Chapter 1
Main Definitions and Basic Results

In this preliminary chapter, we define pseudotrajectories and various shadowing
properties for dynamical systems with discrete and continuous time (Sects. 1.1
and 1.2), study the notion of chain transitivity (Sect. 1.1), describe hyperbolicity,
§2-stability, and structural stability (Sect. 1.3), and prove a lemma on finite Lipschitz
shadowing in a neighborhood of a hyperbolic set (Sect. 1.4).

1.1 Pseudotrajectories and Shadowing in Dynamical Systems
with Discrete Time: Chain Transitive Sets

Consider a metric space (M, dist). Everywhere below (if otherwise is not stated), we
denote by N(a, x) and N(a, A) the open a-neighborhoods of a point x € M and a set
A C M, respectively. For a set A C M, Int(A), Cl(A), and 0A denote the interior,
closure, and boundary of A, respectively.

Let f be a homeomorphism of the metric space M. As usual, we identify the
homeomorphism f with the dynamical system with discrete time generated by f
on M.

We denote by

O(x.f) = {1* () : ke

the trajectory (orbit) of a point x € M in the dynamical system f.
We also consider positive and negative semitrajectories of a point x,

Ot (x.f) = {f(x): k=0} and O~ (x.f) = {f*(x): k<0}.
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2 1 Main Definitions and Basic Results

Similar notation is used for trajectories of sets;

OA.f) ={ffA): keZ}

is the trajectory of a set A C M in the dynamical system f, etc.
We denote by Per(f) the set of periodic points of f.

Remark 1.1.1 We give the main definitions in this section for the most general case
of dynamical system with discrete time generated by homeomorphisms; in fact, the
main results of this book are related to smooth dynamical systems — either to systems
with discrete time generated by diffeomorphisms or to systems with continuous time
(flows) generated by smooth vector fields on manifolds.

If M is a smooth closed (i.e., compact and boundaryless) manifold with Rieman-
nian metric dist, we denote by TM the tangent bundle of M and by 7 :M the tangent
space of M at a point x, respectively. For a vector v € T, M, |v] is its norm induced
by the metric dist.

If f is a diffeomorphism of a smooth manifold M, we denote by

Df(x) : TM — Y}(X)M

its derivative at a pointx € M.
Let us give the main definition in the case of a homeomorphism of a metric space
(M, dist).

Definition 1.1.1 Fix ad > 0. A sequence
E={xeM: keZ} (1.1)

is called a d-pseudotrajectory of the dynamical system f if the following inequalities
hold:

dist(ug1.f () <d, k€ Z. (1.2)

Sometimes, d-pseudotrajectories are called d-orbits.
The basic property of dynamical systems related to the notion of a pseudotrajec-
tory is called shadowing (or tracing).

Definition 1.1.2 We say that a dynamical system f has the shadowing property if
for any ¢ > 0 we can find a d > 0 such that for any d-pseudotrajectory & of f there
exists a point p € M such that

dist (ve.f*(p)) <&, k€. (1.3)

In this case, we say that the pseudotrajectory £ is e-shadowed by the exact trajectory
of the point p, and the trajectory O(p,f) is called the shadowing trajectory.
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Sometimes, this property is called the standard shadowing property or the POTP
(pseudoorbit tracing property, see [S] and [6]).

In addition to infinite pseudotrajectories, we consider also finite pseudotrajecto-
ries, i.e., sets of points

E={xeM: I <k<m}

such that analogs of inequalities (1.2) hold for/ <k <m — 1.

The corresponding shadowing property called finite shadowing property means
that for any ¢ > 0 we can find a d > 0 such that for any finite d-pseudotrajectory &
of f as above there exists a point p € M such that analogs of inequalities (1.3) hold
for! < k < m — 1. Here it is important to emphasize that d depends on ¢ and does
not depend on the number m — .

In what follows, it will be convenient for us to introduce special notation for sets
of dynamical systems having some shadowing properties. Let us denote by SSPp
the set of systems with discrete time having the standard shadowing property (of
course, any time, using a notation of that kind, we will indicate the phase space and
the class of smoothness of the considered dynamical systems).

In this book, we also consider several modifications of the standard shadowing
property.

The first of these modifications is a property that is weaker than the standard
shadowing property. First let us recall the definition of the Hausdorff metric.

Denote by € (M) the set of all nonempty compact subsets of M. Let x € M and
K € €(M); set

dist(x, K) = mindist(x, y).
yEK
The Hausdorff metric disty on € (X) is defined as follows:
disty (A, B) = max (max dist(a, B), max dist(b,A))
a€A beEB

for A, B € ¥ (X).
The next result which we use below is well known (see p. 47 of [32]).

Lemma 1.1.1 If the space M is compact, then (¢ (M), disty) is a compact metric
space.

Definition 1.1.3 We say that a dynamical system f has the orbital shadowing
property if for any ¢ > 0 we can find a d > 0 such that for any d-pseudotrajectory &
of f there exists a point p € M such that

disty (CL(€), CL(O(p.[))) < &. (1.4)
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We denote by OSPp the set of systems with discrete time having the orbital
shadowing property.
One more shadowing property is defined below.

Definition 1.1.4 We say that f has the Lipschitz shadowing property if there exist
Z,dy > 0 such that for any d-pseudotrajectory {x;} with d < d, there exists an
exact trajectory { f*(p)} satisfying the inequalities

dist (x4, f“(p)) < Zd. ke (1.5)

One can define the finite Lipschitz shadowing property similarly to the finite
shadowing property (we leave details to the reader).

Let us denote by LSPy, the set of systems with discrete time having the Lipschitz
shadowing property.

Obviously, the following inclusions hold:

LSP, C SSPp C OSPp (1.6)

(of course, here we have in mind that we consider dynamical systems with the same
phase spaces).

Simple examples show that all the inclusions in (1.6) are strict.

To show that SSPp \ LSPp, # @, consider a North Pole — South Pole
diffeomorphism f of the circle S! that has two fixed points, an asymptotically stable
fixed point s and a completely unstable (i.e., asymptotically stable for f~') fixed
point « and such that f*(x) — s,k — oo, for any x # u, and f*(x) — u,k — —oo,
for any x # s. It is easy to show that such a diffeomorphism f has the standard
shadowing property. Theorem 1.4.1 (1) implies that if the fixed points s and u are
hyperbolic (in this case, f is structurally stable), then f has the Lipschitz shadowing
property. At the same time, it is an easy exercise to show that f does not have the
Lipschitz shadowing property if one of the fixed points s or u is not hyperbolic.

It is also an easy exercise to show that irrational rotation of the circle gives us an
example of a diffeomorphism belonging to OSPp \ SSPp.

It is possible to study shadowing properties dealing with pseudotrajectories that
are subjected to some additional restrictions. In this book, we consider the case of
periodic pseudotrajectories.

Definition 1.1.5 We say that f has the periodic shadowing property if for any ¢ > 0
we can find a d > 0 such that for any periodic d-pseudotrajectory £ of f there exists
a periodic point p of f such that inequalities (1.3) hold.

Remark 1.1.2 Note that it is not assumed in the above definition that the periods of
the pseudotrajectory & and periodic point p coincide.

Let us denote by PerSPp, the set of systems with discrete time having the periodic
shadowing property.

Definition 1.1.6 We say that f has the Lipschitz periodic shadowing property
if there exist positive constants %, dy such that if ¢ = {x} is a periodic
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d-pseudotrajectory with d < d, then there exists a periodic point p of f such that
inequalities (1.5) hold.

Let us denote by LPerSPp the set of systems with discrete time having the
Lipschitz periodic shadowing property.

As was mentioned, we also consider pseudotrajectories defined not on Z but on
some subsets of Z. Such pseudotrajectories will appear, for example, in the study of
the following property.

Definition 1.1.7 We say that f has the Holder shadowing property on finite
intervals with constants ., C, dy, 6, @ > 0 if for any d-pseudotrajectory

E={n: 0<k<Cd®}
of f with d < d, there exists a point p such that
dist (xe, f5(p)) < Zd?, 0<k=<cd™. (1.7)

We denote by FHSPp(.Z, C,dy, 8, ) the set of systems with discrete time
having the property formulated in Definition 1.1.7.

An important application of pseudotrajectories defined on subsets of Z is the
theory of chain recurrence and chain transitivity.

The main tools in this theory are e-chains (finite e-trajectories joining points of
the phase space; following tradition, we preserve this terminology and use ¢ instead
of d in analogs of inequalities (1.2)).

