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Abstract. In this paper, we will systematically study who indeed are
the hard lattice cases in LLL reduction. The “hard” cases here mean
for their special geometric structures, with a comparatively high “fail-
ure probability” that LLL can not solve SVP even by using a powerful
relaxation factor. We define the perfect lattice as the “Beauty”, which
is given by basis of vectors of the same length with the mutual angles of
any two vectors to be exactly 60°. Simultaneously the “Beasts” lattice
is defined as the lattice close to the Beauty lattice. There is a relatively
high probability (e.g. 15.0% in 3 dimensions) that our “Beasts” bases
can withstand the exact-arithmetic LLL reduction (relaxation factors ¢
close to 1), comparing to the probability (corresponding <0.01%) when
apply same LLL on random bases from TU Darmstadt SVP Challenge.
Our theoretical proof gives us a direct explanation of this phenomenon.
Moreover, we give rational Beauty bases of 3 and 8 dimensions, an irra-
tional Beauty bases of general high dimensions. We also give a general
way to construct Beasts lattice bases from the Beauty ones. Experimen-
tal results show the Beasts bases derived from Beauty can withstand LLL
reduction by a stable probability even for high dimensions. Our work in a
way gives a simple and direct way to explain how to build a hard lattice
in LLL reduction.

Keywords: Lattice - LLL reduction - Hard cases : Post-Quantum
Cryptography

1 Introduction

As one of the compelling candidates in Post-Quantum Cryptography, Lattice-
based cryptography is now a very hot topic due to all the versatile constructions
based on the Learning With Errors (LWE) and the Ring Learning With Errors
(RLWE) problems [10,17]. But to select a practical parameter, we must have
a solid understanding on the hardness of the reduction algorithms. But as far
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as we know, now there is a clear gap between the theoretical estimation of the
approximation factor and the case of experiments. By now, not much work has
been done in this direction and this serious gap can be a real roadblock for us to
move forward in this direction. However there are some of related works in other
direction. These works aim to analyze the computational complexity of reduction
algorithms in low dimensional bases, as in Semaev [18] and Nguyen, Stehlé [14]
for more details. There are also some previous works on y-unique SVP problem.
Some practical evidence shows that unique SVP is potentially easier as v (the
magnitude gap between the shortest and second independent shortest vector)
becomes larger [5]. Much of the subsequent works concentrated on evaluating a
more reasonable bound of 7, such that LLL reduction algorithm can derive a
shortest vector successfully [8,11]. Oppositely, our work is to find “hard” cases,
namely “Beasts”, such that LLL can not find the shortest vector by a relatively
high probability. In other words, our Beasts lattices give a potentiality to with-
stand a strong LLL reduction. Note that the reader should differentiate “hard”
cases from the so-called “worst” cases concerning the computational complexity
[1,14,16).

It is known that LLL can not guarantee a shortest vector even in the 3
dimensional lattices. In principle, when we do reduction to make the basis better
and better, one reason we could not reach the best reduction is that in the
LLL reduction process, we are essentially trying to do the best local reduction
(2 vectors one time) to achieve the global reduction, which is very much related
to local optimization and global optimization. Such a local method decides that
there is a high probability that we will make the local decisions is not really
right globally. What BKZ is doing is exactly to compensate such a defect, namely
improve the global reduction by doing a better local reduction (instead of a local
reduction in 2 dimension, a better reduction through searching in 3 or higher
dimensions) [19]. For us, we want to find out what is really happening in such
a local reduction. It turns out that the symmetry of the perfect lattice plays a
key role here.

In this paper, we will open a new direction to look at this problem from a
different angle, namely we will find out mathematically how we characterize the
hard cases and explain from the point view of mathematical structure why they
are hard. The reason behind is that we hope this will allow us first to fill the
theoretical gap we mentioned above and further more this may give us new ideas
on how to improve further the reduction algorithms. This is a direction which,
we believe, was not explored before, and we do not know much about at the
moment.

Our method is to start from low dimensional cases. Here through intuitive
understanding and experiments, we realize that the key idea in low dimensions is
related to the symmetry of the underlying lattice. By symmetry here, we mean
the isometry group that keep the lattice invariant. We will first define a perfect
lattice — bases vectors of 60° angles respectively with the same length, which is
called “Beauty” in this paper. Then we can use this to explain that if we have
a basis which is very close to the perfect lattice, which makes the decision to
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find the shortest very hard even with very high precision as the exact-arithmetic
reduction. Namely there are many pretenders of “almost good basis” for the good
basis, which comes from the weakness of selecting a non-optimal parameter 4.
This forms the barriers to find the good basis and therefore the shortest vector.
Or even in more simple terms, there are many bases that could pass the LLL
criterion to be a reduced basis. The “Beasts”, namely the really hard cases, are
the ones very near to the Beauty lattices.

