ
j=1βj,1wT

j )lg + (ΣJ
j=1βj,2wT

j )g

= vT
1 lg + vT

0 g

= (v1l + v0)T g (21)

which is equivalent to our linear parametric model (10). However, Matsubara’s
approach is computationally more complex. In fact, their method involves three
main processes: an SVD decomposition of the matrix F basis of desired basis
functions, calculating J kernel vectors w for basis functions bj , and computing
J style parameters βj,1 and βj,1. The complexity of the SVD (16) is O(s2dM+M3)
where sd refers to the size of each one of M demonstrations. Moreover, J × N
basis function parameters and J ×2 style parameters need to be estimated using
least square fitting. The number of desired basis functions J ≥ 2 should be at
least two; otherwise, the learned model will be too general failing to capture
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the variability of a task. On the other hand, our linear parametric model (8)
requires only the estimation of 2×N parameters. Hence, our approach is simpler,
less computationally complex, and at least as representative as the Mastubara’s
method. Furthermore, our GPDMP approach accommodates higher order para-
metric models (8), thus allowing the generalization of skills with more complex
dependencies.

3.4 Reinforcement Learning

Executing a DMP with imitated shape parameters might not lead to a successful
reproduction of a task. One way to refine the shape parameters is to learn them
through trial-and-error using policy search reinforcement learning (RL). Next,
we briefly review the state-of-the-art policy search method PoWER [12] which
was used in this work to optimize individual primitives.

PoWER (see Algorithm 1) updates the DMP shape parameters θ ≡ w itera-
tively. In each iteration, (several) stochastic roll-out(s) of the task is performed,
each of which is achieved by adding random (Gaussian) noise to the DMPs shape
parameters. Each noisy vector is weighted by the returned accumulated reward.
Hence, the higher the returned reward, the more the noisy vector contribute
to the updated policy parameters. This exploration process continues until the
algorithm converges to the optimal policy.

Algorithm 1. Pseudocode of the PoWER [12] algorithm for a one-dimensional
policy.
Input: The initial policy parameters θ, the exploration variance Σ
1: repeat
2: Sample: Perform rollout(s) using a = (θ + εt)

Tφ(s, t) with
εTt φ(s, t) ∼ N (0, φ(s, t)TΣ̂φ(s, t)) as stochastic
policy and collect all (t, sht ,ah

t , sht+1, εht , rht+1) for
t = {1,2, . . . ,T + 1}.

3: Estimate: Use unbiased estimate

Q̂π(s, a, t) =
T∑

˜t=t

r(s
˜t, a˜t, s˜t+1, t̃).

4: Reweight : Compute importance weights and reweigh rollouts, discard low-
importance rollouts.

5: Update policy using

θk+1 = θk +
〈∑T

t=1 εtQ
π(s,a, t)〉w(τ)

〈∑T
t=1 Qπ(s, a, t)〉w(τ)

6: until convergance θk+1 ≈ θk
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The structure of the noise is a key element influencing the convergence speed
of a policy search method but the choice is a trade-off. In the case of DMP shape
parameters and uncorrelated noise, high noise variance causes large accelerations
of the system, causing a safety hazard and possibly surpassing the physical capa-
bilities of the robot. In contrast, low noise variance makes the learning process
slow.

To address this trade-off, we propose to use correlated noise instead of the
earlier works employing uncorrelated noise. Since the elements of a DMP para-
meter vector correspond to temporally ordered perturbing forces, we want to
control their temporal statistics. To achieve this, an intuitive structure for the
covariance matrix Σ = R−1 can be used where the quadratic control cost matrix

R =
K∑

k=1

wkAT
k Ak (22)

is a weighted combination of quadratic costs related to finite difference matrices
A1 · · ·AK . wk denotes the weight of the k-th finite difference matrix, and k is
the order of differentiation. This structure allows us then to control statistics
of any order. In experiments, we consider variation only in acceleration (second
order). Thus, w2 = 1 and all other weights wk = 0, k �= 2, and the second order
finite difference matrix A2 can be written

A2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
· · ·

0 0 0
−2 1 0 0 0 0
1 −2 1 0 0 0

...
. . .

