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Abstract Randommotions on the line andon the planewith space-varyingvelocities
are considered and analyzed in this paper. On the line we investigate symmetric
and asymmetric telegraph processes with space-dependent velocities and we are
able to present the explicit distribution of the position T (t), t > 0, of the moving
particle. Also the case of a nonhomogeneous Poisson process (with rate λ = λ(t))
governing the changes of direction is analyzed in three specific cases. For the special
case λ(t) = α/t , we obtain a random motion related to the Euler–Poisson–Darboux
(EPD) equation which generalizes the well-known case treated, e.g., in (Foong, S.K.,
Van Kolck, U.: Poisson random walk for solving wave equations. Prog. Theor. Phys.
87(2), 285–292, 1992, [6], Garra, R., Orsingher, E.: Random flights related to the
Euler-Poisson-Darboux equation. Markov Process. Relat. Fields 22, 87–110, 2016,
[8], Rosencrans, S.I.: Diffusion transforms. J. Differ. Equ. 13, 457–467, 1973, [16]).
A EPD-type fractional equation is also considered and a parabolic solution (which in
dimensiond = 1has the structure of a probability density) is obtained. Planar random
motions with space-varying velocities and infinite directions are finally analyzed in
Sect. 5. We are able to present their explicit distributions, and for polynomial-type
velocity structures we obtain the hyper- and hypoelliptic form of their support (of
which we provide a picture).
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1 Introduction

The telegraph process represents a simple prototype of finite velocity randommotions
on the line, whose probability law is governed by a hyperbolic partial differential
equation that is the classical telegraph equation, widely used inmathematical physics
both in problems of electromagnetism and heat conduction (see for example [2]). In
[13], the authors studied a generalization of the classical telegraphprocesswith space-
time-varying propagation speed. Within this framework, the probabilistic model is
based on the limit of a persistent random walk on a nonuniform lattice. The con-
sequence of the assumption of a space-time-depending velocity c(x, t) is that the
probability law of the corresponding finite velocity random motion is governed by
the following telegraph equation with variable coefficients

∂

∂t

[
1

c(x, t)

∂ p

∂t

]
+ 2λ

1

c(x, t)

∂ p

∂t
= ∂

∂x

[
c(x, t)

∂ p

∂x

]
. (1.1)

In some cases, it is possible to find the explicit form of the probability law of this
generalization of the telegraph process, by solving equation (1.1) subject to suitable
initial conditions. In particular, we focus our attention on the case of space-depending
velocity, where (1.1) becomes

∂2 p

∂t2
+ 2λ

∂ p

∂t
= c(x)

∂

∂x

[
c(x)

∂ p

∂x

]
. (1.2)

The function c(x) ∈ C1(R) represents the velocity of a particle running through point
x and thus must be c(x) ≥ 0. The transformation

y =

⎧⎪⎪⎨
⎪⎪⎩

∫ x

0

dw

c(w)
, x > 0

−
∫ 0

x

dw

c(w)
, x < 0

(1.3)

implies that
∂

∂x
= 1

c(x)

∂

∂y
(1.4)

and converts (1.2) into the classical telegraph equation. Provided that

∫ max{0,x}

min{0,x}
dw

c(w)
< +∞, (1.5)

we take y = 0 for x = 0. These conditions on c = c(x) must hold in all parts of the
paper, suitably adapted to the specific cases.

In principle, the transformation (1.3) is sufficient for converting (1.2) into the
telegraph equation with constant velocity in the frame (y, t) but we need also (1.3)
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for the necessary changes of the probability distributions. For the case where c(x) /∈
C1(R) in some isolated points, we can replace it with a suitable smoothed version
cε(x) and then apply the procedure just described and finally take ε → 0.

A possible example of velocity function is c(x) = |x |α which for 0 < α < 1
denotes a moderately increasing velocity and for α < 0 has fading off effect on
motions. Of course for α ≥ 1, the particle undergoes an accelerating process and
looses the character of a finite velocity motion.

In this paper, we consider the asymmetric telegraph process with space-varying
velocity and also the symmetric telegraph process with a nonhomogeneous Poisson
process governing the changes of space-dependent velocities.

A section is devoted to a fractional Euler–Poisson–Darboux-type equation and to
the discussion of a special class of nonnegative solutions.