Until the end of this section, we assume, in addition, that M is a compact metric
space.

Let C be a subset of M and let p,q € C.

Definition 1.1.8 For ¢ > 0, a sequence {xo, X1, ...,X,} of points of the subset C
is called an e-chain in C of length m 4 1 from p to ¢q if xo = p, x,, = ¢, and
dist(f(x;), xi+1) < efor0 <i <m.
If there is an e-chain in C from p to g, then we write p ~>¢ g.
Let us also write
p <w>( g if bothp v ¢ g and g v>¢ p,
p ~vc qifp »w¢ gforany e > 0,

p <wsc qif p «ws( g forany € > 0.

In the above notation, we omit C if C = M.

Definition 1.1.9 A point x € M is called a chain recurrent point if x <w> x.
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Definition 1.1.10 The set
Z(f) ={xeM: x <w> x}

of all chain recurrent points of f is called the chain recurrent set of f.

Definition 1.1.11 Two points x and y of M are called chain equivalent if x <w> y.
Note that if x,y € M and x <w> y, then x,y € Z(f).
Clearly, the chain equivalence is an equivalence relation on Z(f).

Definition 1.1.12 Each equivalence class of the above equivalence relation is called
a chain recurrence class.

We note that Z(f) and chain recurrence classes are closed f-invariant sets (see
Lemma 1.1.5 below).

Definition 1.1.13 We say that a closed f-invariant set A is chain transitive if x ~> 4
yforanyx,y e A.

A chain recurrence class & is called a maximal chain transitive set if the
inclusion Z C C, where C is a chain transitive set, implies that #Z = C.

The main statement which we prove in this section is the following proposition.

Proposition 1.1.1 Any chain recurrence class is a maximal chain transitive set.
The next convention will be frequently used in this section. For ¢ > 0, §(¢)
denotes a real number such that 0 < §(¢) < ¢ and the inequality dist(x,y) < §(¢)
implies that dist(f(x),f(y)) < €.
We prove a sequence of lemmas which we need.

Lemma 1.1.2 The relation
() ={(x,y) EM XM :x~y}

is closed in M x M.

Proof Let a sequence {(x;,y;) : 1 <i < oo} in Z(~>) converge to (x,y) € M x M.
We show that (x,y) € Z(~). For e > 0, let § = §(¢/3). Fix an index i > 1 such
that max(dist(x;, x), dist(y;, ¥)) < 6. Since x; ~> y;, there is a §-chain {zo, ..., Zn}
from x; to y;. Assume that m = 1. Then

dist(f(x),y) = dist(f(x).f(z0)) + dist(f(z0),z1) + dist(z1,y) <
<eg/34+86+68<e.

Thus, x ~>€ y. Next assume that m > 2. Then it is easy to see that
{.X, 315325+« 7Zm—lvy}

is an e-chain from x to y. Hence, x ~>¢ y in any case. Since ¢ > 0 is arbitrary, x > y,
and (x,y) € Z(~>). O
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The following statement is an obvious corollary of Lemma 1.1.2.

Lemma 1.1.3 The relation
H(<w>) = {(x,y) E M X M : x <~ y}

is closed in M x M.

Lemma 1.1.4
(f XIZ () C Z(v>)
and
(f XIZ () T R (<w>).

Proof 1t is enough to prove the first inclusion. Let (x,y) € Z(~>); we show that
(fx),f(y) € Z(~>).Fixane > 0 and let § = 6(¢). Since x > y, there is a §-chain
{x0,...,%n} from x to y. It is easy to see that {f(xo), ...,f(xx)} is an e-chain from

f(x) tof(y). Thus, f(x) » f(y). Since € > 0 is arbitrary, (f(x),f(y)) € Z(~>). O

Lemma 1.1.5 The set Z(f) and each chain recurrence class are closed f-invariant
sets.

Proof Let A be a chain recurrence class of f. It follows directly from Lemma 1.1.3
that both Z(f) and A are closed. Since Z(f) is a disjoint union of chain recurrence
classes, it is enough to show that A is f-invariant.

Let x € A. Then for each n > 1 there is a (1/n)-chain {xg, ..., x) } from x to
itself. Put y, = xj, |, n > 1, and let y be one of the limit points of the sequence
{y, : n > 1}. It is easy to see that x ~> y. Since dist(f(y),x) < 1/nforn > 1,
we get the equality f(y) = x. Hence, f(x) » f(y) = x by Lemma 1.1.4. Since
y » f(y) = x » f(x), we conclude that x «w> y and x <»> f(x). Thus, both y and
f(x) are chain recurrent points and belong to A. Since x € A is arbitrary, it follows
that f(A) D A D f(A),i.e., f(A) = A. O

Let, as above, €’ (M) be the set of all nonempty compact subsets of M with the
Hausdorff metric disty (by Lemma 1.1.1, (¥'(M), disty) is a compact metric space).

Consider the map €(f) : €M) — € (M) defined by €(f)(A) = f(A) for
A € ¥(X). Clearly, this map is continuous.

Recall that a closed f-invariant subset A is chain transitive if x <ws4 y for all
X,y € A.

Proof (of Proposition 1.1.1) Let A be a chain recurrence class.

By Lemma 1.1.5, A is closed and f(A) = A. We prove the proposition modifying
the proof of the result of Robinson [84]. Let x,y € A. For each integer n > 1, take
a (1/n)-chain C, = {x(,...,x,, } from x through y to x. In particular, x,y € C,.
Since C, € € (M) for any n, there is a subsequence n; such that limy_, o, C,, = C
for some C € ¢'(M). Note that x,y € C. We show that f(C) = C. Since xj = x,, ,
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we see that distg (f(C,), C,) < 1/n. Thus,

disty (f(C), C) < disty(f(C).f(Cn))+

+disty (£(Cy). Co) + disty(Cp, C) <
1

< disty (F(O).f(Co)) +  + dista(Cyy. ©).
k

Letting k — oo, we conclude that disty (f(C), C) = 0, i.e., f(C) = C.
Next we show that C is chain transitive. Let z,w € C, and fix any ¢ > 0. Let
8 = 8(e/3) and take n = ny such that 1/n < ¢/3 and disty (C, C,) < 8. Then

My

cclJne.x

i=0

(recall that N(6,x) = {y € M : dist(y, x) < §}).

Take i,j with 0 < i,j < m, such that dist(z,x!) < & and dist(w,xl’.’) < 6.
Since xj = x;, , there is a (1/n)-chain {yo,y1....,yu} C C fromx} to x;. We now
construct an g-chain {z9,zy,..., %y} in C from z to w. For 0 < k < m, take zz € C
such that z; € N(8, yx), and let zg = z, z,, = w. Since dist(zx, y¢) < 8 = 8(g/3), it
follows that

dist(f(zx), zx+1) =< dist(f(zx), f(y)) + dist(f (ye), Ye+1)+
+dist(yit1. z%1) < /3 + ’11 +8<e

foreach 0 < k < m. Thus, {z9, ..., Zu} is an e-chain in C from z to w. Since & > 0 is

arbitrary, z »>¢ w. Since z, w € C are arbitrary, z <w>¢ wforany z,w € C, i.e., Cis

chain transitive. If we take x = z, then x <w> wfor all w € C. Thus, C C A. Since

x <w>c y, we conclude that x <w>,4 y. Hence, A is chain transitive, as desired. The

maximality of A is obvious. O
It is easy to see that the following statement holds (we omit the proof).

Lemma 1.1.6 For any x € M, the omega-limit set wy(x) of x and alpha-limit set
oy (x) of x are chain transitive.

Historical Remarks Pseudotrajectories of a special kind (called §-chains) were
considered by G. D. Birkhoff in his study of the last Poincaré geometric theorem [9].

The first basic results related to shadowing were obtained by D. V. Anosov and
R. Bowen in [4] and [12] for hyperbolic sets of diffeomorphisms. It is easily seen
that both Anosov’s and Bowen’s proofs, in fact, give Lipschitz shadowing in a
neighborhood of a hyperbolic set of a diffeomorphism.

The orbital shadowing property was first considered in the joint paper [65] of the
authors of this book and A. A. Rodionova.
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The periodic and Lipschitz periodic shadowing were studied by A. V. Osipov, the
first author of this book, and S. B. Tikhomirov in [50].