...
0 0 0

· · ·
1 −2 1

0 0 0 0 1 −2
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (23)

With this covariance matrix, the noise signal is smooth (see Fig. 2(a) due to
limited acceleration and it has small magnitude in the beginning and at the end
of the trajectory. Hence, safe exploration is provided. It is worth mentioning
that a similar covariance matrix has been applied in [19,20] for direct trajectory
encoding.

In order to control the magnitude of noise, we used a further modified covari-
ance matrix Σ = γβR−1 where γ is a constant controlling the initial magnitude
and convergence factor

β =
1

∑I
i=1 r2i

, (24)

reduces the magnitude of noise as the policy search algorithm is converging to
the optimal policy.

4 Experimental Evaluation

We studied experimentally the generalization performance of the proposed
model using a Ball-in-a-Cup task taught to KUKA LBR 4+ initially using
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Fig. 2. (a) Noises ε sampled from a zero mean multivariate Gaussian distribution
N (0,Σ) with γ = 1 and β = 0.01. (b) Mean and variance of returns over 12 trials.

kinesthetic teaching. In this section, we explain the scenario, compare the pro-
posed noise (proposal) generation to standard uncorrelated noise in terms of
convergence speed, and study the extrapolation capability of the model.

4.1 Ball-in-a-Cup Task

The Ball-in-a-Cup game consists of a cup, a string, and a ball; the ball is attached
to the cup by the string (see Fig. 1(a)). The objective of the game is to get the
ball in the cup by moving the cup in a suitable fashion. In practice, the cup
needs to be moved back and forth at first; then, a movement is induced on the
cup, thus pulling the ball up and catching it with the cup.

We chose the Ball-in-a-Cup game because variation in the environment can be
generated simply by changing the string length. The string length is observable
and easy to evaluate, thus providing a suitable parameter representing the envi-
ronment variation. Nevertheless, changing the length requires a complex change
in the motion to succeed in the game. Hence, the generalization capability of a
parametric LfD model can be easily assessed using this game.

The state of the robot is defined in a seven dimensional space X =
{x, y, z, qx, qy, qz, qw}, where Xp = {x, y, z} represents the position of the robot
end effector (cup), and Xq = {qx, qy, qz, qw} formulates its orientation using a
quaternion. The ball-in-a-cup is essentially a two-dimensional game and thus
only motion along two axes, y and z was used. In the demonstration phase, the
robot was set compliant along y and z, while it was set stiff rotationally and
along x, which were considered as constant states. The plane spanning y and
z was orthogonal with respect to the table upon which the robot was mounted
(see Fig. 1(a)).

The trajectories along y and z were encoded using separate DMPs with
same number of parameters. We found experimentally that 55 kernels (shape
parameters) were required so that the reproduced movement was able to put
the ball above the rim of the cup in the execution phase. In total, 110 shape
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parameters were then learned using LWR (6). However, using these initial shape
parameters, the reproduced movement did not put the ball back into the cup.
Hence, the shape parameters were optimized in a trial-and-error fashion using
RL as described in Sect. 3.4.

Reward function is the most fundamental ingredient of RL. We formulated
the reward function similar to [12] as

r(t) =

{
e−αd2

, if t = tc,

0, otherwise
(25)

where tc denotes the time instant when the ball crosses the rim of the cup with
a downward motion; d represents the horizontal distance between the rim of the
cup and the centre of the ball; and α is a scaling parameter set to 100 in our
experiments. The closer the ball is to the rim of the cup, the higher the reward
will be. As the shape parameters are fine-tuned in a trial-and-error approach,
the ball would get closer to the cup. Furthermore, the reward is zero if the ball
does not reach above the rim of the cup. Without such a constraint, the RL
algorithm might converge to a policy where the ball is tossed to the bottom of
the cup.

