Chapter 2
The Group U(1) and its

Representations

The simplest example of a Lie group is the group of rotations of the plane,
with elements parametrized by a single number, the angle of rotation 6. It is
useful to identify such group elements with unit vectors ¢’ in the complex
plane. The group is then denoted U(1), since such complex numbers can
be thought of as 1 by 1 unitary matrices. We will see in this chapter how
the general picture described in chapter 1 works out in this simple case.
State spaces will be unitary representations of the group U(1), and we will
see that any such representation decomposes into a sum of one-dimensional
representations. These one-dimensional representations will be characterized
by an integer ¢, and such integers are the eigenvalues of a self-adjoint operator
we will call @, which is an observable of the quantum theory.

One motivation for the notation @ is that this is the conventional physics
notation for electric charge, and this is one of the places where a U(1)
group occurs in physics. Examples of U(1) groups acting on physical sys-
tems include:

e Quantum particles can be described by a complex-valued “wavefunc-
tion” (see chapter 10), and U(1) acts on such wavefunctions by point-
wise phase transformations of the value of the function. This phenom-
enon can be used to understand how particles interact with electromag-
netic fields, and in this case, the physical interpretation of the eigenvalue
of the @ operator will be the electric charge of the state. We will discuss
this in detail in chapter 45.

e [f one chooses a particular direction in three-dimensional space, then the
group of rotations about that axis can be identified with the group U(1).
The eigenvalues of ) will have a physical interpretation as the quantum
version of angular momentum in the chosen direction. The fact that
such eigenvalues are not continuous, but integral, shows that quantum
angular momentum has quite different behavior than classical angular
momentum.
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e When we study the harmonic oscillator (chapter 22), we will find that it
has a U(1) symmetry (rotations in the position-momentum plane) and
that the Hamiltonian operator is a multiple of the operator ) for this
case. This implies that the eigenvalues of the Hamiltonian (which give
the energy of the system) will be integers times some fixed value. When
one describes multiparticle systems in terms of quantum fields, one finds
a harmonic oscillator for each momentum mode, and then the () for that
mode counts the number of particles with that momentum.

We will sometimes refer to the operator () as a “charge” operator, assigning
a much more general meaning to the term than that of the specific example
of electric charge. U(1) representations are also ubiquitous in mathematics,
where often the integral eigenvalues of the () operator will be called “weights.”

In a very real sense, the reason for the “quantum” in “quantum mechanics”
is precisely because of the role of U(1) groups acting on the state space. Such
an action implies observables that characterize states by an integer eigenvalue
of an operator ), and it is this “quantization” of observables that motivates
the name of the subject.

2.1 Some representation theory

Recall the definition of a group representation:

Definition (Representation). A (complex) representation (w, V') of a group
G on a complex vector space V' (with a chosen basis identifying V ~ C") is
a homomorphism

w:G — GL(n,C)

This is just a set of n by n matrices, one for each group element, satisfying
the multiplication rules of the group elements. n is called the dimension of
the representation.

We are mainly interested in the case of G a Lie group, where G is a differ-
entiable manifold of some dimension. In such a case, we will restrict attention
to representations given by differentiable maps . As a space, GL(n, C) is the
space C”’ of all n by n complex matrices, with the locus of non-invertible
(zero determinant) elements removed. Choosing local coordinates on G, 7
will be given by 2n? real functions on G, and the condition that G is a dif-
ferentiable manifold means that the derivative of 7 is consistently defined.
Our focus will be not on the general case, but on the study of certain specific
Lie groups and representations m which are of central interest in quantum
mechanics. For these representations, one will be able to readily see that the
maps 7 are differentiable.
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To understand the representations of a group G, one proceeds by first
identifying the irreducible ones:

Definition (Irreducible representation). A representation 7 is called irre-
ducible if it is has no subrepresentations, meaning nonzero proper subspaces
W C V such that (mjw, W) is a representation. A representation that does
have such a subrepresentation is called reducible.

Given two representations, their direct sum is defined as:

Definition (Direct sum representation). Given representations w1 and
of dimensions ni and no, there is a representation of dimension ni + ng
called the direct sum of the two representations, denoted by m & mo. This
representation is given by the homomorphism

(m @m):geCG— <m(()g) m?m)

In other words, representation matrices for the direct sum are block-diagonal
matrices with m; and w5 giving the blocks. For unitary representations

Theorem 2.1. Any unitary representation © can be written as a direct sum
T=m1Omd - DTy

where the m; are irreducible.