S. B. Tikhomirov studied the Holder shadowing property on finite intervals in the
paper [101].

C. Conley introduced the notion of chain recurrence in [14] and [15]. Most of the
results of this section devoted to chain recurrence and chain transitivity, which were
reformulated for discrete dynamical systems in Shimomura [93], can be found in
[14] and [15] in the case of flows. As far as we know, chain transitive sets of discrete
dynamical systems with the standard shadowing property were first considered in
[93] from the view point of topological entropy.

1.2 Pseudotrajectories and Shadowing in Dynamical Systems
with Continuous Time

Let M be a smooth closed manifold. Consider a C! vector field X on M and denote
by ¢ the flow of X. We denote by

O(x.¢) ={¢(1.x): teR}
the trajectory of a point x in the flow ¢; O™ (x, ¢) and O~ (x, ¢) are the positive and
negative semitrajectories, respectively.
Definition 1.2.1 Fix a number d > 0. We say that a mapping g : R — M (not
necessarily continuous) is a d-pseudotrajectory (both for the field X and flow ¢) if

dist(g(t +1),¢(t,g(r))) <d for 7 eR, re]0,1]. (1.8)

Of course, one can also define finite pseudotrajectories defined not on R but on
finite segments [a, b]. We leave details to the reader.

It is easy to understand that, defining shadowing properties in the case of flows,
it is not reasonable to give a definition parallel to Definition 1.1.2 just replacing
inequality (1.3) by an inequality of the form

dist(g(r), ¢ (t,p)) <e, teR. (1.9

Indeed, consider the following simple example.

Example 1.2.1 Let M be the two-dimensional sphere S?; consider in a coordinate
neighborhood U homeomorphic to R? a vector field X having an isolated closed
trajectory y parametrized by

£(t) = (sint,cost), te€R.
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Take a small d > 0 and let
g() =E(t+kd/2), te[2nk 2n(k+1)), ke Z.

Since |X(x)] = 1 at points of y, it is easy to understand that g is a d-
pseudotrajectory of X.

Assume that there exists a point p such that inequality (1.9) holds with ¢ =
e(d) — 0 as d — 0. Since the trajectory y is isolated, this is possible (for & small
enough) only if p € y. In this case, there exists a 6 such that

¢(1,p) = §(1+ 0).
Note that
¢Q2rk,p) =§Q2rk +0) =§(0). keZ,
while the set of points
g(rk) = EQuk + kd/2) = £(kd/2)

is d-dense in y. Hence, for any d small enough there exists a k such that the distance
between g(27k) and €2k + 0) = £(0) is larger than 7 /2, which contradicts our
assumption.
Clearly, a similar construction can be realized in any flow having an isolated closed
trajectory, and the set of such flows is large enough.

To avoid problems of that kind, one has to change parametrization of the
shadowing trajectories. We introduce the following notion.

Definition 1.2.2 A reparametrization is an increasing homeomorphism % of the line
R; we denote by Rep the set of all reparametrizations.
For a > 0, we denote

h(t) —hs)

r—s

Rep(a):{heRep:) l|<a, t,seR t#s

Definition 1.2.3 We say that a vector field X has the standard shadowing property
if for any ¢ > 0 we can find d > 0 such that for any d-pseudotrajectory g(¢) of X
there exists a point p € M and a reparametrization 2 € Rep(e) such that

dist(g(1). ¢ (h(t).p)) <& for teR. (1.10)

We denote by SSPr the set of vector fields having the standard shadowing
property.

Definition 1.2.4 We say that a vector field X has the Lipschitz shadowing property
if there exist dy > 0 and .Z > 0 such that for any d-pseudotrajectory g(¢) of X with
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d < d, there exists a point p € M and a reparametrization 4 € Rep(.Zd) such that
dist(g(?), p(h(2),p)) < Ld for reR. (1.11)

We denote by LSPr the set of vector fields having the Lipschitz shadowing
property.

Definition 1.2.5 We say that a vector field X has the oriented shadowing property if
for any & > 0 we can find d > 0 such that for any d-pseudotrajectory g(r) of X there
exists a point p € M and a reparametrization & € Rep such that inequalities (1.10)
hold (we emphasize that in this case, it is not assumed that the reparametrization h
is close to identity).

We denote by OrientSPr the set of vector fields having the oriented shadowing
property.

Definition 1.2.6 We say that a vector field X has the orbital shadowing property if
for any & > 0 we can find d > 0 such that for any d-pseudotrajectory g(f) of X there
exists a point p € M such that

disty (Cl({g(1) : 1€ R}).Cl(O(p.9))) < &.
We denote by OrbitSPy the set of vector fields having the orbital shadowing

property.
Obviously, the following inclusions hold:

OrbitSPr O OrientSPr D SSPr D LSPr

(of course, here we have in mind that we consider vector fields on the same
manifold).
It is easy to show that

SSPr \ LSPr # @.
It was recently shown by Tikhomirov [100] that
OrientSPr \ SSPr # @

(this solved the old problem posed by M. Komuro in [29]).

Historical Remarks Let us note that the standard shadowing property of vector
fields (and their flows) is equivalent to the strong pseudo orbit tracing property
(POTP) in the sense of M. Komuro [29] and [30]; the oriented shadowing property
was called the normal POTP by M. Komuro [29] and the POTP for flows by R. F.
Thomas in [102].
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1.3 Hyperbolicity, §2 -Stability, Structural Stability,
Dominated Splittings

Let us shortly recall the definitions of basic notions of the theory of structural
stability of dynamical systems which we use in this book.

Let M be a smooth closed manifold and let f be a diffeomorphism of M of class
C'.

Definition 1.3.1 We say that a set I C M is a hyperbolic set of a diffeomorphism f
if the following conditions hold:

(HSD1) the set I is compact and f-invariant;

(HSD2) there exist numbers C > 0 and A € (0, 1) and linear subspaces S(p) and
U(p) of the tangent space T,M defined for any point p € I such that

(HSD2.1) S(p) @ U(p) = T,M;

(HSD2.2) Df (p)S(p) = S(f(p)) and Df(p)U(p) = U(f(p));

(HSD2.3) if v € S(p), then |Df *(p)v| < CAK|v| for k > 0;

(HSD2.4) if v € U(p), then |Df *(p)v| < CA*|v| for k < 0.

The numbers C > 0 and A € (0, 1) are usually called hyperbolicity constants of
the set I; the families S(p) and U( p) are called the hyperbolic structure on I.

The main objects related to a hyperbolic set I are stable and unstable manifolds
of its points.

Definition 1.3.2 The stable and unstable manifolds of a point p € [ are the sets
defined by the equalities

Wi(p) = {x € M : dist (f*(x).f*(p)) > 0. k — oo}
and
W (p) = {x e M : dist (f*(x).f*(p)) > 0, k > —o0},
respectively.
The classical stable manifold theorem (see, for example, [27, 108]) states that if
p is a point of a hyperbolic set I as above and o (p) = dimS(p), then W*(p) is the

image of the Euclidean space R°? under a C' immersion ay; this means that the
map

s . mo(p) )
a, R — W*(p)
is one-to-one and that

rankDa,(x) = o(p), x€ RO,
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In addition, a,, (0) =pand

T,W*(p) = S(p).

A similar statement (with o (p) = dimU( p)) is valid for WY (p).
One more classical definition which we need is the definition of the nonwander-
ing set of a diffeomorphism f.

Definition 1.3.3 A point x is called a nonwandering point of f if for any neigh-
borhood U of x and for any number N there exists a number n, |n| > N, such that
fYU)NU # @. We denote by £2(f) the set of nonwandering points of f (sometimes,
the set £2(f) is called the nonwandering set of f).

It is not difficult to show that the set £2(f) is nonempty, compact, and f-invariant
(see, for example, [71]).

Now we recall the two basic definitions of the theory of structural stability of
diffeomorphisms, the definitions of §2-stability and structural stability.

Let us start with the definition of the C' topology on the space of diffeomor-
phisms of a smooth closed manifold M.

First we define a C° metric po on the space of homeomorphisms of a compact
metric space.

Let (M, dist) be a compact metric space. If f and g are two homeomorphisms of
the space M, we set

po(f.8) = maxmax (dist(f(x), g(x)), dist(f ™" (x), 7' (x))) - (1.12)

It is easy to show that py is a metric on the space of homeomorphisms of the space
M.

We denote by H(M) the space of homeomorphisms of the space M with the
metric po; the topology induced by the metric py is called the C° topology.

It is not difficult to show that the metric space H(M) is complete (see, for
example, [71]). At the same time, if we consider the topology on the space of
homeomorphisms induced by the standard uniform metric

max dist(f(x), g(x)), (1.13)

then the resulting space is not necessarily complete (see [71]).