It is practically impossible (in terms of probability) to randomly sample a
good basis with the same length and close to 60° simultaneously, from the point
of distribution. For this, we need some form of good probability experiments.
We give a thorough analysis of 3 dimensional “Beauty” and “Beasts”, which
illuminate us how to construct higher dimensional cases. In experiments, we
reduce our Beasts lattice bases using the exact-arithmetic LLL in NTL library. In
our implementations, we consider the effects of some variable parameters of our
constructed Beasts bases and LLL. Under the same condition, we also compare
the failure probability for NTL rational LLL when it reduces random lattice
bases from Darmstadt SVP Challenge. The experimental results show that our
“Beasts” bases can keep a tough resistance to strong LLL (with relaxation factor
0 close to 1), comparing with the random bases.

The paper is organized as follows. Section 2 covers notation and background
on lattice and reduction algorithms. We give an explicit definition of Beauty
and Beasts lattices in Sect. 3. In Sect. 4, the structures of the Beauty and the
Beasts bases on 3 dimensional lattices are proposed, including the main theorem
proof and experimental results. The exploratory structure of the Beauty and the
Beasts bases for higher dimensional lattices and some experimental analysis are
presented in Sect. 5. Finally some concluding remarks and future works are given
in Section 6

2 Preliminaries

In this section we review some basic definitions and theorems related to some
classical lattice algorithms.

2.1 Lattice Theory

Let linearly independent vectors set (by,...,b,) € R"*™ be a basis B of lattice
L(by,...,b,) = {3, z;b;,z; € Z}. In our work, we use full-rank bases with
row form vectors in lattice and we denote the i-th row vector of the basis by B][i].
The volume of L is given by the volume of fundamental domain F(by,...,b,) =
{t1b1 +tabs + -+ -+ t,b, : 0 < t; < 1}, which is equal to ||det(B)||. Generally if
B is a full-rank matrix and U; (i € [1,00)) are unimodular matrices, U; - B gives
infinitely many bases of L(B) since det(U;) = £1 give the same volume.

The Euclidean norm of a vector b € R™ is ||b||. The Gram-Schmidt Orthog-
onal (GSO) basis (b}, ...,b}) is given by the following:
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(a) bf = b, .
(b) bf =b; — Y07} pijb} for all 2 < i < n where py; = s’

2
[EH]

(1<j<i<n)

The Gram-Schmidt Orthogonal (GSO) basis. Let (by,...,b,) be a basis
of R™ and let (b},...,b}) be its GSO basis then

(a) <b;,b;>=0 VI<i<j<n.
(b) span(bi,...,b}) =span(by,...,bg) V1I<k<n.
(c) byl < Ibell VI <k<n.

Size-reduction. A basis (by,...,by) is called size-reduced with factor n > % if
its GSO family satisfies |p;;| < nforall 1 <j<i<d.

Here it’s important to know that 7 is usually %7 but for the floating-point LLL
one takes it at least slightly larger since the u;; will be known only approximately.

d-reduction. Let (by,...,b,) € R? be a basis of lattice L and let (b}, ..., b})
be its GSO basis then (by,...,by,) is called d-reduced basis if it satisfies:

(1) |pij| <pforalll <j<i<n (Size Condition)
(2) [|b} + pii—1b;_1 > = 8|b;_y||? for all 2 < i < n where + < § < 1. (Lovész
Condition)

¢ is called relaxation factor in LLL reduction algorithm.

Minkowski’s minima [13]. Let L be a lattice with full-rank basis (by,...,b,) €
R™*™. We denote the Euclidean norm of the shortest vector in L as A\ (L). For
all 1 < i < n, Minkowski’s ith minimum A;(L) is defined as the minimum of
maxi<j<;||bj|| over all ¢ linearly independent lattice vectors (by,...,b,) € L.

SVP and y-unique SVP. For a given basis B € R"*"  the Shortest Vector
Problem (SVP) is to find the shortest non-zero vector in L(B). It is called unique
SVP, if A1 (L) < A2(L) is guaranteed in SVP. And the y-unique SVP problem
is scaling the bound by a positive multiple as yA1(L) < A2(L). The auxiliary
condition can be seen as a bounded gap between the first Minkowski’s minimum
and the second Minkowski’s minimum. It is known that if the gap is bigger, it is
easier to find the shortest vector by a certain algorithm [5]. However, in our work
we concentrate on constructing the hard bases with very small v, such that by a
high probability the LLL reduction can not find the shortest vector successfully.