4.2 RL Convergence Rate

Figure 2(b) depicts the convergence rate for the RL algorithm with the proposed
method starting from an imitated trajectory. Figure 2(b) shows both mean and
variance of returns over 12 trials. On average a total of 80 rollouts (including
11 initial rollouts) are required for the policy to converge to an optimal one
where the robot repeatedly succeeds at bringing the ball into the cup. After the
ball went into the cup for the first time, on average 11 additional rollouts were
required for the policy to converge. The convergence rate is similar to [12] where
75 rollouts were typically required for convergence. However, the results are
not directly comparable due to differences in hardware realizations and human
demonstration quality.

Figure 3 shows a comparison between the proposed correlated (blue) and
earlier uncorrelated (red) exploration noises. The graph on left (Fig. 3(a)) shows
that the proposed correlated noise improves the convergence rate significantly.
The slow learning rate of uncorrelated noise is partially due to the small variance
of the sampled noise in comparison to the correlated noise as shown in Fig. 3(b).
However, larger noise variance was not feasible in the uncorrelated case because
of the required accelerations were not physically realizable. This is demonstrated
in Fig. 3(c) which shows accelerations in three cases: original demonstration, cor-
related noise and uncorrelated noise. Figure 3 shows that although the magnitude
of the noise is smaller in the uncorrelated case, the learned policy requires much
larger accelerations. After 36 iterations, the learned policy with uncorrelated
exploration became infeasible to be executed on the real robot as it required
more acceleration than the robot was physically able to realize.
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Fig. 3. (a) Returns for uncorrelated (red) and correlated (blue) exploration noise.
(b) Two samples of correlated and uncorrelated noise. (c) Acceleration of end-effector in
y-direction for demonstration (black), and policies after 36 roll-outs with uncorrelated
(red) and correlated (blue) exploration noise. (Color figure online)

4.3 Generalization Capability

We evaluated both the proposed linear 10 and second order (14) GPDMP models
for generalizing the DMP policy (shape) parameters. As a comparison, we used
the parametric model by Carrera et al. [6] as a recent example of a data-driven
local regression model.

All models require training data with varying string lengths. The training
data was collected from a single demonstration with a string length of 40 cm.
Starting from the shape parameters derived from this demonstration, the para-
meters were then learned using PoWER for string lengths of 32, 35, 38, 40 and
41 cm. It should be noted that during the RL, executing the task with shape
parameters learned for a specific length did not lead to a successful reproduction
for another string length in the training set.

We performed two experiments, both studying the range of interpolation and
extrapolation obtained by the models, with varying number of training data. In
both experiments, a reproduction was considered to be successful if 5 consecutive
replications of the Ball-in-a-Cup task with the same shape parameters put the
ball into the cup.

Generalization over Minor Variations. In the first experiment, we studied
generalization over minor variations by extracting parametric models from two
training samples with string lengths of 38 and 41 cm. As there were only two
training samples, only the linear variant 10 and the locally interpolating model
of Carrera et al. [6] were used. The range of validity for these is shown in Fig. 4,
the red line showing the range of validity, and (a) and (b) denoting Carrera et
al. and the linear GPDMP, correspondingly. The training samples are shown
with crosses. Both models were capable of interpolating successfully within the
range of the training samples. In addition, the proposed linear model was able
to extrapolate within ±2 cm from the training samples. The result demonstrates
that models using a positive linear combination of training models, such as Car-
rera’s and others in the literature, are not well suited for extrapolation as they
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Fig. 4. Validity ranges for different models (red lines). Input data indicated as X. (a)–
(b) small task variation: (a) Carrera et al. [6]; (b) linear GPDMP; (c)-(e) larger task
variation: (c) Carrera et al.; (d) linear GPDMP; (e) second order GPDMP. (Color
figure online)

tend towards the mean of training data when extrapolating as discussed in Sec. 2.
However, a simple linear model is global and capable of extrapolation when the
variation in the task is minor.

Generalization over Larger Variations. In the second experiment, we stud-
ied larger variations by extracting Carrera’s PDMP [6], the linear GPDMP model
10, and the second order GPDMP (14) using a dataset of four samples with
string lengths of 32, 35, 38, and 40 cm. The range of validity for each of these is
shown in Fig. 4, (c) denoting Carrera et al., (d) the linear GPDMP, and (e) the
second-order GPDMP.

