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Abstract. Synthesis aims at producing a process model from specified
sample executions. A user can specify a set of executions of a system in
a specification language that is much simpler than a process modeling
language. The intended process model is then constructed automatically.

Synthesis algorithms have been extensively explored for cases where
the specification language is a reachability graph or a sequential lan-
guage. Concerning synthesis from partial languages, however, there is a
significant gap between theory and practical application. In the litera-
ture, we find two different synthesis methods for partial languages, but
both have poor runtime even in reasonably sized practical examples. In
this paper, we introduce a new and more efficient synthesis algorithm for
partial languages based on Hasse diagrams.

1 Introduction

Complex business processes are often modeled by means of Petri nets [1,3,17,29,
30]. Petri nets have formal semantics, an intuitive graphical representation, and
are able to express concurrency among the occurrence of actions. Petri nets are
the formal basis for many workflow modeling languages. However, constructing a
Petri net model for a real world process is a costly and error-prone task [1,3,28].

Fortunately, whenever we model a system, there are often some associated
descriptions or even specifications of the desired processes. There may be log-
files of recorded behavior, example runs, or product specifications describing use
cases. Such specifications can be formalized by a set of words, a reachability
graph, or a partial language. Yet, only partial languages are able to explicitly
express concurrency between events. Thus, partial languages have drawn much
attention recently [5,20].

If a specification is incomplete or contains so-called noise, there are algorithms
developed in the area of process mining [1,2] to still automatically generate a
suitable business process model. If a specification is complete (i.e. is the desired
behavior), we can synthesize a model. The synthesis problem is to compute a
process model so that: (A) the specification is a subset of the language of the
generated model and (B) the generated model has minimal additional behavior.

To showcase a typical use case of synthesis-based model generation, we
assume a coffee brewing process together with a domain expert on this process
called Robin. Robin has been brewing coffee for years, but just recently received
a training in process modeling to document standard processes in his depart-
ment. Robin observes a sample execution of his process and records the following
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sequence of events: grind beans, unlock machine, empty strainer, clean coffee pot,
get water with coffee pot, fill kettle, fill strainer, assemble and turn on. In a sec-
ond sample, he uses a glass pot (instead of the coffee pot) to fetch water from the
kitchen. With this in mind, Robin builds a naive Petri net-like process model of
his process depicted in Fig. 1. All actions of the process are ordered in a sequence
and there is an XOR-split modeling the choice between the two transitions get
water with coffee pot and get water with glass pot.
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Fig. 1. Petri net-like process model of the coffee brewing process.

We (modeling experts) try to rate the validity of Robin’s model. We realize
that most of the modeled dependencies may be superfluous. For example, unlock-
ing the coffee machine usually does not depend on grinding beans. Cleaning the
coffee pot only depends on unlocking the machine. What is worse, some of these
dependencies may change if we consider different executions of the process. In
a scenario where we use the coffee pot to get water from the kitchen, the event
fill kettle depends on the sequence of actions unlock coffee machine, clean coffee
pot, and get water with coffee pot. In another scenario where we use the addi-
tional glass pot to fetch water, the event fill kettle only depends on unlocking
the machine and getting water. Thus, the relation between the occurrences of
fill kettle and clean coffee pot has changed.

There are many possible pitfalls in this small example. Even if Robin under-
stands the concepts that may cause trouble here, he most likely will not be able to
adapt his model accordingly. To tackle this problem, we apply a synthesis-based
model generation approach. We revisit both initially observed sample executions
and depicted them in Fig. 2. In a next step, we ask Robin to delete unnecessary
dependencies between observed events. With his expert knowledge on the process
at hand, he for example starts to delete the dependency between grind beans and
unlock machine in the first sequence, thus creating a partial order step by step.
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Fig. 2. Observed events of the coffee brewing process.
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Robin continues to delete all superfluous dependencies from both observed
sequences and finally comes up with the two labeled Hasse diagrams depicted in
Fig. 3. Every labeled Hasse diagram specifies a different run of the coffee brewing
process. In the first run, we grind beans and unlock the coffee machine. Once
the machine is unlocked, we empty the strainer and clean the coffee pot. After
it is cleaned, we fetch water from the kitchen using the coffee pot. When the
strainer and the kettle are filled, we assemble and turn on the coffee machine.
Every arc models a dependency between the occurrence of the related actions
and unordered events occur concurrently. In the second run, we use a glass pot
(instead of the coffee pot) to fetch water from the kitchen. This activity does not
depend on unlocking or cleaning the coffee pot. We can get water right at the
beginning of this sample run. Altogether, Fig. 3 depicts a complete and intuitive
specification of our coffee brewing process.
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Fig. 3. Two labeled Hasse diagrams, i.e. a specification of the coffee brewing process.