2.2 Lattice Algorithms

Lagrange’s algorithm. The Lagrange’s algorithm can definitely solves the SVP
in 2 dimensional lattice in polynomial time. Actually it finds a basis achieving the
first two Minkowski’s minima. In algorithmic principle the Lagrange’s algorithm
is similar to Euclids algorithm. Refer to [7] for more details.

LLL reduction. LLL reduction algorithm is a practical algorithm that is proved
to terminate in a polynomial time and gives an §-reduced basis [9]. However that
is proven when ¢ € ( i, 1) and in many applications they used 7 slightly larger
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Algorithm 1. LLL algorithm

Input: a basis (b1,...,bg) of L, and a constant § € (%, 1).

Output: the output basis (bi,...,bq) of L satisfies definition above for each 4 from
2 to d.

142

2: while i < d do

3 bi—b; =3, [pi;lb;

4 S [BI)2 > (6 — 1) [biy | then

5 1—1+1

6 else

7 swap(bi, bi—1)

8.

9

10:

i« max{2,¢ — 1}
end if
end while

than % to guarantee termination in a practical time. We use n = % in our work.
We present a simple implementation to LLL algorithm (Algorithm 1). [-] denotes
rounding a real number to its nearest integer.

Setting § strictly smaller than 1 can guarantee a polynomial computational
complexity of LLL, with respect to the magnitude of the initial basis and the
dimension n. Also according to proof of [2], in the so-called “ideal” or “optimal”
case of 6 = 1, LLL is still polynomial with respect to the magnitude of the basis,
but it is still an open problem whether it is also polynomial in the dimension n. In
our work we consider the general case with § close to 1 but strictly smaller than 1.

Note that our work is easily confused from works in [3,14], which are trying
to improve the LLL algorithm by using floating-point calculation or rounding
technic, etc. We want to explore the hard cases for LLL from the geometrical
structure of lattice bases, ignoring the efficiency of LLL so far. And also the new
algorithm proposed in [18] is also a future work for us to modify our conjectures.

Schnorr-Euchner’s enumeration algorithm. In 1994, Schnorr and Euchner
proposed an enumeration algorithm to search the shortest vector of a lattice [19],
which runs in exponential time and the cost is no more than 20("*) We denote
it by “ENUM?” in this paper. ENUM is the most efficient one in practice that can
find the shortest vector successively in 100% but very heavy in high dimensions.
There are some improvements for it as in [6]. However, we won’t describe the
details about ENUM here, because in our experiments we just modify if the LLL
can produce a shortest vector by performing ENUM on the LLL-reduced basis.

3 The Beauty and the Beasts

Definition of Beauty Lattice. Let B € R™*"™ be a full-rank basis then we say
L(B) is a Beauty lattice if its basis fulfils these two properties simultaneously:

1. its vectors are of the same length;
2. the angle between any two basis vectors is 60°.
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Example: In R3, the lattice generated by

110
B=|(011
101
is a Beauty lattice.

The corresponding basis B is called Beauty basis. In the following contents,
we denoted the primitive n dimensional Beauty bases by Beauty, if the integer
components in bases vectors are 1. We can get infinite Beauty bases by multi-
plying any P € R by Beauty,,. We can see the Beauty lattice in R? graphically
in Fig. 1.

Fig. 1. The structure of Beauty lattices in R2.

It is folklore that for the symmetric property, the magnitudes of such basis
vectors are all as same as the Minkowski’s first minimum. In addition, the Beauty
bases are already LLL reduced, namely the LLL algorithm will never fail to get
the shortest vector on Beauty lattices.

Moreover, experiments show that if the first shortest vector is much shorter
than the second one, then the lattice algorithms as LLL will succeed to reach
the shortest vector with a much higher possibility [5]. Therefore we can conclude
that in the low dimensions space, hard lattice or what we called the Beast lattice
exist very close to the Beauty one.

Definition of Beast Lattice. A lattice L(B) is called a Beast lattice if its basis
vectors have the following two properties:

1. they are almost of the same length;
2. the angle between any two basis vectors is almost 60°.

We define the n dimensional Beasts basis by denotion Beasts,,, which is gen-
erated from Beauty,. Obviously there are infinitely many beasts bases around
one Beauty basis. We will give a method to build the 3-dimensional beasts bases
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in Sect.4.2 with concrete parameter settings and some theoretical proofs. In
Sect. 5, we give the assessing structure for higher dimensional Beast bases.

Two dimensional case. Of course for two dimensional lattices, as the optimal
cases of LLL (6 = 1), definitely Lagrange’s algorithm can find the vectors of
Minkowski’s minima for any structure of bases in polynomial time [7]. So our
main focus in this paper is cases of 3 dimensions and higher.