Let now M be a smooth closed n-dimensional manifold. To introduce the C!
topology on the space of diffeomorphisms of M, we assume that M is a submanifold
of the Euclidean space R" (a different, equivalent, approach to definition of the C!
topology based on local coordinates is described in [60]).

No generality is lost assuming that M is a submanifold of a Euclidean space since,
by the classical Whitney theorem, any smooth closed manifold can be embedded
into a Euclidean space of appropriate dimension.

If M is a submanifold of RY, for any point x € M we can identify the tangent
space T,M of M at x with a linear subspace of R". Consider the metric dist on M
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induced by the Euclidean metric of the space RV. For a vector v € T,M we denote
by |v| its norm as the norm in the space RY.

Let f and g be two diffeomorphisms of the manifold M. Define the value py(f, g)
by the same formula (1.12) as for homeomorphisms of a compact metric space.

Take a point x of the manifold M and a vector v from the tangent space T,.M. We
consider the vectors Df (x)v € TpM and Dg(x)v € TyM as vectors of the same
Euclidean space RY. Hence, the following values are defined: |Df (x)v — Dg(x)v|
and

IDf(x) —Dg(¥)| = max |Df(x)v — Dg(x)v|.
veT M, |v|=1

Introduce the number
p1(f.8) = po(f.8) + max max (IDf (x) = Dg@)II. |1Df " (x) = Dg~' W) ]) -

Clearly, p; is a metric on the space of diffeomorphisms of the manifold M. We
denote by Diff ! (M) the space of diffeomorphisms of M with the metric p;; the
topology induced by the metric p; is called the C! topology.

The standard reasoning shows that the topology on Diff ! (M) does not depend on
the embedding of M into a Euclidean space and that (Diff ' (M), p;) is a complete
metric space.

Remark 1.3.1 To explain why it is reasonable to include the term ||Df~'(x) —
Dg~'(x)|| in the definition of the C' topology on the space of diffeomorphisms,
let us consider the following example.
Let M = S! with coordinate x € [0, 1), fix a small # > 0 and define a mapping
fi: St > st
by the formula
fi0) = e+ 2+ hy (),
where A, is of class C' in x,
h(x) =0, x<1/3,
and
h(x) =3x(1—x)—1t, x>2/3.

Then

fi)=m+x, x<1/3,
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and
) =14+1x—1)+@x—-1)> x>2/3.
Clearly, one can construct £, so that

() >0
for small 7 > 0 and for all x (thus, any f, with such ¢ is a diffeomorphism of S') and

sup (|hi(x) — he(x)| + |Hj(x) — K. (x)]) = 0, £,T — 0. (1.14)

0<x<l

It follows from (1.14) that the family {f;} is a Cauchy sequence as t — 0 with
respect to the metric

p(f.8) = sup (If(x)—g@)|+ |f'(x) — &' W)

0<x<l

but, clearly, its limit as ¢ — 0 is not a diffeomorphism of S'.

Thus, the space of diffeomorphisms of S with the metric p is not complete.

In what follows, if A is a subset of Diff ' (M), then Int ' (A) denotes the interior of
A in Diff ' (M).
Definition 1.3.4 A diffeomorphism f is called structurally stable if there exists a
neighborhood W of the diffeomorphism f in Diff ! (M) such that any diffeomorphism
g € W is topologically conjugate to f (i.e., there exists a homeomorphism / : M —
M suchthat hof = goh).

We denote by .7} (M) the set of structurally stable diffeomorphisms in Diff ! (M).
We agree to write Diff ! and .7}, instead of Diff ' (M) and .5 (M), respectively, if it
is not important for us to indicate the manifold M (as in the remark below).

Remark 1.3.2 Clearly, the set .%p is open in Diff !

Definition 1.3.5 A diffeomorphism f is called §2-stable if there exists a neighbor-
hood W of the diffeomorphism f in Diff ' (M) such that for any diffeomorphism
g € W there exists a homeomorphism £ : £2(f) — £2(g) such that

hoflew = gohle).
We denote by £2.9p(M) (or simply £2.7p) the set of §2-stable diffeomorphisms.
The following statements are also obvious.
Remark 1.3.3

(1) The set 2.%p is open in Diff .
2) Sp C 2.
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Now we pass to characterization of §2-stability and structural stability.
S. Smale introduced the following condition.

Axiom A

(AAa) The nonwandering set £2(f) is hyperbolic.
(AAD) Periodic points of f are dense in £2(f).

This condition played a very important role in the development of the theory
of structural stability. First we describe the structure of the nonwandering set of a
diffeomorphism that satisfies Axiom A. Smale proved the following statement.

Theorem 1.3.1 (Spectral Decomposition Theorem) If a diffeomorphism f satis-
fies Axiom A, then its nonwandering set can be represented in the form

Q(f)=2,U---U £, (1.15)

where the §2; are disjoint, compact, invariant sets such that each of these sets
contains a dense positive semitrajectory. Representation of the form (1.15) is
unique.

The sets §2; in representation (1.15) are called basic.

We can define analogs of stable and unstable manifolds for basic sets £2;:

Wi (2) = {xeM: dist(f*(x).£2;) > 0. k— oo}
and
W () = {xeM: dist(f'(x), 2) >0, k— —o0}.

The following statement holds (one can find a proof, for example, in [60]).

Theorem 1.3.2 If a diffeomorphism f satisfies Axiom A, then
M= w2y = w ). (1.16)
i=1 i=1

Thus, any trajectory f*(x) of a diffeomorphism that satisfies Axiom A tends to a
basic set as |k| — oo.

Now we give definitions which we need to formulate necessary and sufficient
conditions of §2-stability and structural stability of diffeomorphisms.

Let £2; and £2; be two (not necessarily different) basic sets of a diffeomorphism
that satisfies Axiom A. We write £2; — 2, if there is a pointx ¢ £2(f) such that

) — 2iand ff(x) — £2;, k — oo.

Definition 1.3.6 We say that a diffeomorphism f has a 1-cycle if there exists a basic
set §2; such that £2; — £2;.
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We say that a diffeomorphism f has a k-cycle, k > 1, if there exist k different
basic sets £2;,, . .., £2;, such that

Qil _>"'_)Qik_>9i1'

We say that a diffeomorphism satisfies the no cycle condition if it does not have
k-cycles with k > 1.

Theorem 1.3.3 A diffeomorphism f is §2-stable if and only if f satisfies Axiom A
and the no cycle condition.

Definition 1.3.7 Let f be a diffeomorphism satisfying Axiom A. We say that
f satisfies the geometric strong transversality condition if stable and unstable
manifolds of nonwandering points are transverse, i.e., if p,g € $2(f) and x €
W“(p) N W*(gq), then

T.W*(p) + T.W'(q) = T.M. (1.17)

Remark 1.3.4 Usually, the condition introduced in Definition 1.3.7 is called the
strong transversality condition; we add the term geometric to distinguish this
condition and the analytic strong transversality condition introduced below, in
Definition 1.3.11.

Theorem 1.3.4 A diffeomorphism f is structurally stable if and only if f satisfies
Axiom A and the geometric strong transversality condition.

Theorems 1.3.3 and 1.3.4 are classical basic results of the theory of structural
stability. Nevertheless, sometimes it is more convenient to use different statements
which characterize §2-stability and structural stability (as we do in this book). Let
us formulate some of them.

Recall that Per(f) denotes the set of periodic points of a diffeomorphism f.

Definition 1.3.8 A periodic point p is called hyperbolic if its trajectory O(p,f) is
a hyperbolic set. It is easy to see that if p is a periodic point of period m, then p
is hyperbolic if and only if the derivative Df" (p) does not have eigenvalues A with
Al = 1.

Denote by HPp, the set of diffeomorphisms f such that any periodic point of f is
hyperbolic.

Theorem 1.3.5 The sets Int' (HPp) and 2.%p coincide.
Sometimes, the set Int' (HPp) is denoted by .% and its elements are called star
systems.

Remark 1.3.5 1t follows from Theorem 1.3.5 that to establish the §2-stability of a
diffeomorphism f, it is enough to show that f and its C'-small perturbations do not
have nonhyperbolic periodic points.
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Definition 1.3.9 A diffeomorphism f € HPp is called Kupka—Smale if stable and
unstable manifolds of its periodic points are transverse. We denote by KSj, the set
of Kupka—Smale diffeomorphisms.