While the telegraph process on the line is essentially a persistent random walk
with only two possible directions, the picture of finite velocity random motions
on the plane and in the space is more complicated and gives rise to the studies of
random flights (see for example [3–5, 15]). An interesting result, in this context, was
proved by Kolesnik and Orsingher in [12], where the connection between planar
random motions with an infinite number of possible directions and the damped
wave equation was discussed. In their model, the motion is described by a particle
taking directions θ j , j = 1, 2, ..., uniformly distributed in [0; 2π) at Poisson paced
times. The orientations θ j are i.i.d. r.v.’s independent from the homogeneous Poisson
process N (t) of rate λ governing the changes of direction. The particle starts off at
time t = 0 from the origin and moves with constant velocity c. At the epochs of the
Poisson process, the particle takes new directions (uniformly distributed in [0, 2π)),
independent from its previous evolution. Under these assumptions, it is possible to
prove that the explicit probability law of the current position (X (t),Y (t)) of the
randomly moving particle is a solution of the damped wave equation

∂2 p

∂t2
+ 2λ

∂ p

∂t
= c2

[
∂2 p

∂x2
+ ∂2 p

∂y2

]
. (1.6)

In the last part of this paper, we consider the effect of a space-varying speed of
propagation on the model of planar randommotions with infinite possible directions,
leading to the equation

∂2 p

∂t2
+ 2λ

∂ p

∂t
= c1(x)

∂

∂x

(
c1(x)

∂ p

∂x

)
+ c2(y)

∂

∂y

(
c2(y)

∂ p

∂y

)
. (1.7)

We show the consequence of assuming space-varying velocities on the form of the
support D of the distribution of (X (t),Y (t)). By means of the transformation (suit-
ably extended as in the one-dimensional case)

u =
∫ x

0

dw

c1(w)
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v =
∫ y

0

dz

c2(z)
,

The Eq. (1.7) is reduced to the form (1.6) and thus we can obtain the explicit dis-
tribution p(x, y, t) of (X (t),Y (t)). We then examine the form of the support of
p = p(x, y, t) and analyze its dependence on the space-varying velocity.

In the special case where c1(x) = |x |γ/c1, c2(y) = |y|β/c2, γ,β < 1, we obtain
that the boundary of D is hyperelliptic for γ = β < 0 and hypoelliptic for 1 > γ =
β > 0 and elliptic for γ = β = 0.

2 Telegraph Process with Drift and Space-Varying Velocity

In this section, we consider a generalization of the telegraph process with drift con-
sidered by Beghin et al. (see Ref. [1]) in the case where the velocity is assumed to
be space-varying. In particular, here we consider the random motion of a particle
moving on the line and switching from the space-varying (positive) velocity c(x) to
−c(x) after an exponentially distributed time with rate λ1 and from −c(x) to c(x)
after an exponential time with a different rate λ2. For the description of the random
position of the particle X (t) at time t > 0, we use the following probability densities:

{
f (x, t)dx = P{X (t) ∈ dx, V (t) = c(x)}
b(x, t)dx = P{X (t) ∈ dx, V (t) = −c(x)}, (2.1)

satisfying the system of partial differential equations (see [14] for a detailed proba-
bilistic derivation) ⎧⎪⎨

⎪⎩
∂ f

∂t
= −c(x)

∂ f

∂x
− λ1 f + λ2b

∂b

∂t
= c(x)

∂b

∂x
+ λ1 f − λ2b.

(2.2)

Defining
p(x, t) = f + b, w = f − b, (2.3)

we have the following system of equations

⎧⎪⎪⎨
⎪⎪⎩

∂ p

∂t
= −c(x)

∂w

∂x
∂w

∂t
= −c(x)

∂ p

∂x
+ λ2(p − w) − λ1(p + w).

(2.4)

Therefore, the probability law p(x, t) is governed by the following telegraph-type
equation with space-varying velocity and drift
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∂2 p

∂t2
+ (λ1 + λ2)

∂ p

∂t
= c(x)

∂

∂x
(c(x)

∂ p

∂x
) + c(x)(λ1 − λ2)

∂ p

∂x
. (2.5)

In order to eliminate the drift term and to find the explicit form of the probability
law, we now introduce the following Lorentz-type transformation of variables:

⎧⎪⎨
⎪⎩
x ′ = A

∫ x

0

dw

c(w)
+ Bt

t ′ = C
∫ x

0

dw

c(w)
+ Dt.