4 Three Dimensional Case

In this section, we’ll review the performance of classical rational LLL algorithm
at first. Then we’ll give our main theorem based on some theoretical analyses on
a usual 3 dimensional Beasts lattices. And we simply evaluate the gap v = Ao/
in 3 dimensional Beasts. At last we show some experimental results to support
our conjectures.

4.1 LLL Outputs a Shortest Vector?

As we know, the LLL algorithm gets stronger with the approximate factor o
asymptotically close to 1in experiments. But for a given basis, it is folklore that
LLL can not definitely output the shortest vector even when the dimension is 3.
The Goldstein-Mayer bases [4] give us random bases in some sense. And it is
used in Hermite Normal Form in the famous SVP Challenge operated by TU
Darmstadt [20]. We generated 100,000 3 dimensional random bases from SVP
Challenge and did some initial experiments using exact-arithmetic variants of
LLL in NTL library [15]. Furthermore, we perform ENUM on the LLL reduced
bases to check if the shortest vector is in the LLL reduced bases. We call LLL
reduction “succeed” if the shortest one is in the output thereof. Figure 2 shows
the number variety of LLL-failed cases in 3 dimensions using ¢ € (0.25,1).

4.2 Main Theorem

Now we will investigate why LLL reduction fails to get the shortest vector. We
start our investigation within R? — the 3 dimensional Beauty basis mentioned in
Sect. 3. It obviously constitute a regular tetrahedron in 3 dimensional Euclidean

space.
110
Beautys = | 011 |.
101

Note that to use a “strong” LLL, we set the parameter § € [0.9,1). Although
we do exam more than 100,000 random bases of R? and found it almost succeed
to get the shortest vectors, the reality is that LLL reduction can fail in a special
cases. Our next theorem gives an examples of that failure cases:
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Fig. 2. The number of LLL failed cases in dimension 3 using same bases but different 4.

Let P be a big positive integer number and let €1, €2, €3 and €4 be very small
positive integers fulfilling

Pe2271 22 —1] (zx € Z and x > y)

€; €[0,2Y — 1] (yeZandy>2) (1)
0=1-27% (z € R and z > 3.32)
€1 > € >€3>€,>0 (2)
and
r—y—z>1landy< 2. (3)

Then the basis
P — €1 P— €2 0
Beastss = 0 P—e3P—¢
P 0 P

is a 3 dimensional Beasts basis which can withstand exact-arithmetic LLL reduc-
tion by a high potentiality. The failure probability of LLL to find the shortest
vectors in dimension 3 is stably 15.0%, relatively random bases thereof is <0.01%.
Note that for generality we apply stochastic disturbance €; on each element of
first two vectors in P - Beautys. Certainly one can subtract ¢; from all elements
or from just one element of each vector. Experimental results are same for all
these Beasts.

Theorem 1. Let Beastss be the basis defined above and let E be the unimod-
ular matrix

0-11
E=(1-10
010

then EBeastss is an LLL reduced basis with L(EBeastss) = L(Beastss), but
the shortest vector is not in EBeastss.
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Proof. Let Beastss = (b, ba, bs)t. At first, we declare that by is the shortest
vector in L(Beastss) and put the proof in Appendix A, for that in cases of
constructed high Beasts bases, the first vector is definitely not the shortest one.
Next we prove the second part of the theorem. Set

C = (c1,¢2,¢3)" = EB = (bg — by, by — by, by)".
We have to show that C satisfies the LLL conditions where

P —(P—ég) €4
C = P*El €3 — €2 7(P7€4)
0 P —e3 P—ey

First we will show that C' is size-reduced matrix then we’ll show it satisfies
Lovdsz condition. Note that in our work, we use n = % for size reduction of LLL.

'<CQ,C1 >‘

|_ < c3,c1 >
< ci,c1 >

5
31 < ci,c1 >

c
Ha 1

_ 'P(P —e1) — (P —e3)(ez —€2) — (P — e4)ea
- P2 4 (P —e3)2 + €2

_ —(P — 63)2 —+ 64(P — 64)
- P2 4 (P —e3)2 + €2

_ P27P63(62761)P+63(63762)+64(647P) < P2763P
- 2P2 — 2Pe3 + €2 = 2P2 — 2¢3P
P2 — Pey

< — <
~ 2P2 — 2Pe¢3 -

=n

N |

< - =
S3 n

To prove | qu| < %, at first we need to get an approximate lower bound of

|p21]|. Using the assumptions (1), (2) and (3), we get & > 7 and |u21| > 0.402
can also be derived.