Definition 1.3.10 A subset A of a topological space X is called residual if A
contains the intersection of a countable family of open and dense subsets of X. A
property P of elements of X is called generic if the set

{x € X : xsatisfies P}

is residual.
Theorem 1.3.6

(1) The set KSp is residual in Diff".
(2) The sets Int'(KSp) and %) coincide.

Remark 1.3.6 It follows from the second statement of Theorem 1.3.6 that to
establish that a diffeomorphism f is structurally stable, it is enough to show that
f has a C! neighborhood belonging to KSp.
One more way of proving that a diffeomorphism is structurally stable is based on
the result of Theorem 1.3.7 (Maiié’s theorem) below. Let us start with a definition.
Fix a point x € M and consider the following two subspaces of T, M:

BT (x) = {v € T,M : lim inf |Dff(x)v| = o}
and
B~ (x) = {v € T\M: lim inf IDff (x| = o} )

Definition 1.3.11 We say that a diffeomorphism f satisfies the analytic strong
transversality condition if

BT(x) + B (x) =T,M forany xe M. (1.18)

Theorem 1.3.7 A diffeomorphism f is structurally stable if and only if f satisfies
the analytic strong transversality condition.

A detailed proof of Theorem 1.3.7 is given in Chap. 2 of this book.

Let us define one more important for us property of invariant sets of diffeomor-
phisms.

Let A be a compact invariant set of a diffeomorphism f.

Definition 1.3.12 We say that f admits a dominated splitting on A if there exist
continuous families of linear subspaces E(p) and F(p) of the tangent spaces 7,M
for p € A such that
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(DS E(p)® F(p) =T,M, p € A;

(DS2) the subspaces E(p) and F(p) are Df-invariant (i.e., analogs of equalities
(HSD2.2) from Definition 1.3.1 with S(p) and U( p) replaced by E(p) and F(p)
are satisfied);

(DS3) there exist numbers C > 0 and A € (0, 1) such that

[DF e |- 12 e = €45 pe A k=0, (1.19)

One more notion which we use in this book is the notion of a homoclinic point
(and homoclinic trajectory).
Let p be a hyperbolic periodic point of a diffeomorphism f.

Definition 1.3.13 A point g # p such that

g€ W'(p) N W(p)

is called a homoclinic point of the periodic point p.
A homoclinic point g of p is called transverse if the stable and unstable manifolds
W*(p) and W"( q) are transverse at q.

Theorem 1.3.8 Any neighborhood of a transverse homoclinic point contains an
infinite set of different hyperbolic periodic points of f.

Many notions and statements formulated above for diffeomorphisms have
analogs for flows generated by smooth vector fields. Let us give the corresponding
definitions and state theorems which we need in what follows (in the case of similar
objects, for example, such as the nonwandering set etc., we do not repeat the
definitions and leave details to the reader).

Let X be a smooth (of class C') vector field on a smooth closed manifold M. Let

¢:RxM—->M

be the flow generated by X and let, as above,

Ox,9) ={o(t,x) : t e R}

be the trajectory of a point x € M in the flow ¢.
We denote by @(t, p) the derivative (in p) of ¢ (2, p); thus,

ot.p) : TyM — TyapM.
Definition 1.3.14 We say that a set I C M is a hyperbolic set of the vector field X

(and its flow ¢) if I has the following properties:

(HSF1) the set I is compact and ¢-invariant;
(HSF2) there exist numbers C > 0 and A > 0 and linear subspaces S(p) and U(p)
of the tangent space T,M defined for any point p € I such that
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(HSF2.1) S(p) @ U(p) ® {X(p)} = T,M, where {X(p)} is the subspace spanned
by the vector X(p);
(HSF2.2)

&(t,p)S(p) = S(¢(t.p)) and @(t,p)U(p) = U($(t,p)), teR;

(HSF2.3) if v € S(p), then |@(z, p)v| < Cexp(—Ar)|v]| fort > 0;
(HSF2.4)if v € U(p), then |@(t, p)v| < Cexp(Af)|v]| fort < 0.

Similarly to the case of diffeomorphisms, the main objects related to a hyperbolic
set I of a flow ¢ are stable and unstable manifolds of its points (and its trajectories).

Definition 1.3.15 The stable and unstable manifolds of a point p are the sets
defined by the equalities

Wi(p) ={x e M : dist(¢(t,x),p(t,p)) = 0, t - oo}
and
W'(p) = {x e M : dist(¢(t,x),p(t,p)) — 0, t - —o0},

respectively.
One uses these objects to define the stable and unstable manifolds of the
trajectory of a point p:

W' (O(p.¢)) =W (@)

tER

and

W' (O(p. ) = | W' (¢(t.p)).

teR

The stable manifold theorem for flows states that if p is a point of a hyperbolic set
I as above and o (p) = dimS(p), then the structure of W*(O(p, ¢)) can be described
as follows:

e if pis arest point (i.e., ¢(t,p) = p, t € R), then W (O(p, $)) = W*(p) is the
image of the Euclidean space R°? under a C' immersion;

* if O(p, ¢) is a closed trajectory that is not a rest point (i.e., ¢ (¢, p) is periodic
in ¢ with a nonzero minimal period), then W*(O(p, ¢)) is the image under a C!
immersion of a fiber bundle over the circle with fibers R%®);

o if O(p,¢) is a trajectory such that ¢(t1,p) # ¢(t2,p) for t; # 1, then
W*(O(p, ¢)) is the image of the Euclidean space R??*! under a C! immersion.

Similar statements hold for the unstable manifolds of trajectories of a hyperbolic
set.
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Now we recall the two basic definitions of the theory of structural stability of
vector fields, the definitions of §2-stability and structural stability.

Let us start with the definition of the C' topology on the space of vector fields
of class C' on a smooth closed manifold M (everywhere below, a vector field is a
vector field of class C).

Let X and Y be two such vector fields; define the number

pi(X.¥) = max (|X(x) Y|+ H - H) .

It is easily seen that p; is a metric on the space of vector fields of class C'; we
denote by 2! (M) (or simply by 2°!) the space of vector fields with this metric
(and with the induced topology which we call C! topology). As in the case of
diffeomorphisms, if A is a subset of 2! (M), then Int'(A) denotes the interior of
Ain Z7Y(M).

Remark 1.3.7 Let X and Y be two vector fields and let ¢ and i be their flows,
respectively. Consider the diffeomorphisms f(x) = ¢(1,x) and g(x) = ¥ (1,x). It
is not difficult to show that if p;(X,Y) — 0, then p;(f,g) — O (see, for example,
Chap. 2 of [71]).

Let us denote by Per(X) (or Per(¢)) the set of rest points and closed trajectories

of X (and its flow ¢) and by £2(X) (£2(¢)) the nonwandering set (the definition of
the nonwandering set for a flow is similar to that for a diffeomorphism, and we omit
it).
Definition 1.3.16 A vector field X (and its flow ¢) is called structurally stable
if there exists a neighborhood W of X in 2! (M) such that for any vector field
Y € W, its flow ¥ is topologically equivalent to the flow ¢, i.e., there exists
a homeomorphism # : M — M that maps trajectories of X to trajectories of Y
preserving the orientation of trajectories.

Let us denote by .##(M) (or .F) the set of structurally stable vector fields (and
flows).

Remark 1.3.8 Let us note that, in contrast to Definition 1.3.4, it is not assumed in
Definition 1.3.16 that % is a topological conjugacy of the flows ¢ and ¥ of X and Y
(the latter means that

h(@ (1. x)) = ¢ (1. h(x))

for all ¢ and x).
In fact, the homeomorphism £ in Definition 1.3.16 must have the following
property: There exists a function t : R x M — R such that

(1) for any x € M, the function 7(-, x) increases and maps R onto R;
(2) 7(0,x) = x forany x € M;
(3) h(¢(t,x)) = ¥(z(t,x), h(x)) for any (z,x) € R x M.
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Clearly, the necessity of time reparametrization of shadowing trajectories in
the case of shadowing for flows (see Sect. 1.2) is caused by the same reasons as
the replacement of topological conjugacy by topological equivalence in Defini-
tion 1.3.16.

Definition 1.3.17 A vector field X (and its flow ¢) is called §2-stable if there exists
aneighborhood W of X in .2"! (M) such that for any vector field Y € W, its flow ¥ is
§2-equivalent to the flow ¢, i.e., there exists a homeomorphism % : 2(¢) — ()
that maps trajectories of £2(¢) to trajectories of £2() preserving the orientation of
trajectories.