The last step in a synthesis-based model generation approach is to construct
a model matching Robin’s specification, thus solving the synthesis problem. Such
a model offers an integrated view of the process at hand, is more compact, can
be analyzed by well-known Petri net algorithms, and can serve as an input for
workflow engines.

In this paper, we present a new synthesis technique to automatically trans-
form a specification into a valid process model. The main benefit is that single
executions are much easier to model than the complex system itself. To confirm
this claim, we take a look at the model depicted in Fig. 4 modeling the coffee
brewing process specified in Fig. 3. This model is generated using the algorithm
presented in the remainder of this paper. We will recall Petri nets and their par-
tial language in the preliminaries; here, it is sufficient to state that this model
has exactly the specified behavior of the coffee brewing process.

Taking a look at the literature, scenario-based modeling approaches are an
acknowledged research topic. There is a vast variety of specialized approaches
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Fig. 4. A marked p/t-net modeling a coffee brewing process.

using different specification languages and process models (see for example
[15,16,22,23]). All these approaches have in common that they assume the spec-
ification to be valid and rather complete. This is the main requirement for apply-
ing precise generation algorithms like synthesis or folding methods. The theory
of the related synthesis algorithms is called region theory [4,21]. Region theory
has been extensively explored for reachability graphs and sequential languages.
There are many non-trivial theoretical results, notions, case studies, as well as
tools like ProM [19], Genet [14], or Viptool [10] (see for example [11–13,31,32] for
some recent publications). Concerning region theory for partial languages, how-
ever, there is a significant gap between theory and practical application. There
are two different notions of regions for partial languages: tokenflow regions [9]
and transition regions [8,9]. Yet, both related algorithms perform poorly even
in reasonably sized practical examples [8]. In Sect. 3, we introduce a synthesis
algorithm based on a new concept called compact regions. The name stems from
the fact that while tokenflow regions relate to occurrence nets and transition
regions relate to step sequences, the new notion relates to compact tokenflows
[6,7] and Hasse Diagrams, i.e. a much more compact representation of a partial
language. We show that the concept of compact regions introduced here leads
to a much faster synthesis algorithm.

The paper is organized as follows: Sect. 2 introduces Petri nets, their partial
language, and the synthesis problem. In Sect. 3, we recall the concept of compact
tokenflows and introduce compact regions. We prove that compact regions solve
the synthesis problem for Petri nets and partial languages. At the end of Sect. 3,
we deduce our synthesis algorithm from the new definition of compact regions. In
Sect. 4, we discuss the runtime of the new algorithm. We compare the algorithm
to its predecessors i.e. algorithms based on transition regions and (ordinary)
tokenflow regions. We implement all synthesis techniques in a tool called MoPeBs
Eagle Owl and present runtime tests.



26 R. Bergenthum

2 Preliminaries

Let f be a function and B be a subset of the domain of f . We write f |B to
denote the restriction of f to B. We call a function m : A → N a multiset
and write m =

∑
a∈A m(a) · a to denote multiplicities of elements in m. Let

m′ : A → N be another multiset. We write m ≥ m′ if ∀a ∈ A : m(a) ≥ m′(a)
holds. We denote the transitive closure of an acyclic and finite relation < by <∗.
We denote the skeleton of < by <�. The skeleton of < is the smallest relation �
such that �∗ =<∗ holds. Let (V,<) be some acyclic and finite graph, (V,<�) is
called its Hasse diagram. We model business processes by p/t-nets [3,18,29,30].

Definition 1. A place/transition net (p/t-net) is a tuple (P, T,W ) where P is
a finite set of places, T is a finite set of transitions such that P ∩ T = ∅ holds,
and W : (P × T ) ∪ (T × P ) → N is a multiset of arcs. A marking of (P, T,W ) is
a multiset m : P → N. Let m0 be a marking, we call the tuple N = (P, T,W,m0)
a marked p/t-net and m0 the initial marking of N .

Figure 4 depicts a p/t-net modeling a coffee brewing process. Transitions are
rectangles, places are circles, the multiset of arcs is represented by weighted
arcs, and the initial marking is represented by black dots called tokens. There is
a simple firing rule for transitions of a p/t-net: let t be a transition of a marked
p/t-net (P, T,W,m0). We denote ◦t =

∑
p∈P W (p, t) · p the weighted preset of t.