15| <°3°2>’

< c3,c5 >
_|<c€3,C2 > —l2p < C3,Cp >
B lc2 — parea|? ‘

(P —e3)(e3 — €2) — (P —€a)® + puoa (P — €3)° — porea(P — ea)
(P —e€1 — p21P)? + [e3 — €2 + pa1 (P — €3)]? 4 (P — €4 + po1€4)?
1| (P—esg)(es—e2) — (P —e€s)® + puo1 (P —€3)® — pugrea(P — 4

)
2 ’ (P —e3)(e3 —€2) — (P —€a)? + 21 (P — €3)® — panea(P — €4)] + C’

We denote ¢ the long remainders. From P > 2271 > 2¥+% > 2¥+4 we can get

e 2Y—-1 2v-1 1 1 1

L (l-—)<—. 4
P21 < gt <G @
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Hence we can get the following lower bound of |us21]| as:

< Cg,C1 >
|H21‘: < cp,Cc1 >
_ P(P—¢€1)+4 (e2 —€3)(P —€3) — €4(P — ¢4)
P2+ (P —e€3)2+¢€2
P2+ (2 —€1 —€3—€4)P+ €3 — eae3 + €3
B 2P%2 — 2Pes + €3 + €3
P2 —3e,P — €
3P o
:1.(17 2¢2 B 3P€1)
2 P24+e2 P24é?
1 €1 3er
>3 B 3P
1 1 3 1
RN
~ 0.402

Using this result, we compute ¢ > 0 and finally we can derive | u§2\ < % =.
During the all proof we omit some factors since we assumed that the epsilons’
values are very small respect to P value. So the omitted value doesn’t affect in
the sum value.

Next we want to show that the vectors of C also satisfy Lovasz condition.
From Gram-Schmidt theorem, we have

b1 —b2|? = [|(by = b2)*||* + (151)* | (b5 — ba)*|.
Hence we can get

I(by = b2)*|[* = by = ba|* — (151)? | (bs — ba)*|. (5)
Now we should proof that ||(b; — ba)*||* — 6||bs — ba||? > 0 as follows.
I(b1 — b2)*[|* = 4]|bs — b2?
(P —e1)®+ (3 — 2)* + (P = ea)?) = 6(P? + (P — e3)* + €}) (6)
=2(1—0)P* +2(6e3 — €1 — €4)P + €3 + (€3 — €2)? + (1 — §)eq — e

Note that z should take big value such that § — 1. We consider the domina-
tive part of Eq. (6). Finally, using our assumption (1) and (2), and from formula
(5), we can get

I(by = b2)*[[* = |[by = b2|* — (151)*]| (b5 — ba)* |
> 8|[bs — b2l — (15,)?[I (b3 — ba)*||?
> §[bs — ba|* — (ug1)°|bs — ba||?
> (8 — (151)")lIbs — ba|.
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Similarly, we have the equation:
312 = [b3]I* + (151)° [ (b3 — b2)*[|* + (k52)*[| (b1 — b2)*||?

and we can proof that it satisfies the Lovasz condition by our assumptions above.
Therefore C' satisfies ng < 7 and Lovész condition too. Hence C is LLL
reduced and by the construction process we know that ||C[i]|| > Beastss[l] =
M[L], for Vi € {1,2,3}.
Finally, it is easy to see that EBeastss is a basis for L(Beastss) therefore
L(EBeastss) = L(Beastss). O

Theorem 1 means that even if we apply a strong LLL reduction to EBeastss,
LLL fails to get the shortest vector in our parameter setting. (1), (2) and (3) are
the most important conditions in our theoretical proof. Moreover, the theoretical
conjecture perfectly matches our experimental results.

Moreover, using the condition (4): ¥ < % < %, we can easily get the gap
between A1 and A in our Beastss bases:

1= < vor? < 2P = . <\/§~1069
MTVP-aP (P oer s V2P —2ate)P i aze S VT T

4.3 Experimental Results in 3 Dimensional Beasts Lattices

In our experiments, we implemented our main program using C++ language
and calculated the random unimodular matrices from Magma computational
algebra system [12]. About the size of x, we also follow the strategy of TU
Darmstadt SVP Challenge [20], which takes the size of entries of n dimensional
random lattice basis as 10-n bits. In our experiments, we also considered the size
of entries and constructing technique in unimodular matrices. The experimental
results show that with the size of entries increasing, the chance for LLL to find the
shortest vector is bigger. Since we compare the performance of our Beasts bases
with the randomly generated bases from SVP Challenge, where both original
elements are 10 - n bits length, the elements in unimodular matrices should be
as small as possible (as size smaller than n and close to 0). Because in LLL
reductions, sometimes the shortest vector in the reduced basis is not in the first
position, for the sake of fairness, we use ENUM algorithm to check if the shortest
one is in the whole reduced bases or not.