Proof. If (m,V) is not irreducible, there exists a W C V' such that (7, W)
is a representation, and

(7T7V) = (W\va) @ (W\WJWWL)

Here, W+ is the orthogonal complement of W in V (with respect to the
Hermitian inner product on V). (my <, W) is a subrepresentation since, by
unitarity, the representation matrices preserve the Hermitian inner product.
The same argument can be applied to W and W+, and continue until (7, V)
is decomposed into a direct sum of irreducibles. O

Note that non-unitary representations may not be decomposable in this
way. For a simple example, consider the group of upper triangular 2 by 2
matrices, acting on V' = C2. The subspace W C V of vectors proportional

to <(1)) is a subrepresentation, but there is no complement to W in V that

is also a subrepresentation (the representation is not unitary, so there is no
orthogonal complement subrepresentation).
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Finding the decomposition of an arbitrary unitary representation into irre-
ducible components can be a very non-trivial problem. Recall that one gets
explicit matrices for the m(g) of a representation (, V') only when a basis for
V' is chosen. To see if the representation is reducible, one cannot just look to
see if the m(g) are all in block-diagonal form. One needs to find out whether
there is some basis for V' for which they are all in such form, something very
non-obvious from just looking at the matrices themselves.

The following theorem provides a criterion that must be satisfied for a
representation to be irreducible:

Theorem (Schur’s lemma). If a complex representation (w,V') is irreducible,
then the only linear maps M : V. — V' commuting with all the 7(g) are A1,
multiplication by a scalar A € C.

Proof. Assume that M commutes with all the m(g). We want to show that
(m,V) irreducible implies M = A1. Since we are working over the field C
(this does not work for R), we can always solve the eigenvalue equation

det(M — A1) =0
to find the eigenvalues A of M. The eigenspaces
W={veV:Mv= v}

are nonzero vector subspaces of V and can also be described as ker(M — A1),
the kernel of the operator M — A1. Since this operator and all the 7(g)
commute, we have

v € ker(M — A1) = 7(g)v € ker(M — A1)

so ker(M — A1) C V is a representation of G. If V' is irreducible, we must
have either ker(M — A1) =V or ker(M — A1) = 0. Since A is an eigenvalue,
ker(M — A1) # 0, so ker(M — A1) = V, and thus, M = Al as a linear
operator on V. (]

More concretely Schur’s lemma says that for an irreducible representation, if
a matrix M commutes with all the representation matrices 7(g), then M must
be a scalar multiple of the unit matrix. Note that the proof crucially uses the
fact that eigenvalues exist. This will only be true in general if one works with
C and thus with complex representations. For the theory of representations
on real vector spaces, Schur’s lemma is no longer true.
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An important corollary of Schur’s lemma is the following characterization
of irreducible representations of G when G is commutative.

Theorem 2.2. If G is commutative, all of its irreducible representations are
one dimensional.

Proof. For G commutative, g € GG, any representation will satisfy

m(g)m(h) = m(h)m(g)

for all h € G. If 7 is irreducible, Schur’s lemma implies that, since they
commute with all the 7(g), the matrices m(h) are all scalar matrices, i.e.,
m(h) = A1 for some A, € C. 7 is then irreducible when it is the one-
dimensional representation given by 7(h) = Ap,. (Il

2.2 The group U (1) and its representations

One might think that the simplest Lie group is the one-dimensional addi-
tive group R, a group that we will study together with its representations
beginning in chapter 10. It turns out that one gets a much easier to analyze
Lie group by adding a periodicity condition (which removes the problem of
what happens as you go to £00), getting the “circle group” of points on a
unit circle. Each such point is characterized by an angle, and the group law
is addition of angles.

The circle group can be identified with the group of rotations of the plane
R?, in which case it is called SO(2), for reasons discussed in chapter 4. It
is quite convenient, however, to identify R? with the complex plane C and
work with the following group (which is isomorphic to SO(2)):

Definition (The group U(1)). The elements of the group U(1) are points
on the unit circle, which can be labeled by a unit complex number €, or
an angle § € R with 0 and 0 + N27 labeling the same group element for
N € Z. Multiplication of group elements is complex multiplication, which by

the properties of the exponential satisfies

ei01 67;92 — ei(91+92)

so in terms of angles the group law is addition (mod 27).