Let us denote by £2.%F(M) (or £2.%F) the set of §2-stable vector fields (and flows).

The following condition (also introduced by Smale) is an analog of Axiom A for
the case of vector fields and flows.

Axiom A’

(AA’a) The nonwandering set §2(¢b) of the flow ¢ is hyperbolic.

(AA’b) The set £2(¢) is the union of two disjoint compact ¢-invariant sets Q; and
0,, where O consists of a finite number of rest points, while O, does not contain
rest points, and points of closed trajectories are dense in Q.

If a flow ¢ satisfies Axiom A’, then the following analog of Theorem 1.3.1 holds.

Theorem 1.3.9 The nonwandering set §2(¢) has a unique representation of the
form

Q2(¢) =2,U---U 2,

where the §2; are disjoint, compact, ¢p-invariant sets such that each of these sets
contains a dense positive semitrajectory.

As in the case of a diffeomorphism, the sets £2; are called basic. A basic set of a
flow ¢ that satisfies Axiom A’ is either a rest point or a closed invariant set that does
not contain rest points and such that points of closed trajectories are dense in it.

Let £2; and £2; be two different basic sets of a flow ¢ that satisfies Axiom A’. We
write £2; — £2; if there exists a point x such that

¢(t,x) > §2;, t > —oco, and ¢(t,x) = £2j, t — oo.

The no cycle condition for a flow ¢ literally repeats the corresponding condition for
a diffeomorphism.
The following statement is an analog of Theorem 1.3.3.

Theorem 1.3.10 A flow ¢ is 2-stable if and only if ¢ satisfies Axiom A’ and the no
cycle condition.

If a flow ¢ satisfies Axiom A’, then hyperbolic trajectories ¢ (¢, p), p € 2(¢),
have stable and unstable manifolds W*(O(p, ¢)) and W*(O(p, ¢)), respectively.
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Definition 1.3.18 We say that such a flow ¢ satisfies the geometric strong transver-
sality condition if for any points p,q € £2(¢), the manifolds W*(O(q, ¢)) and
W*(O(p, ¢)) are transverse at any point of their intersection.

The following statement is an analog of Theorem 1.3.4.

Theorem 1.3.11 A flow ¢ is structurally stable if and only if ¢ satisfies Axiom A’
and the geometric strong transversality condition.

Definition 1.3.19 A rest point or a closed trajectory of a flow ¢ is called hyperbolic
if it is a hyperbolic set of ¢.

Remark 1.3.9 Condition under which a rest point or a closed trajectory is hyper-
bolic are well-known:

* arest point p of a flow ¢ generated by a vector field X is hyperbolic if and only
if any eigenvalue of the Jacobi matrix DX ( p) has nonzero real part;

* a closed trajectory y of a flow ¢ is hyperbolic if and only if, for any transverse
section X' at any point of y, the zero point of the section (corresponding to
the intersection of y with X') is a hyperbolic fixed point of the Poincaré map
generated by X' (see [71] for details).

Denote by HP the set of flows ¢ such that any rest point and closed trajectory
of ¢ is hyperbolic.

A complete analog of Theorem 1.3.5 for vector fields (and flows) is not correct
(see Historical Remarks at the end of this section). Only the following partial analog
is valid.

Theorem 1.3.12 A nonsingular vector field in Int'(HPf) belongs to ..

Definition 1.3.20 A flow ¢ € HPy is called Kupka—Smale if stable and unstable
manifolds of its rest points and closed trajectories are transverse. We denote by KSr
the set of Kupka—Smale flows.

The following statement is an analog of Theorem 1.3.6.

Theorem 1.3.13

(1) The set KSg is residual in 2.
(2) The sets Int " (KSp) and S coincide.

Let us describe one more approach for establishing the structural stability of a
flow.
Let, as above, ¢ be the flow generated by a vector field X.

Definition 1.3.21 A point x € M is called a chain recurrent point of the flow
¢ if for any d,T > O there exists a d-pseudotrajectory g of ¢ (in the sense of
Definition 1.2.1) such that g(0) = x and g(f) = x for some ¢ > T.

In this case, similarly to Sect. 1.1, we write x <w> x.

Definition 1.3.22 The set

Z(P) ={x €M : x <~ x}



24 1 Main Definitions and Basic Results

of all chain recurrent points of ¢ is called the chain recurrent set of ¢.

It is easy to show (compare with Sect. 1.1) that in our case (where M is a compact
manifold), the set Z(¢) is nonempty, compact, and ¢-invariant.

In Sect. 2.7, we refer to the following two results.

Theorem 1.3.14 If X is a vector field of class C' such that the chain recurrent set
Z(p) of its flow ¢ is hyperbolic and stable and unstable manifolds of trajectories
in Z(¢) are transverse, then X is structurally stable.

Now we formulate a theorem which allows one to show that components of the
set Z(¢) are hyperbolic.

Let X' be a compact, ¢-invariant component of Z(¢) that does not contain rest
points of ¢. Denote f(x) = ¢(1, x).

For a point x € X, denote by P(x) the orthogonal projection in 7,,M with kernel
spanned by X(x) and by V(x) the orthogonal complement to X (x) in 7,M. Consider
the normal subbundle #'(X) of the tangent bundle TM|x which is the set of pairs
(x,V(x)), where x € X.

Define a mapping 7 on the normal subbundle ¥ (X') over X' by

7(x,v) = (f(x), B(x)v) , where B(x) = P(f(x))Df (x)

(recall that f(x) = ¢ (1,x)).

The hyperbolicity of w on ¥'(X) is defined similarly to the usual hyperbolicity
of a diffeomorphism on a compact invariant set. It means that there exist numbers
C > 0and A € (0,1) and linear subspaces S(p), U(p) of V(p) for p € X such
that

* S(pU(p) =Vp);

* B(p)S(p) =S(f(p)) and B(p)U(p) = U(f(p));
e if v € S(p), then |Bk(p)v| < CAMv| for k > 0;

* if v e U(p), then |Bk(p)v| < CA7Kv| fork < 0.

Theorem 1.3.15 [f 7w is hyperbolic on ¥ (X)), then X is a hyperbolic set of the flow

o.
If p is a rest point of a flow ¢ (i.e., O(p, ¢) = {p}), then we denote by W*( p) and

W“(p) (instead of W*(O(p, ¢)) etc.) its stable and unstable manifolds, respectively.
If y is a closed trajectory of a flow ¢ (i.e., O(p, ¢) = y for any p € y), then we
denote by W*(y) and W*(y) its stable and unstable manifolds, respectively.
Let p be a hyperbolic rest point (or let y be a hyperbolic closed trajectory) of a
flow ¢.

Definition 1.3.23 A point g # p such that

g€ W'(p)nW(p)

is called a homoclinic point of the rest point p.
A point g ¢ y such that

g€ W'(y) N Wi(y)
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is called a homoclinic point of the closed trajectory y.
A homoclinic point g of y is called transverse if the stable and unstable manifolds
W#(p) and W"(q) are transverse at q.

Remark 1.3.10 Let us note that a homoclinic point g of a hyperbolic rest point p
cannot be transverse. Indeed, such a point ¢ cannot be a rest point (otherwise, g =
p); hence, X(g) # 0 (where X is the vector field which generates the flow ¢).

Since

dimW*(p) + dimW"(p) = dimM
and
0 # X(q) € T,W(p) N T,W*(p),
the equality
W (p) + T,W(p) = T,M

is impossible.
An analog of Theorem 1.3.8 for flows can be formulated as follows.

Theorem 1.3.16 If g is a transverse homoclinic point of a hyperbolic closed
trajectory y of a flow ¢, then any neighborhood of O(q, ¢) contains an infinite set
of different hyperbolic closed trajectories of ¢.

Historical Remarks The general definition of a hyperbolic set is usually attributed
to D. V. Anosov [3].

The stable manifold theorem has a long history; usually, one refers to the names
of J. Hadamard and O. Perron (one can find an interesting discussion concerning the
theory of stable and unstable manifolds in D. V. Anosov’s monograph [3]; there he
mentiones also G. Darboux, H. Poincaré, and A. M. Lyapunov).

The notions of nonwandering points and other classical objects of the global
theory of dynamical systems were introduced and studied by G. Birkhoff [10].

The theory of structural stability originates from the A. A. Andronov and L. S.
Pontryagin’s paper [2] in which they defined a kind of such a property for vector
fields in a two-dimensional disk or on the two-dimensional sphere.