Now we will show two experimental results. The first one is when we apply
the 100,000 unimodular matrices to randomize 100,000 generated Beasts bases,
the LLL (with ¢ — 1) fails to solve SVP by 15.0% probability under our para-
meters’ assumption (1), (2) and (3). And this failure probability will become
18.3% if we apply the unimodular matrices on the same Beasts basis again.
However for random bases generated from TU Darmstadt SVP Challenge [20],
this failure probability is <0.01% for 6 € [0.9,1). This result means our con-
structed 3 dimensional Beasts lattice can withstand powerful LLL much better
than random lattices.
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The second experiment is on the failed cases as E Beastss in our main theo-
rem. In Table 1, we can see that under our parameters’ assumption (1), (2) and
(3), the failed cases will keep a stable probability that LLL can not find the
shortest vector with § — 1. Simultaneously this result validates that the LLL
failed cases are all LLL reduced as what we proved on E Beastss.

Table 1. Some experimental results using our constructed 3-dimensional Beast bases.
Note that we call LLL failed if the shortest vector was not in the LLL-reduced basis.

T |ylz 0 LLL failed prob.
102 6.64|1—10"2|100%
2012/16.6 |1—10"°|100%
30/9/19.9 |1—107%|100%
30/5/23.25|1—10"" | 100%
3012265 |1—107%|100%

Here the parameter y is the critical value to make sure the LLL fail by 100%.
Corresponding to the relaxation factor § closer to 1 means our Beast bases can
withstand a stronger LLL reduction.

5 High Dimensional Cases

In this section, we will study the hard cases in higher dimensions. We extend the
3 dimensional Beasts, keeping their two properties, which is the basis vectors
are almost the same length and their angles are almost 60°. At first we observe
the performance of LLL reduction in high dimensions. Then we give a rational
version of 8 dimensional Beauty basis and a general irrational Beauty for higher
dimensional bases. Easily we can build the corresponding Beasts bases from these
Beauty bases. According with our conjectures in dimension 3, our experimental
results show that the constructed Beast bases are stronger than random lattices
to resist LLL reduction.

5.1 Success Probability of LLL in High Dimensions

Similar to the experiments in Sect. 4.1, we also did experiments for higher dimen-
sions until 32. For each dimension, we used 100,000 random bases generated from
TU Darmstadt SVP Challenge [20] and we fixed § = 0.99 in our experiments.
From Fig.3 we can see that the exact-arithmetic LLL can solve SVP by an
extremely high success probability within 15 dimensions.
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Fig. 3. Experimental results of random bases generated from TU Darmstadt SVP
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5.2 Build 8 Dimensional Beasts from Rational Beauty Bases

Our defined Beauty bases is a configuration of vectors in the Euclidean space
fulfilling certain geometrical properties, namely vectors are sampled from the
isometry group. Root system is known as a group somehow satisfying the sym-
metric property. Observation from the simple roots for root system Eg in the odd
coordinate inspired us to exploit a rational Beauty basis with integral vectors
(with elements equal to 1) and components 1/2, see Beautys as follows.

1
1

Beautys =

(SN

1
0
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(I s SR
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Following the 3 dimensional cases, we construct Beast bases as Beastssg. The
parameter settings carry forward the conditions (1), (2) and (3). Simultaneously
extend i € [1,4] to i € [1,22] as €] > €2 > €3 > €4+ > €29.
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5.3 How to Build Beasts in General High Dimensions

Start from 3 dimensional cases, we want to add vector to get a Beauty lattice
basis in R*. By basic calculation, we can easily get,

Beauty) =

W= = O =

0
1
1
1
2

= O =
vo oo

We denote the Beauty,, to distinguish from the rational bases. Analogously using
Beasts!, to stand the Beasts generated from Beauty!,. By construction, we can
get a full-rank Beauty lattice generated by the basis as follows.

110 0 0 0 0 0

011 0 0 0 0 0

101 0 0 0 0 0

111 A5

222 2 00 0 0

11 1 1 6

333 38 \/; 0 0 0
Beauty, = | @ 1 1 o : : : : € R

111 _1 1 ... 1 itl 0

2 22 25 30 1) B

R R AU S S

2 22 25 30 Vr(n—1) n

Hence we know now how to build a Beauty lattice which can be easily con-
verted to a hard lattice as the following:

1. Pick a large integer P.
2. Multiply Beauty, by the integer P and round it to the ceiling integer.
3. Subtract a random matrix 3 = [¢;;] where ¢;; sufficient small integer.

Or we can simply take the form from the following basis. Parameter settings
follow the 3 dimensional cases in our main theorem in Sect.4.2 and €1 > €3 >
€3 > €4 2> €p.