We denote t◦ =
∑

p∈P W (t, p) · p the weighted postset of t. A transition t is
enabled (can fire) at marking m if m ≥ ◦t holds. Once transition t fires, the
marking changes from m to m′ = m − ◦t + t◦. In our example p/t-net, the
transitions grind beans, unlock machine, and get water with glass pot can fire at
the initial marking. If unlock coffee machine fires, this removes the token from
the place in its preset and produces two new tokens: one token in the preset
of empty strainer and another token in the preset of clean coffee pot. As soon
as get water glass pot fires, the token from the lower left place is removed and
one token is produced in the preset of fill kettle. Note: firing get water glass pot
disables transition get water coffee pot for the rest of this process. Concerning
arc weights, the transition assemble and turn on is enabled if there are at least
three tokens in the rightmost place p9. Repeatedly processing the firing rule
produces firing sequences. These firing sequences are the most basic behavioral
model of Petri nets. Let N be a marked p/t-net, the set of all initially enabled
firing sequences of N is the sequential language of N .

Petri nets and most business process modeling languages are able to express
concurrency of the occurrences of transitions. For example, transitions grind
beans and unlock machine can fire independently from one another. Roughly
speaking, they can fire without any order while not sharing resources. However,
firing sequences are not able to capture or describe such behavior. The common
behavioral model for partially ordered behavior of Petri nets is a so-called process
nets [25]. A process net is a Petri net modeling only one single partially ordered
run of a marked p/t-net. For a formal definition of process nets we refer to
[25,30]. Here, as an example, we depict a process net of our coffee brewing Petri
net of Fig. 4.
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Every place of a process net relates to a token of the related p/t-net. For
example in Fig. 5, there are three places labeled p9 in the preset of the transition
assemble and turn on. The set of process nets of a p/t-net is called its unfolding.
Events, loops, tokens, and conflicts are unfolded to present single executions of
the related net.
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Fig. 5. One process net of the coffee brewing process.

If we abstract from the places of a process net related to a p/t-net N , we have
a set of events arranged in a partial order. Just like some valid firing sequence,
this partially ordered set of events is enabled in the p/t-net. In other words,
we can replay such a partial order by firing transitions of N where unordered
parts of the partial order can fire concurrently. The set of labeled partial orders
induced by all processes of N is the partial language of N . For example, the left
half of Fig. 3 depicts the labeled Hasse diagram representing the partial order
underlying Fig. 5. Thus, this labeled partial order is in the partial language of
the p/t-net depicted in Fig. 4.

Definition 2. Let T be a set of labels. A labeled partial order (lpo) is a triple
lpo = (V,<, l) where V is a finite set of events, < ⊆ V × V is a transitive and
irreflexive relation, and the labeling function l : V → T assigns a label to every
event.

Definition 3. Let K = (C,E, F, ρ) be a process net of a marked p/t-net
(P, T,W,m0) where C is a set of conditions, E is a set of events, F is a set of
arcs, and ρ : (C ∪E) → (P ∪T ) is a labeling function. The lpo (E,F ∗|E×E , ρ|E)
is the process lpo of K.

Let N be a marked p/t-net and LΠ(N) be the set of all process lpos of N .
L(N) = {(E,<, l)|(E,<, l) an lpo, (E,<′, l) ∈ LΠ(N), <′⊆<} is the partial lan-
guage of N .

As we already pointed out in the introduction, our goal is to synthesize a p/t-
net from a specification describing partially ordered behavior. The most suitable
manner to represent a partial language is by means of labeled Hasse diagrams
(see Fig. 2). A labeled Hasse diagram is a finite set of events ordered by the
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skeleton of a partial order. Clearly, the transitive closure of a Hasse diagram is
an lpo. Thus, the prefix- and sequentialisation-closure of a set of labeled Hasse
diagrams is a partial language.

Definition 4. A triple run = (V,<, l) is a labeled Hasse diagram if (V,<∗, l) is
an lpo and <�=< holds. A finite set of labeled Hasse diagrams is a specification.
Let run = (V,<, l) be a labeled Hasse diagram, we define run∗ = (V,<∗, l).

Definition 5. Let N be a marked p/t-net and S = {run1, . . . , runn} be a spec-
ification. We write S ⊆ L(N) iff {run∗

1, . . . , run∗
n} ⊆ L(N) holds.

Finally, we are able to define the synthesis problem. The synthesis problem
is to construct a p/t-net such that its behavior matches a specification. If there
is no such p/t-net, we construct a p/t-net such that its behavior includes the
specification and has minimal additional behavior.

Definition 6. Let S be a specification, the synthesis problem is to compute a
marked p/t-net N such that the following conditions hold: S ⊆ L(N) and for all
marked p/t-nets N ′ : L(N)\L(N ′) �= ∅ =⇒ S �⊆ L(N ′).