Both Carrera’s and the linear GPDMP show poor performance, capable of
limited interpolation and missing also some of the training samples. The reasons
for the failures appear to be different: Carrera’s model uses a positive linear
combination of the training data weighted inversely proportional to a distance
metric in the task parameter space. With an optimal distance metric, the model
should at least be able to replicate the training samples. We used the metric
proposed in the original paper in our experiment but believe that with a more
suitable metric the model would be likely to be able to interpolate successfully
in this experiment. Nevertheless, success in extrapolation would be unlikely as
explained earlier. Similarly, models employing Gaussian process regression or
support vector machines would be unlikely to perform better in extrapolation.
The failure of the linear GPDMP is likely due to the fact that the linear model
is simply incapable of representing the complex relationship between the task
and policy parameters. The linear approach by Matsubara et al. [10] would be
likely to suffer from the same problem.

In contrast to the above, the proposed second order GPDMP (e in Fig. 4)
is capable of both interpolation over the whole range and a surprising range of
extrapolation within the range of [−3.5 cm, +2 cm]. It thus greatly outperforms
the others. This demonstrates that global non-linear models are clearly beneficial
for representing parametric policies. The choice of a model complexity for a
particular application is not trivial, but model selection criteria based on e.g.
information theoretic metrics could be used. In our experiments, the achieved
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range of extrapolation already approached the performance limits of the physical
system and therefore we did not study how higher order models could have
increased the extrapolation capability even further.

Extrapolation Using a One-Dimensional Basis for Policy. To further
study the complexity of policies needed for extrapolation, we performed a sep-
arate experiment with a linear GPDMP fit to demonstrations with lengths 38
and 41 cm, identical to the first experiment. Instead of using the model as such,
we searched experimentally, if a task parameter value other than the real one
would lead to success. Thus, in effect we studied if non-linear coefficients for
the one-dimensional basis 10 would allow generalization, and found that this is
indeed the case. Figure 5 shows the found task parameter values (string lengths)
that lead to success versus their actual values. The two training points used to
determine the basis using (11–12) are shown in red. As seen in Fig. 5, in the
neighborhood of the training points, a line fit would have small residual error,
showing that in that neighborhood a linear model is valid, as also apparent from
the earlier Fig. 4. However, the one-dimensional basis (v1) is sufficient for sig-
nificant further generalization (up to −8 cm) if non-linear coefficients are used.
This extended range of validity is shown with green dashed line in Fig. 4 and
is only slightly less than that of the second order model. It should be noted,
however, that this is not a free lunch; the linear space coefficients were found
by trial and error and the two training points do not allow to determine the
non-linearity. Nevertheless, low dimensional vector spaces appear surprisingly
powerful in policy representation, but simple linear transforms of task variables
are not sufficient for coefficients.
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Fig. 5. One-dimensional linear space coefficients found by trial and error.

5 Conclusion and Future Work

In this paper, we proposed a global model for mapping a task parameter
to policy parameters. The training examples for constructing the global
model were obtained from a single human demonstration and optimized using
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reinforcement learning. The trained global model is capable of both inter- and
extrapolating policy parameters from new task parameters unseen in the exam-
ples. In fact, policy parameters are generalized without re-learning. The global
model is simple and can easily be scaled to accommodate for non-linearities in
the task space. Experiments showed a significant improvement in extrapolation
capabilities over current state-of-the-art. This is due to inherent structures of
existing methods which are based either on linear or local regression type rela-
tionships between task and policy parameters. Studying the extension of the
other available models towards more global regression would open interesting
research venues. For example, Gaussian process regression models are capable of
representing global relationships, however, the typically used covariance struc-
tures (kernels) are local.

Our experiments were limited to a single task parameter and future work
should address generalization over more parameters. In addition, we will consider
the choice of basis function and model complexity using multiple tasks. Both of
these research questions are addressed in model selection methods based on
either cross validation or information criteria such as BIC or AIC. Nevertheless,
experimental evidence in this paper indicates that the current local and linear
models have limited extrapolation powers which needs to be addressed by models
able to capture more global relationships despite the number of task parameters.
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