P—e1 P—e2 0 0 0 0 )
0 P — €22 P — €23 0 0 0 .0
P 0 P 0 0 0 ...0
’—gj e ”%J — €42 ”%J — €43 (P%j —e€qa O 0 .0
Bea,stsiu = . . . . : : :
5] —en (5] -z [§]—eas [0p) —an o [ ] —aimn [PV — e 0
[£] —en1 [E] —€n2 [§] —€ns (%J —€na v [P\/2E ] — e

5.4 Experimental Results of High Dimensional Cases

As same as the procedure in Sect. 4.3, we generate 100,000 bases for each dimen-
sion and randomize them by equal amount of unimodular matrices from Magma
[12]. The bit length = of P is also set as x = 10 - n. The parameter settings
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Table 2. Some experimental results of higher dimensional Beast bases. Parameter
settings « = 10 - n, z = log2(1 — §) ™! and y are under the conditions in Theorem 1.

Dim n|LLL failure prob. on the random bases LLL failure prob. on the Beasts!,
Ex1. Ex2. Ex3. Ex1. Ex2. Ex3.
§=1-10""[6=1-10"2|6=1-10"% |§=1-10"" |§=1-10"7 |§=1-10""
4 0.057% 0.035% 0.022% 30.3% 30.3% 30.3%
5 0.129% 0.068% 0.048% 39.4% 39.4% 39.4%
6 0.240% 0.107% 0.103% 40.5% 40.5% 40.5%
7 0.350% 0.173% 0.157% 43.5% 43.5% 43.5%
8 0.542% 0.256% 0.229% 47.2% 47.2% 47.2%
9 0.79% 0.400% 0.359% 50.7% 50.7% 50.7%
10 1.14% 0.507% 0.485% 53.2% 53.2% 53.2%

fulfil the above sections respectively. Note that for all cases we perform ENUM
algorithm to check if the shortest one is in the reduced bases or not.

At first, the LLL (§ € [0.9,1)) failure probability solving SVP on Beastss
expanded lattices is stably 48.4%. However for the same magnitudes of vectors
in TU Darmstadt SVP Challenge generated random lattices, the LLL failure
probability is < 0.542%, see Table 2.

Simultaneously Table 2 also shows that the Beasts,, bases constructed from
irrational Beauty!, possess a comparative high probability to withstand exact-
arithmetic version of LLL reduction with relaxation factor 6 € [0.9,1). Moreover
the LLL failure probability keep stable with the increasing of §, which means
LLL becomes more powerful. Especially the close result for Beastss (48.4%) and
Beastsg (47.2%) give a support for our conjecture of Beasts bases.

6 Conclusions

We studied the hard cases in LLL reduction, as we called them “Beasts”, whose
vectors fulfilling two properties: 1. the vectors are almost the same length; 2. the
angles of the vectors are almost 60°. They are generated from the corresponding
“Beauty” bases “exactly” instead of “almost”. Our experimental results showed
the randomized Beasts bases have a potentiality to withstand the LLL reduction.
We started from 3 dimensional cases and gave a complete theoretical proof for
this phenomenon. We also give a 8 dimensional rational Beauty and the general
irrational Beauty for dimensions higher than 3. Comparing with the same mag-
nitude of TU Darmstadt SVP Challenge random bases, our generated Beasts can
stably withstand the exact-arithmetic LLL with relaxation factor § € [0.9,1).
However, we can’t assert categorically that the Beasts are only our construc-
tions. So it is an intriguing open problem if there are other hard cases in LLL
reduction.
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A Supplementary proof in main theory

Let Beasts3 = (by,ba,b3)!. We prove that b; is the shortest vector in
L(Beastss), i.e. |[b1]] = (A (L)) < |laby + bby + cbs|| for any coefficients set
(a,b,¢) € Z3\{(0,0,0)}. We observe any non-zero vector b = ab; + bbs + cbs in
L(Beastss). The square norm of b is as

[bl* = [laby + bby + cbs||?
= [a(P — €1) + cP)? + [a(P — €3) + b(P — €3)]> + [b(P — €4) + cP)?
> (a(P = e1) + o(P — €1))” + [a(P — €2) + b(P — 2)]* + [b(P — €1) + c(P — e1)]?
=[(a+b)?+ (d+0)% (P —e)?+ (a+b)*(P—e)

Since a, b, and c are integers and not equal to 0 at the same time, the smallest
case for the right side of inequality is when

a=b=0and |c]=1.

However in this case ||b|| = ||bs|| > ||b1]| satisfying our theorem. So we consider
a “looser” condition for the right side as

a+b=0and || € Z%,.
From it we derive

HbH2 > [(c— a)2 + (C+a)2](P_ 61)2
> 4P —ep)?
2 2 . R )
=P -e) +(P—e) +3(P—e) —(P—e)
= Hbl”2 +2P(P7351 +52)+36? 763.