3 Compact Regions and Synthesis Algorithm

The algorithm presented in this paper is based on the theory of regions [21].
For an introduction to region theory, we refer the reader to [4]. As stated in
the introduction, the input to our algorithm is a set of labeled Hasse diagrams
(see Fig. 3). The first step is to construct a transition for every label to get
an initial p/t-net without places. The language of this net includes arbitrary
behavior because all the transitions have an empty preset and can fire in any
order. Obviously, we need to add places and arcs to restrict the behavior of this
initial net. To solve the synthesis problem, we are only allowed to add places
and connected arcs that do not inhibit our specification.

Definition 7. Let S be a specification and N = (P, T,W,m0) be a marked p/t-net.
A place p ∈ P is called feasible for S iff S ⊆ L(({p}, T,W |({p}×T )∪(T×{p}),m0(p)))
holds. Let S be a specification and N = ({p}, T,W,m0) be a marked one-place
p/t-net. We call N feasible for S iff p is feasible for S.

If we are able to identify feasible places, we can add these to our initially
placeless p/t-net. These places restrict the behavior, yet such a net will still be
able to execute all the labeled Hasse diagrams of the specification.

Remark 1. Let S be a specification and let a set of p/t-nets {({p1},
T,W1,m1), . . . , ({pn}, T,Wn,mn)} be feasible for S. Let N = (

⋃
i{pi}, T,

∑
i Wi,∑

i mi) be the union of all feasible nets, every place of N is feasible and S ⊆ L(N)
holds.
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Theoretically, we could restrict the behavior of the initial p/t-net by adding
the set of all feasible places. This would guarantee that the behavior of the net
cannot be restricted further without excluding some executions of the specifica-
tion. This is a fundamental theorem of region theory (see for example [4]).

Theorem 1. Let S be a specification and T be its set of labels. The p/t-net
which is the union of all p/t-nets feasible for S is a solution of the synthesis
problem.

Practically, we need to construct a finite p/t-net with the same behavior
as the union-of-all-feasible-places p/t-net. For partial languages, there are two
strategies to tackle this problem: We can either calculate a basis of all feasible
places and add them to the initial set of transitions. This is always possible and
the basis is always finite. According to the firing rules of Petri nets, this net
behaves like the infinite p/t-net. In other words, the finite basis p/t-net also
solves the synthesis problem. Or we can use the technique of so-called wrong
continuations. Roughly speaking, the set of wrong continuations is the border
between the specified and all other behaviors. The set of wrong continuations is
finite as long as the specification is finite as well. For each wrong continuation, we
add one feasible place, thus excluding the wrong continuation from the language
of the constructed net. The resulting finite p/t-net solves the synthesis problem
as well.

The next step of our algorithm is to characterize the set of all feasible places.
To develop an efficient synthesis algorithm, we rely on the behavioral model of
compact tokenflows [6,7]. A compact tokenflow is a distribution of tokens along
the Hasse diagram of a labeled partial order. A labeled Hasse diagram is in
the partial language of a p/t-net if there is a compact tokenflow distributing
tokens such that three conditions hold: first, every event receives enough tokens,
second, no event has to pass too many tokens, and third, the initial marking is not
exceeded. Tokens must be received from the particular presets of events. Thus,
we ensure that consumed tokens are available before the actual event occurs. If a
transition produces tokens, the related events are allowed to produce tokenflow
in the Hasse diagram and pass these tokens to their particular postsets. If an
event receives tokens, it consumes the tokenflow needed and passes the redundant
tokenflow to later events. Tokens of the initial marking are free for all, i.e. any
event can consume tokens from the initial marking.

Definition 8. Let N = (P, T,W,m0) be a marked p/t-net and run = (V,<, l)
be a labeled Hasse diagram such that l(V ) ⊆ T holds. A compact tokenflow is
a function x : (V ∪ <) → N. x is compact valid for p ∈ P iff the following
conditions hold:

(i) ∀ v ∈ V : x(v) +
∑

v′<v x(v′, v) ≥ W (p, l(v)),
(ii) ∀ v ∈ V :

∑
v<v′ x(v, v′) ≤ x(v) +

∑
v′<v x(v′, v) − W (p, l(v)) + W (l(v), p),

(iii)
∑

v∈V x(v) ≤ m0(p).

run is compact valid for N iff there is a compact valid tokenflow for every p ∈ P .
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Fig. 6. Two valid compact tokenflows for place p9 of the marked p/t-net of Fig. 4.