The name “U(1)” is used since complex numbers e are 1 by 1 unitary

matrices.
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Figure 2.1: U(1) viewed as the unit circle in the complex plane C

By theorem 2.2, since U(1) is a commutative group, all irreducible repre-
sentations will be one dimensional. Such an irreducible representation will be
given by a differentiable map

m:U(1) = GL(1,C)

GL(1,C) is the group of invertible complex numbers, also called C*. A differ-
entiable map 7 that is a representation of U(1) must satisfy homomorphism
and periodicity properties which can be used to show:

Theorem 2.3. All irreducible representations of the group U(1) are unitary
and given by

e e? e U(1) = m(0) = *? € U(1) ¢ GL(1,C) ~ C*
fork e Z.

Proof. We will write the 7 as a function of an angle # € R, so satisfying the
periodicity property
e (27) = 1 (0) = 1

Since it is a representation, 7 will satisfy the homomorphism property
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7k (01 + 62) = m(01) 7k (02)
We need to show that any differentiable map
f:UQ1)—=cC”

satisfying the homomorphism and periodicity properties is of this form. Com-

puting the derivative f'(6) = %, we find

f(0+A0) - f(0)

/ _ .
AN i
_ . (f(Af) - 1) - :
= f(9) A%IBO VI (using the homomorphism property)

= f(0)f(0)

Denoting the constant f’(0) by ¢, the only solutions to this differential equa-
tion satisfying f(0) =1 are
F(0) = e

Requiring periodicity, we find

f2m) = e = f(0) =1
which implies ¢ = ik for k € Z, and f = 7w, for some integer k. ([l

The representations we have found are all unitary, with 7 taking values in
U(1) € C*. The complex numbers e*? satisfy the condition to be a unitary

1 by 1 matrix, since
(67,}(?9)71 _ efzkt? _ eik"

These representations are restrictions to the unit circle U(1) of irreducible
representations of the group C*, which are given by

Tz € CY = m(z) =28 € C*
Such representations are not unitary, but they have an extremely simple form,

so it sometimes is convenient to work with them, later restricting to the unit
circle, where the representation is unitary.

2.3 The charge operator

Recall from chapter 1, the claim of a general principle that, when the state
space H is a unitary representation of a Lie group, we get an associated
self-adjoint operator on H. We will now illustrate this for the simple case
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of G = U(1), where the self-adjoint operator we construct will be called the
charge operator and denoted Q.

If the representation of U(1) on H is irreducible, by theorem 2.2 it must be
one dimensional with H = C. By theorem 2.3, it must be of the form (7, C)
for some ¢ € Z. In this case, the self-adjoint operator @) is multiplication of
elements of H by the integer ¢q. Note that the integrality condition on ¢ is
needed because of the periodicity condition on 6, corresponding to the fact
that we are working with the group U(1), not the group R.

For a general U(1) representation, by theorems 2.1 and 2.3 we have

H=Hgy ODHg, ©--- DMy,

for some set of integers qi,q2,...,¢n (n is the dimension of H, the ¢; may
not be distinct), where M, is a copy of C, with U(1) acting by the 7,
representation. One can then define

Definition. The charge operator Q for the U(1) representation (m,H) is
the self-adjoint linear operator on H that acts by multiplication by q; on the
irreducible subrepresentation H,,. Taking basis elements in H,, it acts on H
as the matriz

¢ 0 0

0 0
Q — q2

0 0 n

Thinking of H as a quantum mechanical state space, @ is our first example
of a quantum mechanical observable, a self-adjoint operator on H. States in
the subspaces H,, will be eigenvectors for @ and will have a well-defined
numerical value for this observable, the integer ¢;. A general state will be a
linear superposition of state vectors from different H,,, and there will not be
a well-defined numerical value for the observable @ on such a state.

From the action of QQ on H, the representation can be recovered. The action
of the group U (1) on H is given by multiplying by i and exponentiating, to get

elat 0 0
. ) iq20 L,
ey e~ | 0 ¢ Y levm ceLmo
0 0 e eiQnO

The standard physics terminology is that “Q is the generator of the U(1)
action by unitary transformations on the state space H.”

The general abstract mathematical point of view (which we will discuss in
much more detail in chapter 5) is that a representation 7 is a map between
manifolds, from the Lie group U(1) to the Lie group GL(n, C), that takes the
identity of U(1) to the identity of GL(n,C). As such it has a differential 7/,
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which is a linear map from the tangent space at the identity of U(1) (which
here is iR) to the tangent space at the identity of GL(n,C) (which is the
space M (n, C) of n by n complex matrices). The tangent space at the identity
of a Lie group is called a “Lie algebra.” In later chapters, we will study many
different examples of such Lie algebras and such maps 7/, with the linear map
7’ often determining the representation 7.