A very important role was played by S. Smale’s paper [95] in which he
introduced the notions of §2-stability, Axioms A and A’, proved the spectral
decomposition theorem (Theorem 1.3.1), gave first sufficient conditions of §2-
stability, etc.

Later, S. Smale proved the sufficiency of conditions of Theorem 1.3.3 [98].

The basic results of the theory of §2-stability and structural stability were
formulated as conjectures by J. Palis and S. Smale [52].

The sufficiency statement in Theorem 1.3.4 was first proved by J. Robbin in [78]
for diffeomorphisms of class C? and later by C. Robinson [81] in the general case.
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The necessity of conditions of Theorem 1.3.4 was established by R. Maiié in
[45]; later, the necessity of conditions of Theorem 1.3.5 was proved by J. Palis [53].

The set HP was studied by many authors; the set Int! (HP) is sometimes denoted
by .# (or .#'), and its elements are called star systems (both in the case of
diffeomorphisms and in the case of vector fields).

Theorem 1.3.5 was proved by Aoki [7] and S. Hayashi [25].

The complete analog of Theorem 1.3.5 for vector fields (and flows) is not correct.
A vector field in Int! (HPF) may fail to have a hyperbolic nonwandering set, as the
famous Lorenz attractor shows [22], or fail to have rest points and closed trajectories
dense in the nonwandering set [17], or, even if Axiom A’ is satisfied, still fail to
satisfy the no cycle condition [37].

R. Maiié proved Theorem 1.3.7 in [39].

Theorem 1.3.12 was proved S. Gan and L. Wen in [21].

Kupka—Smale systems were independently defined and studied by 1. Kupka [31]
and S. Smale [94]. They proved Theorem 1.3.6 (1) and Theorem 1.3.13 (1).

Theorem 1.3.6 (2) follows from the results of [7] (where it was proved that
Int' (KSp) C .#p) and [82], where the inverse inclusion was established.

The inclusion Int'(KSp) C % was proved by H. Toyoshiba [103] and C.
Robinson [80]; the inverse inclusion was established by C. Robinson [79] and S.
Hayashi [26].

Homoclinic points were first studied by H. Poincaré [75]; Theorem 1.3.8 (as well
as Theorem 1.3.13) belongs to S. Smale [96, 97].

The sufficiency of conditions of Theorem 1.3.10 was established by C. Pugh and
M. Shub [76]; the sufficiency of conditions of Theorem 1.3.11 was proved by C.
Robinson [79].

The necessity of conditions in these theorems follows from results of L. Wen
[106] and S. Hayashi [26].

It was shown by J. E. Franke and J. F. Selgrade in [18] that for a flow ¢, the set
Z(¢) is hyperbolic if and only if ¢ satisfies Axiom A’ and the no cycle condition.
Theorem 1.3.14 follows from this result combined with Theorem 1.3.11.

R. Sacker and G. Sell studied in detail dichotomies and invariant splittings in
linear differential systems [86]; in particular, they proved Theorem 1.3.15 in [85].

1.4 Hyperbolic Shadowing

As we wrote in the Preface, one of the main goals of this book is to study relations
between shadowing and basic notions of the theory of structural stability. It was
known that structural stability implies Lipschitz shadowing both for diffeomor-
phisms and vector fields; let us formulate this as a theorem.

Theorem 1.4.1 The following inclusions hold:

(1) p C LSPp;
(2) Sr C LSPp.
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We show in Chap.2 that the inverse inclusions hold as well, so that structural
stability is equivalent to Lipschitz shadowing.

An important part in the proof of Theorem 1.4.1 is the statement that a diffeo-
morphism or a vector field has the Lipschitz shadowing property in a neighborhood
of its hyperbolic set.

In this section, we prove that a diffeomorphism has the finite Lipschitz shadowing
property in a neighborhood of a hyperbolic set (in this book, we refer to this
statement in Sect. 2.4). This is a classical result having a lot of different proofs. The
proof which we give here is of a geometric origin; its modification can be applied in
the absence of hyperbolicity as well (see, for example, [58]).

To simplify presentation, we consider a diffeomorphism f of R" and its hyper-
bolic set A.

Our proof applies the existence of a so-called adapted (or Lyapunov) norm in
a neighborhood of A (with respect to this norm, the constant C in inequalities
(HSD2.3) and (HSD2.4) of Sect. 1.3 equals 1); a proof of this result can be found in
[71].

Lemma 1.4.1 Let A be a hyperbolic set of a diffeomorphism f. There exist
constants v > 1 and A € (0, 1) such that for any € > 0 we can find a neighborhood
W of the set A having the following property. There exists a positive constant §,
a C*® norm | - |y for x € W, and continuous (but not necessarily Df-invariant)
extensions S' and U’ of the families S and U of the given hyperbolic structure to the
neighborhood W such that

(1) S(pp@U(p)=R". peW;
(2) ifp.g € W, |f(p) — q| < 8, and P(q) is the projection onto S'(q) parallel to
U'(q), then the mapping P(q)Df (p) is a linear isomorphism between S'(p) and

S'(q) (respectively, if Q(q) = Id—P(q), then the mapping Q(q)Df (p) is a linear
isomorphism between U'(p) and U’ (q)) and the following inequalities hold:

| P(q)Df (p)vly < Alvl, and |Q(q)Df (p)vly < elvlp, v €S (p),  (1.20)
and
MQ(@)Df (p)vly = Ivl, and | P(@)Df (p)vly < elvl,, v eU(p):  (1.21)
(3)

1
v, < v] < vlvl,, peW, velR" (1.22)
v

(4)
IP(PIL QP <v. peW (1.23)

(in inequalities (1.23), we have in mind the operator norm related to the norm

I-lp)-
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Remark 1.4.1

(1) Since the adapted norm is Lipschitz equivalent to the standard norm (see
inequalities (1.22)), f has (or does not have) the finite Lipschitz shadowing
property with respect to these norms simultaneously. For that reason, to simplify
presentation, we assume that the standard Euclidean norm is adapted. Similarly,
we write S(p) and Q(p) instead of §'(p) and U’ (p) forp € W.

(2) In addition, we may assume that the neighborhoods W corresponding to small
enough ¢ are subsets of a fixed closed neighborhood of A.

This allows us to assume that the norm ||Df(p)|| is bounded for p € W and to
use uniform estimates of the remainder term of the first-order Taylor formula for f
in the proof of property (P'4) and in formula (1.35).

Thus, we assume that

IDf(p)| = Mo, peEW,

and set M = v(1 + 12M,).
Take

Z=2v/(1-2) (1.24)
and note that
L>AL+v>1land L/A > L +v. (1.25)
There exists an &€ > 0 such that

ZL>v+eM(l+v)Z, (1.26)
L>AZL +v+e(l+20)2. (1.27)

Note that (1.27) implies the inequality
ZLIA>ZL+v+e(1+20)2. (1.28)

Let W be a neighborhood of A corresponding by Lemma 1.4.1 to this ¢.
Our main result in this section is as follows.

Theorem 1.4.2 The diffeomorphism f has the finite Lipschitz shadowing property
inW.

Proof First we define several geometric objects related to the introduced structure.
Fix a point p in W; we represent points g close to p in the form p 4 v and define
our objects by imposing conditions on the projections P(p)v and Q(p)v.
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Let A’ and A be positive numbers; consider the sets
R(A, Ap)={g=p+v: |P(pv| <A, |0(p)v| < A};
we write R(A, p) instead of R(A, A, p). Let
V(A.p) ={g=p+veR(A.p): [Q(pv|= A4}
and
T(A.p) ={g=p+veR.p): Q(pv =0}

Let us note several obvious geometric properties of the introduced objects.

(P1) V(A,p)isnotaretract of R(A, p).
(P2) V(A,p)isaretractof R(A,p) \ T(A,p).
(P3) If A’ > A, then there exists a retraction

o :R(A",p) > R(4A.p)
such that if
g=p-+vand Q(p)v # 0,
then
o(g) = p+ v, where Q(p)v’ # 0.
Now we prove several properties of the images of the introduced sets under
f.