For an example of a compact tokenflow, we consider place p9 of Fig. 4 and
depict two related compact valid tokenflows for the two labeled Hasse diagrams
introduced earlier in Fig. 6. We take a look at Fig. 4 and only consider p9 and
its related arcs. We see that all events labeled assemble and turn on need to
receive three tokens, whereas all events labeled fill strainer, clean coffee pot, or
fill kettle can produce one token. In the Hasse diagrams of Fig. 5, tokenflow is
depicted as integers on the related arcs and events (the integer 0 is not shown).
According to the depicted tokenflow, in the first diagram fill strainer and clean
coffee pot create one token each. The event get water coffee pot cannot create
tokens for p9, but receives a token from clean coffee pot and passes this token
to fill kettle. The event fill kettle receives one token and produces another one.
Thus, fill kettle passes two tokens to assemble and turn on. Altogether, assemble
and turn on receives three tokens and all the conditions for a valid compact
tokenflow hold for p9. All in all, we need to construct eleven compact tokenflows
related to the eleven places of the p/t-net of Fig. 4 to deduce that this labeled
Hasse diagram is in the language of the p/t-net. In the second Hasse diagram
of Fig. 6, three tokens directly reach the event labeled assemble and turn on.
Again, all conditions for a valid compact tokenflow hold for p9. Compared to the
notion of process nets [25] and to the notion of (ordinary) tokenflows [26,27],
the main advantage of compact tokenflows is that they only consider the Hasse
diagrams of the specification. Process nets as well as ordinary tokenflows need to
consider the complete (i.e. transitive) relation. Previous work [6,7] proves that
these three notions are equivalent, i.e. they all define the same partial language.
For the proof, we refer to [6] but state the following theorem.

Theorem 2. The language of a marked p/t-net is well-defined by the set of
compact valid labeled Hasse diagrams.

In our algorithm we take advantage of compact tokenflows and define a new
notion of regions, i.e. compact regions, for partial languages.

Definition 9. Let S = {(V1, <1, l1), . . . , (Vn, <n, ln)} be a specification, T be its
set of labels, and p be a place. We denote V ′

i the set of events with an empty prefix
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in (Vi, <i, li). A function r : (
⋃

i(V
′
i ∪ <i) ∪ (T × {p}) ∪ ({p} × T ) ∪ {p}) → N

is a compact region for S iff ∀i ∈ N : r|{V ′
i ∪<i} is compact valid for p in

({p}, T, r|(T×{p})∪({p}×T ), r(p)).

We reconsider our sample brewing process depicted in Fig. 5. We assume,
both Hasse diagrams are the input to our synthesis algorithm. The main idea
of the algorithm is to construct compact regions. In this example, we imple-
ment the domain of a compact region by 41 non-negative integer unknowns.
The first 19 unknowns represent a place. A place may have one weighted arc
leading to each of the nine transitions related to the labels of our example,
one weighted arc coming from each of the nine transitions, and an additional
unknown for its initial marking. The next ten unknowns represent a compact
tokenflow of the first Hasse diagram. One unknown for each of the eight arcs and
two additional unknowns for each of the two minimal events. The last twelve
unknowns represent a compact tokenflow of the second Hasse diagram. Again,
one unknown for each of the nine arcs and three additional unknowns for each
of the three minimal events. Only if all 41 values of these unknowns relate to
two compact tokenflows valid for the defined place, this vector is a compact
region. For example, assume a fixed ordering of all 41 unknowns, the vector
(0, 1, 3, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0,
0, 0, 0, 0) may be a compact region. Assuming a correct ordering of all unknowns,
the first third of this vector defines the arc weights of p9 depicted in Fig. 3. The
second third defines the compact tokenflow on the left side of Fig. 5. The last
third defines the compact tokenflow on the right side of Fig. 5.

To state the correctness of our synthesis algorithm we have to prove that if the
compact tokenflows are valid for the defined place, a region defines a feasible place.

Theorem 3. Let S be a specification and T be its set of labels. Every compact
region r for S defines a feasible p/t-net Nr = ({p}, T,W,m0) and vice versa.

Proof. Let r be a compact region. For every labeled Hasse diagram in S, there is a
valid compact tokenflow r|{V ′

i ∪<i} of p in Nr = ({p}, T, r|(T×{p})∪({p}×T ), r(p)).
S ⊆ L(Nr) holds and so Nr is feasible for S.