In the U(1) case, the relation between the differential of 7 and the operator
Q is

7' 1if € iR — 7'(i0) = iQ0

The following drawing illustrates the situation:

0 etant

Figure 2.2: Visualizing a representation 7 : U(1) — U(n), along with its differential

The spherical figure in the right-hand side of the picture is supposed to
indicate the space U(n) C GL(n,C) (GL(n,C) is the n by n complex matri-
ces, C"Q, minus the locus of matrices with zero determinant, which are those
that cannot be inverted). It has a distinguished point, the identity. The rep-
resentation 7 takes the circle U(1) to a circle inside U(n). Its derivative 7’
is a linear map taking the tangent space ‘R to the circle at the identity to a
line in the tangent space to U(n) at the identity.
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In the very simple example G = U(1), this abstract picture is over-kill
and likely confusing. We will see the same picture though occurring in many
other much more complicated examples in later chapters. Just like in this
U(1) case, for finite dimensional representations the linear maps 7’ will be
matrices, and the representation matrices m can be found by exponentiating
the 7.

2.4 Conservation of charge and U (1)
symmetry

The way we have defined observable operators in terms of a group representa-
tion on H, the action of these operators has nothing to do with the dynamics.
If we start at time ¢t = 0 in a state in H,,, with definite numerical value g; for
the observable, there is no reason that time evolution should preserve this.
Recall from one of our basic axioms that time evolution of states is given by
the Schrodinger equation

d .
V() = —iH|y(t)

(we have set i = 1). We will later more carefully study the relation of this
equation to the symmetry of time translation (the Hamiltonian operator H
generates an action of the group R of time translations, just as the operator
@ generates an action of the group U(1)). For now though, note that for
time-independent Hamiltonian operators H, the solution to this equation is
given by exponentiating H, with

[¥(#)) = U(1)[1(0))

where
(—it)?
21

Ut)=e ™ =1 —itH + H? 4+ ...

The commutator of two operators O, O is defined by
[01, 02] = 0102 — 020,
and such operators are said to commute if [O7, O] = 0. If the Hamiltonian
operator H and the charge operator () commute, then @) will also commute

with all powers of H
[H*,Q] =0
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and thus with the exponential of H, so

[U(t), Q] =0

This condition

U(HQ = QU(t) (2.1)

implies that if a state has a well-defined value g; for the observable ) at time
t = 0, it will continue to have the same value at any other time ¢, since

QY (1) = QU)[1(0)) = U(t)QI(0)) = U(t)q;]¢(0)) = ;|1 (1))

This will be a general phenomenon: if an observable commutes with the
Hamiltonian observable, one gets a conservation law. This conservation law
says that if one starts in a state with a well-defined numerical value for the
observable (an eigenvector for the observable operator), one will remain in
such a state, with the value not changing, i.e., “conserved.”

When [@Q, H] = 0, the group U(1) is said to act as a “symmetry group”
of the system, with m(e?®) the “symmetry transformations.” Equation 2.1
implies that

U(t)e'@? = QU (t)

so the action of the U(1) group on the state space of the system commutes
with the time evolution law determined by the choice of Hamiltonian. It
is only when a representation determined by @ has this particular property
that the action of the representation is properly called an action by symmetry
transformations and that one gets conservation laws. In general [Q, H] # 0,
with @ then generating a unitary action on H that does not commute with
time evolution and does not imply a conservation law.

2.5 Summary

To summarize the situation for G = U(1), we have found

e Irreducible representations m are one dimensional and characterized by
their derivative 7’ at the identity. If G = R, 7’ could be any complex
number. If G = U(1), periodicity requires that 7/ must be iq,q € Z, so
irreducible representations are labeled by an integer.

e An arbitrary representation 7 of U(1) is of the form

,/T(eie) — 6i9Q
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where @) is a matrix with eigenvalues a set of integers ¢;. For a quantum
system, @ is the self-adjoint observable corresponding to the U(1) group
action on the system and is said to be a “generator” of the group action.

o If [Q, H] = 0, the U(1) group acts on the state space as “symmetries.”
In this case, the g; will be “conserved quantities,” numbers that char-
acterize the quantum states, and do not change as the states evolve in
time.

Note that we have so far restricted attention to finite dimensional repre-
sentations. In section 11.1, we will consider an important infinite dimensional
case, a representation on functions on the circle which is essentially the the-
ory of Fourier series. This comes from the action of U(1) on the circle by
rotations, giving an induced representation on functions by equation 1.3.

2.6 For further reading

I’'ve had trouble finding another source that covers the material here. Most
quantum mechanics books consider it somehow too trivial to mention, start-
ing their discussion of group actions and symmetries with more complicated
examples.
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