(P4) Thereexistsa A; > Osuchthatifp,r,f(p) e W, A < Ay, and |[r—f(p)| < A,
then

J(R(A,p)) CR(MA, ) (1.29)
and
FUR(A,r)) CRM, A, p), (1.30)
where M| = 4vM.
We prove only the part of property (P4) related to inclusion (1.29); the part

related to inclusion (1.30) is proved by a similar reasoning (possibly, with
different constants M; and Ay).
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First we prove an auxiliary statement:
(P4’) There exists a Ay > 0 such that if p,f(p) € Wand A < Ay, then

where M; = 4vM,.
Indeed, take a point g = p 4+ v € R(A, p); then

[v] = [P(p)v] + [Q(p)v]| = 2A.

Since
(@) =f(p) + Df(p)v + o(p,v),
where
lo(p.v)|/[v] =0, |v] =0,
uniformly in p and || Df (p)|| < Mo, there exists a A; > 0 such that if A < Ay, then
|f(q) —f(p)| < 2Molv|, [v] <24A.
If f(q) = f(p) + w, then
[ P(f(p)w]. 1Q(f(P))w| = 2vMy|v| < 4vMoA,
which proves (P4') with M| = 4v M.

Now we prove (1.29). Since the projections P and Q are uniformly continuous,
we can reduce, if necessary, A; so that

IPG) =PI Q) =@M < 1. x.yeW, [x—y| < A, (1.32)
Let A < A;. Take a point ¢ € f(R(A, p)) and let
qg=f(p)+v=r+w
Then |[v —w| < A and

| P(f(p)v]. 1Q(f(p))v] = M1 A

by (P4').
Let us estimate

| P(r)w| < | P(n)w — P(r)v] + | P(r)v = P(f(p))v| + | P(f(p))v] =

< VA +2MA+MA= (v +3M)A =MA
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(estimating the second term, we take the inequality |v| < 2M;A and (1.32) into
account).

A similar estimate holds for |Q(r)w|, which proves (1.29).

Of course, without loss of generality, we may assume that

M=>1. (1.33)
Now we fix a
do €(0,A,/2)

with the following properties:

1) if p,f(p),r € Wand |r —f(p)| < do, then inequalities (1.20) and (1.21) are
satisfied with the chosen ¢;
(2) in the representation

f(p+v)=f(p)+Df(p)v+o(p.v), (1.34)
the estimate
lo(p,v)| < slv|, |v]| <2MZLd,, (1.35)

holds.
Now we prove one more statement.

(P5) Ifd < dy, p.f(p).r € W, |r —f(p)| < d, and A = Zd, then

f(T(MA,p))NV(A,r) =0, (1.36)
f(T(A,p)) C Int(R(A, 7)), (1.37)
FR(A,p) NR(A,r) C V(A,r), (1.38)
and
F(V(A,p)) NR(A,r) = 0. (1.39)

First we prove relation (1.36).

Ifg=p+veTMA,p),thenv = P(p)v € S(p), | P(p)v]| < MA = MZd,
and Q(p)v = 0. Hence, it follows from representation (1.34) and estimates (1.26)
and (1.35) that

10N (f(@) =N = 12N (f(p) = NI+ 1QNDf(P)P(p)v| + [Q(r)o(p, v)| =

<vd+eMZLd+veMLd = (v +eM(1 +v).L)d < Ld = A,
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which proves relation (1.36).
Let us prove relations (1.37) and (1.38).
First we note that inequality (1.33) implies the inclusion
T(A.p) CT(MA,p),
and it follows from the above inequality that

10N (f@) —nl <A, qeT(A.p). (1.40)

Now we consider a pointg = p + v € R(A, p), represent v = P(p)v + Q(p)v,
and estimate

| P()(f(q) = | = [ P(N(f(p) =Nl + | P(Df(p)P(p)v|+
+IP(NDf(p)Q(p)v| + [ P(r)o(p.v)| =
<vd+AZd+eld+2veLd= v+ AL +e(1+20V)L)d < Ld= A
(here we refer to the estimate |v| < 2.%d and to inequality (1.27)).
The above inequality proves relation (1.38). Combining it with inequality (1.40),
we get a proof of relation (1.37).

Finally, we prove relation (1.39). If g = p + v € V(A, p), then | P(p)v| < A =
Zdand |Q(p)v| = A = Zd. Then

12N (flg) -1l =
= 1(Df(p)(P(p)v + Q(p)v)| = QN (f(p) = N = |@(o(p.v)| =
= |Q(NDf(P)Q(p)v| = QD (P)Q(p)v| = [Q(N(f(p) = N| = [Q(r)o(p, v)| =
> ZLd/A—eZLd—vd—-2evLd = (LA —v—e(1+2v))d>Ld=A

(here we refer to inequality (1.28)). This proves relation (1.39).
Now we consider points py, ..., p, € W such that

f(pr)eW, k=0,....m—1, (1.41)
and
[f(po) —pr41l <d <do, k=0,....m—1,
and prove that there exists a point r € R(A, pp) such that

A eRA.p), k=1.....m, (1.42)
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where A = Zd.

Let us note that condition (1.41) is not a real restriction since we can guarantee
it reducing W, if necessary.

For brevity, we denote Ry = R(A, pr), Vi = V(A,pr), Tx = T(A, pi).

Consider the sets

Ac=R\ ) fPnRy)). k=0.....m—1.
I=k+1

It follows from equality (1.39) that
f(Vi) NRyy = 0.

Hence, V. C Ay.
‘We claim that there exist retractions

kaAk—>Vk, k=0,...,m—l.
This is enough to prove our statement since the existence of pp means that
m
(f ' (nt(R)) # @
1=0

(otherwise there exists a retraction of Ry to Vp, which is impossible by property
(P1)), which, in turn, means that there exists a point r € Ry such that

fk(r) eR,, k=0,....m,
or
|F5(r)—pe| =2v%d, k=0,....m.

Thus, our claim implies the finite Lipschitz shadowing property of f in W with
constants dy and 2v.Z.

Let us prove our claim. The existence of p,,—; is obvious since inclusion (1.37)
implies that

Ty Cf_l(lnt(Rm))v

and hence,

Rm—l \f_l (Int(Rm)) - Rm—l \ Tm—lv

while V,,_; is a retract of the latter set by property (P2).
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Let us assume that the existence of retractions px+1, ..., pm—1 has been proved.
Let us prove the existence of py.
The definition of the sets Ay implies that

AN f (Rer) CF 7 (Arrn) (1.43)
since
F(A) N~ R ((Ant(R)) = @ for I > k + 2.
Define a mapping 6 on A; by setting
0(q) =" o prt10f(q), g €A NS (Ritr),
and
0@) =g, q€A\f Ritr).

Inclusion (1.43) shows that the mapping 6 is properly defined.
Let us show that this mapping is continuous. Clearly, it is enough to show that

Pir1(r) = rforr € f(Ax Nf~ (ORk41)).
For this purpose, we note that

FA N OR41)) = f(Ar) N ORt1 C f(Ri) N OR41 C Vit

(we refer to inclusion (1.38)) and px41(r) = r for r € Viy,.
Clearly, 6 maps Ay into the set

Bi = [Re \ /™ R )] U™ (Viewn). (1.44)
Since d < A by our choice of dy, it follows from property (P4) that
By CR(MA, py).
Let us consider a retraction
o0: RIMA,py) > R

given by property (P3).
If

g=pi +vef (Vir) \ Ri.,
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then g ¢ T(MA, pi) by (1.36); thus, Q(p)v # 0. It follows from property (P3) that
in this case,

0(q) € Co .= R \T(A,pr).

If

q € R\~ (Res).

then the above inclusion follows from (1.37).
Condition (P2) implies that there exists a retraction

p: Cp = Vg
It remains to note that 8(g) = g for ¢ € Vj due to relation (1.39). Thus,
pk=pocgol: Ay — Vg

is the required retraction. O

Historical Remarks There exist several proofs of the inclusion
“p C SSPp

based on different ideas.

This statement was proved by A. Morimoto [46], K. Sawada [92], and C.
Robinson [83] (note that the proof in [83] is not complete).

As far as the authors know, the first statement of Theorem 1.4.1 was first proved
in the book [61] of the first author, and the second statement was proved in his paper
[62].

Lemma 1.4.1 belongs to D. V. Anosov [3].

As was mentioned in Historical Remarks to Sect. 1.1, both classical proofs of
the shadowing property in a neighborhood of a hyperbolic set of a diffeomorphism
given by D. V. Anosov in [4] and R. Bowen in [12] show that shadowing is Lipschitz.

Our proof of Theorem 1.4.2 published in the joint paper [58] of the first author
and A. A. Petrov mostly follows the ideas of the joint paper [63] of the first author
and O. B. Plamenevskaya.
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