Let N = ({p}, T,W,m0) be a feasible p/t-net such that S ⊆ L(N) holds.
There is a valid compact tokenflow ri for every labeled Hasse diagram of S.
Without loss of generality, every ri is zero on events with a non-empty prefix.
This holds because as long as some valid compact tokenflow is positive for some
event e with a non-empty prefix, move this tokenflow to an event e′ in its direct
prefix and adopt the compact tokenflow on the arc (e′, e) accordingly. The union
r =

⋃
i ri ∪ W ∪ m0 is a compact region. �

Every region is a vector of numbers respecting the conditions (i), (ii), and
(iii) of Definition 9. With this in mind, we are able to express all feasible p/t-
nets by a single inequality system. Again, in this system, there is an unknown
for every element in the domain of a compact region, i.e. one unknown for every
minimal event, another unknown for every arc, two unknowns for every label,
and a single unknown for the initial marking. The inequality system is built from
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the inequalities defined in Definition 8. According to (i) and (ii), there are two
inequalities for every event of the specification. According to (iii), there is another
inequality for every labeled Hasse diagram. The set of positive integer solutions of
this inequality system is the set of all feasible nets. We call this inequality system
the compact region inequality system. Every solution of this system defines one
feasible place. Altogether, the compact region inequality system has 41 unknowns
as well as 34 inequalities in our coffee brewing example.

Finally, we depict the complete synthesis algorithm using compact regions in
Algorithm 1. Input is a set of Hasse diagrams H. We construct a Petri net with an
empty set of places and a transition for every label, calculate the compact region
inequality system, and the set of wrong continuations of H. For every wrong con-
tinuation c we check if it is still executable in the net constructed so far. If it is
executable, we need to exclude the wrong continuation from the behavior of the
net. This must be done with a feasible place, i.e. a compact region. We encode the
non-executability of c in an additional inequality for the compact region inequal-
ity system. Every solution of this extended system is a region and excludes c. If
this system has a solution, we add the related one-place net to our initially con-
structed set of transitions. If the extended compact region inequality system has
no solution, the wrong continuation c cannot be excluded. We assure that the con-
structed net is a best approximation to H by adding the set of wrong continuations
of c to C. Algorithm 1 will terminate because H is finite.

Algorithm 1.
1: Input: A set of labeled Hasse diagrams H
2: (P, T,W,m0) ← (∅, T ← ⋃(V,<,l)∈H l(V ), ∅, ∅)

3: M ← compactRegionInequalitySystem(H)
4: C ← wrongContinuations(H)
5: while C �= ∅ do
6: c ← C.remove()
7: if c.isExecutable(P, T,W,m0) then
8: M ′ ← M.addInequality(c)
9: s ← M ′.solve()

10: if s.isSolution() then
11: (P, T,W,m0).add(s.getOnePlaceNet())
12: else
13: C.addAll(wrongContinuations(c))
14: return (P, T,W,m0)

4 Comparison and Experimental Results

In this section, we first compare compact regions to the already existing concepts
of transition regions [4,8] and ordinary tokenflow regions [9]. Secondly, we present
a runtime experiment comparing all three related synthesis algorithms.
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A transition region of a partial language L is based on the set of step
sequences Lstep of L (see [24]). As an example, we depict three of the numerous
step sequences of the first labeled Hasse diagram of our coffee brewing process
using two operators: composition of steps + and sequential composition of steps ·:
[(grind beans) + (unlock machine)] · [(empty strainer) + (clean coffee pot)]·
[(fill strainer)+ (get water coffeepot)] · (fill kettle) · (assemble and turn on)

[(grind beans) + (unlock machine)] · [(empty strainer) + (clean coffee pot)]·
(get water coffee pot) · [(fill strainer)+(fill kettle)] ·(assemble and turn on)

(unlock machine) · [(grind beans) + (empty strainer) + (clean coffee pot)]·
(get water coffee pot) · [(fill strainer)+(fill kettle)] ·(assemble and turn on)

The two events grind beans and unlock coffee machine are the first step of
the first sequence. The second step is empty strainer and clean coffee pot. The
number of maximal step sequences may grow exponentially with the number of
events of a labeled Hasse diagram. Even in our small coffee brewing specification,
the size of this language is huge. A transition region defines a place and requires
that this place can fire every maximal step sequence of the specified partial
language.

Definition 10. Let S = {(V1, <1, l1), . . . , (Vn, <n, ln)} be a specification, T be
the set of labels of S, and p be a place. Let Lstep(S) be the language of step
sequences of S. A function r : ((T × {p}) ∪ ({p} × T ) ∪ {p}) → N is a transition
region for S iff for all maximal step sequences (τ1 . . . τn) ∈ L(S)step and all
j ∈ {1, . . . , n} : r(p)+

∑
t∈T ((τ1+. . .+τj−1)(t)·r(t, p)−(τ1+. . .+τj)(t)·r(p, t)) ≥

0 holds.