From the inequality (4) we get P — 3e; > 0. Hence

[IblI* > [b1]l® + 2P(P — 3e1 + €2) + 3¢5 — €5
> by |?

for €; > €3. We finish the proof of ||by|| = A1(L).

References

1. Akhavi, A.: Worst-case complexity of the optimal LLL algorithm. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 355-366. Springer, Heidelberg
(2000). doi:10.1007/10719839-35

2. Akhavi, A.: The optimal LLL algorithm is still polynomial in fixed dimension.
Theor. Comput. Sci. 297(1-3), 323 (2003)

3. Bi, J., Coron, J.-S., Faugere, J.-C., Nguyen, P.Q., Renault, G., Zeitoun, R.: Round-
ing and chaining LLL: finding faster small roots of univariate polynomial congru-
ences. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 185-202. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54631-0_11

4. Goldstein, D., Mayer, A.: On the equidistribution of Hecke points. Forum Mathe-
maticum 15(2), 165-189 (2003)


http://dx.doi.org/10.1007/10719839_35
http://dx.doi.org/10.1007/978-3-642-54631-0_11

10.

11.

12.

13.
14.

15.
16.

17.

18.

19.

20.

The Beauty and the Beasts—The Hard Cases in LLL Reduction 35

Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31-51. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-78967-3_3

Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257-278. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13190-5_13

Lagrange, L.: “Recherches d’arithmétique”. Nouv. Mém. Acad. (1773)

Luzzi, L., Othman, G.R., Belfiore, J.C.: Augmented lattice reduction for MIMO
decoding. IEEE Trans. Wireless Commun. 9(9), 2853-2859 (2010)

Lenstra, A.K., Lenstra Jr., H'W., Lovéasz, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515-534 (1982)

Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1-23.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_1

Luzzi, L., Stehlé, D., Ling, C.: Decoding by embedding: correct decoding radius
and DMT optimality. IEEE Trans. Inf. Theory 59(5), 2960-2973 (2013)

Magma computational algebra system. http://magma.maths.usyd.edu.au/
magma,/

Minkowski, H.: Geometrie der Zahlen (1910)

Nguyen, P.Q., Stehlé, D.: Low-dimensional lattice basis reduction revisited. ACM
Trans. Algorithms 5(4) (2009)

Victor Shoup’s NTL library. http://www.shoup.net/ntl/

Nguyen, P.Q., Vallée, B. (eds.): The LLL Algorithm - Survey and Applications.
Information Security and Cryptography. Springer, Berlin Heidelberg (2010)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005, pp. 84-93 (2005)

Semaev, I.: A 3-dimensional lattice reduction algorithm. In: Silverman, J.H. (ed.)
CaL.C 2001. LNCS, vol. 2146, pp. 181-193. Springer, Heidelberg (2001). doi:10.
1007/3-540-44670-2-13

Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66(1-3), 181-199 (1994)

TU Darmstadt lattice challenge. http://www .latticechallenge.org/


http://dx.doi.org/10.1007/978-3-540-78967-3_3
http://dx.doi.org/10.1007/978-3-540-78967-3_3
http://dx.doi.org/10.1007/978-3-642-13190-5_13
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://magma.maths.usyd.edu.au/magma/
http://magma.maths.usyd.edu.au/magma/
http://www.shoup.net/ntl/
http://dx.doi.org/10.1007/3-540-44670-2_13
http://dx.doi.org/10.1007/3-540-44670-2_13
http://www.latticechallenge.org/

2 Springer
http://www.springer.com/978-3-319-64199-7

Advances in Information and Computer Security

12th International Workshop on Security, IWSEC 2017,
Hiroshima, Japan, August 30 - September 1, 2017,
Proceedings

Obana, S.; Chida, K (Eds.)

2017, XN, 243 p. 52 illus., Softcover

ISBM: 978-3-319-64195-7



	The Beauty and the Beasts---The Hard Cases in LLL Reduction
	1 Introduction
	2 Preliminaries
	2.1 Lattice Theory
	2.2 Lattice Algorithms

	3 The Beauty and the Beasts
	4 Three Dimensional Case
	4.1 LLL Outputs a Shortest Vector?
	4.2 Main Theorem
	4.3 Experimental Results in 3 Dimensional Beasts Lattices

	5 High Dimensional Cases
	5.1 Success Probability of LLL in High Dimensions
	5.2 Build 8 Dimensional Beasts from Rational Beauty Bases
	5.3 How to Build Beasts in General High Dimensions
	5.4 Experimental Results of High Dimensional Cases

	6 Conclusions
	A Supplementary proof in main theory
	References