We follow Definition 10 to define the transition region inequality system. The
number of unknowns is 2 · |T | + 1, i.e. a place. The inequalities of the inequality
system are a subset of the set of conditions of Definition 10. In the transition
region inequality system, we discard all constraints that are equal to or less strict
than other constraints. Let τ and τ ′ be two steps such that τ ′ ≤ τ holds and let τ1
. . . τj−1 and τ ′

1 . . . τ ′
k−1 be two step sequences such that

⋃
i<j τi and

⋃
i<k τ ′

i share
the same multiset of labels. If τ can fire after the occurrence of τ1 . . . τj−1, the
step τ ′ can fire after the occurrence of τ ′

1 . . . τ ′
k−1. Thus, we build the transition

region inequality system by merging matching presteps to so-called prefix steps.
The number of inequalities of the transition region inequality system is equal to
the number of prefix step continuations. A prefix step continuation is a prefix
step Γ together with a step τ if there is a matching maximal step sequence
π1 . . . πn of S such that Γ =

⋃
i<n πi and τ = πn holds. Altogether, the number

of inequalities is approximately the number of cuts of S. In a worst-case scenario,
the number of cuts is exponential in the size of our input. However, if we specify
little concurrency, the number of cuts is small. The number of inequalities is,
for example, equal to the number of all events if every labeled Hasse diagram is
totally ordered. We refer the reader to [8] for a more detailed description of the
transition region inequality system.
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An ordinary tokenflow region of a partial language is based on the set of labeled
partial orders of a specification. Let S = {(V1, <1, l1), . . . , (Vn, <n, ln)} be a spec-
ification of L, obviously, S∗ = {(V1, <

∗
1, l1), . . . , (Vn, <∗

n, ln)} specifies L using
labeled partial orders. If we input a set of labeled Hasse diagrams we have to cal-
culate the transitive closure in a first step of this algorithm. Figure 3 depicts two
Hasse diagrams with a total of 17 arcs. The respective partial orders have 31. In
the exceptional case where a Hasse diagram is transitive, both characterizations
have the same number of arcs; in most cases, the number of arcs of a partial order
may increase quadratic with the number of arcs of a Hasse diagram.

The concept of tokenflows is similar to the concept of compact tokenflows.
Yet, ordinary tokenflows directly relate to process nets of Petri nets, whereas
compact tokenflows are able to abstract from the history of tokens. In some
sense, compact tokenflows rather relate to distributed transition systems than
to process nets.

The domain of a tokenflow region r is the partial order of the specification,
every event, and a place. Thus, the domain of a tokenflow region includes the
domain of a compact region. If we specify little concurrency, the number of arcs
of the labeled partial order is quadratic in the number of arcs of the Hasse
diagram. The number of conditions of a tokenflow region is equal to the number
of conditions of a compact region. Just like for compact regions, we define the
tokenflow region inequality system. This system has

∑
(V,<,l)∈S(|V | + |>∗|) + 2 ·

|T | + 1 unknowns and
∑

(V,<,l)∈S(2 · |V | + 1) inequalities.
Summing up, compared to transition regions and tokenflow regions, the new

compact regions define by far the smallest region inequality system for partial
languages. Since algorithms have to solve these systems multiple times during the
synthesis procedure, compact tokenflows lead to the fastest synthesis algorithms
for partial languages.

To support the scenario-based modeling approaches with Hasse diagrams we
developed our tool called MoPeBs eagle owl. In MoPeBs we implement three
synthesis algorithms, each using a different concept of regions. MoPeBs is a
lightweight editor embedding Viptool [10] plug-ins. MoPeBs uses the Simplex
algorithm of LpSolve to handle the occurring region inequality systems (http://
lpsolve.sourceforge.net).

Figure 7 depicts a screenshot of MoPeBs eagle owl. The main application
window can handle, save, and load synthesis projects. We see a list of speci-
fied tasks, two files specifying two different Hasse diagrams, CoffeePot.lpo and
GlassPot.lpo, and three files relating to different p/t-net models. The list of all
.lpo-files is the specification, i.e. the input of the synthesis algorithms. Every file
in the list of p/t-net models was synthesized using a different concept of regions.
In the bottom left-hand corner of the main application window, there are three
buttons: transition regions, tokenflow regions, and compact regions. Every button
starts the related synthesis algorithm. The second window of Fig. 7 depicts the
MoPeBs editor showing the Hasse diagram of CoffeePot.lpo. Of course, MoPeBs
can edit, save, and load Hasse diagrams.

http://lpsolve.sourceforge.net
http://lpsolve.sourceforge.net
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Fig. 7. A screenshot of MoPeBs eagle owl.

We perform the following experiments to measure how well the differ-
ent synthesis approaches scale with respect to the size of the input and to
compare the overall runtime. We use MoPeBs and an Intel Core i5 3.30
GHz (4 CPUs) machine with 8 GB RAM running a Windows 10 operat-
ing system. MoPeBs eagle owl is available on the MoPeBs homepage at
www.fernuni-hagen.de/sttp/forschung/mopebs.shtml.

Experiment 1. We consider five specifications S1, S2, S3, S4, and S5. Specifi-
cation S1 is the sample specification depicted in Fig. 3. Every other specification
is a sequential composition of copies of these two labeled Hasse diagrams. S2 is
the sequential composition of twice the first labeled Hasse diagram and twice the
second labeled Hasse diagram. S3, S4, and S5 are three, four, and five copies. We
solve the synthesis problem using compact regions, tokenflow regions, and tran-
sition regions. We depict the mean of the runtimes of 20 runs of each algorithm
in seconds if the algorithm terminates within 15min in Fig. 8.

In Experiment 1, the Hasse diagrams grow in length. Specification S1 has
24 events and 17 arcs, Specification S5 has 80 events and 105 arcs. Algorithm 1,
which uses compact tokenflows, outperforms Algorithm 2 and Algorithm 3 in
every test. This is not surprising because only compact regions are tailored
to relate to small region inequality systems. As pointed out in the first part
of this section, the compact region inequality system is much easier to solve
than the tokenflow and the transition region inequality systems. If we com-
pare Algorithm 2 and Algorithm 3, the specifications are rather short at first,

http://www.fernuni-hagen.de/sttp/forschung/mopebs.shtml
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Fig. 8. Runtime results of Experiment 1.

so that the number of cuts is bigger than the number of all (transitive) arcs.
The number of inequalities of the transition region inequality system is bigger
than the number of unknowns of the tokenflow region inequality system. Thus,
ordinary tokenflow regions are faster than transition regions in this example.
Specifications S4 and S5 have rather little concurrency so that transition regions
outperform ordinary tokenflow regions as soon as the number of (transitive) arcs
exceeds the number of cuts. Compact regions are fast, independent of the level
of concurrency. Considering S5, only Algorithm1 is able to solve the synthesis
problem within 15 min.

Experiment 2. We consider four specifications X1,X2,X3, and X4. Specifica-
tion X1 is three Hasse diagrams of the partial language of the so-called repair
example from www.processmining.org. Every other specification is a parallel com-
position of copies of these diagrams, i.e. the specifications grow in width. The
maximal size of a cut in X1 is two, four in X2, six in X3, and eight in X4. We
solve the synthesis problem using compact regions, tokenflow regions, and tran-
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Fig. 9. Runtime results of Experiment 2.

www.processmining.org
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sition regions. We depict the mean of the runtimes of 20 runs of each algorithm
in seconds if the algorithm terminates within 15min in Fig. 9.

In Experiment 2, the Hasse diagrams of the specifications grow in width.
Specification X1 has 30 events, X2 has 45 events, X3 has 72 events, and X4 has
90 events. The length of the longest path in every specifications is 8 (at most one
loop of the repair example). Just like in Experiment 1, Algorithm 1 outperforms
Algorithm 2 and Algorithm 3 in every test. Again, the compact region inequal-
ity system is much easier to solve than the tokenflow and the transition region
inequality systems. If we compare Algorithm 2 and Algorithm 3, the number of
cuts is big and the number of transitive arcs is small. Thus, ordinary tokenflow
regions are faster than transition regions in this example. In both experiments
compact regions outperform both older algorithms independent from the struc-
ture of the specification.

5 Conclusion and Future Work

We presented an approach to generate a process model from a set of Hasse
diagrams specifying a set of sample executions. Using our approach, a user can
specify a set of executions in a very intuitive and simple specification language
and get the complex Petri net model for free.

We presented a new concept of regions for partial languages. The definition is
based on the semantics of compact tokenflows. The domain of a compact token-
flow is the number of arcs and the set of initial events of a labeled Hasse diagram.
Both numbers grow neither like the number of events nor like the number of arcs
of a labeled partial order. We compared compact regions to tokenflow and tran-
sition regions referring to the size of the related region inequality systems.

Furthermore, we presented a synthesis algorithm and experimental results
of its implementation in the tool called MoPeBs eagle owl. MoPeBs supports
the sample based modelling approach for Hasse Diagramms. We compared the
runtime of the new algorithm to the runtime of both existing synthesis algorithms
for partial languages.

An important topic for future research will be to develop a concept of wrong
continuations using a concept of tokenflows. Right now, the definition of wrong
continuations is based on the step language of a partial language. Even though
the size of the compact region inequality system is reasonable, the huge number
of wrong continuations corrupts the synthesis algorithm if a specification has
many concurrent events.
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