(2.6)

By means of some calculation we obtain that, by taking the following choice of the
coefficients appearing in (2.6)

A = D = 1, B = C = λ1 − λ2

λ1 + λ2
, (2.7)

equation (2.5) becomes the classical telegraph equation

∂2 p

∂t ′2
+ (λ1 + λ2)

∂ p

∂t ′
= ∂2 p

∂x ′2 (2.8)

and we can therefore find the following explicit probability law, starting from that
of the classical telegraph process (with λ = λ1+λ2

2 )

p(x, t) = e−λt

2

{
δ

(
t −

∣∣∣∣
∫ x

0

dx ′

c(x ′)

∣∣∣∣
)

+ δ

(
t +

∣∣∣∣
∫ x

0

dx ′

c(x ′)

∣∣∣∣
)}

+ e−λt

2c(x)

[
λI0

(
λ

√
t2 −

∣∣∣∣
∫ x

0

dx ′

c(x ′)

∣∣∣∣
2)

+ ∂

∂t
I0

(
λ

√
t2 −

∣∣∣∣
∫ x

0

dx ′

c(x ′)

∣∣∣∣
2)]

× 1D(x)

}
,

where 1D is the characteristic function of the set

D :=
{
x ∈ R :

∣∣∣∣
(∫ x

0

dx ′

c(x ′)

) ∣∣∣∣ < t

}

and I0(·) is the modified Bessel function of order zero.

3 Nonhomogeneous Telegraph Processes
with Space-Varying Velocities

Let us recall that a telegraphprocessT (t), t > 0,where changes of direction are paced
by a nonhomogeneous Poisson process, denoted byN (t), with time-dependent rate
λ(t), t > 0, has distribution p(x, t) satisfying the Cauchy problem (see e.g., [10]):
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⎧⎪⎨
⎪⎩

∂2 p

∂t2
+ 2λ(t)

∂ p

∂t
= c2

∂2 p

∂x2
,

p(x, 0) = δ(x),
∂ p

∂t
(x, t)

∣∣
t=0 = 0.

(3.1)

In order to obtain explicit distributions in some specific cases, we observe that the
transformation

p(x, t) = e− ∫ t
ε λ(s)dsv(x, t), (3.2)

converts (3.1) into
∂2v

∂t2
− [λ′(t) + λ2(t)]v = c2

∂2v

∂x2
. (3.3)

In (3.2), we exclude the initial time instant (which, however, does not play any role
in the subsequent differential transformations) in order to avoid pathologies at t = 0.
Functions of the form λ(t) = α/t and λ(t) = λ coth λt , for t > 0, display an initial
high-valued intensity of the Poisson events which hinder the particle to reach the
endpoints of the support interval. Then, in order to find the explicit probability law
of T (t) from (3.1), a mathematical trick is to solve the following Riccati equation
emerging from (3.3) (see [8, 9]):

λ′(t) + λ2(t) = const. (3.4)

In this way, it is possible to find, in particular, the following probability laws with
absolutely continuous components given by

P

{
Y (t) ∈ dx

}
/dx = 1

2c cosh λt

∂

∂t
I0

(
λ

c

√
c2t2 − x2

)
, |x | < ct, (3.5)

and

P

{
X (t) ∈ dx

}
/dx =

λI0
(

λ
c

√
c2t2 − x2

)
2c sinh λt

, |x | < ct, (3.6)

corresponding to the cases {
λ(t) = λ tanh λt,

λ(t) = λ coth λt,

respectively.We observe that the processY (t) has a discrete component of the distrib-
ution concentrated at x = ±ct (see [9]),while X (t) has only an absolutely continuous
distribution (see [8]).

Starting from (3.5) and (3.6), we can clearly build other families of explicit prob-
ability laws of the form
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P

{
Y (t) ∈ dx

}
/dx = 1

2c(x) cosh λt
∂
∂t I0

⎛
⎝λ

√
t2 −

∣∣∣∣
∫ x

0

dx ′

c(x ′)

∣∣∣∣
2
⎞
⎠ ,

P

{
X (t) ∈ dx

}
/dx = λ

2c(x) sinh λt I0

⎛
⎝λ

√
t2 −

∣∣∣∣
∫ x

0

dx ′

c(x ′)

∣∣∣∣
2
⎞
⎠ ,

for

{
x :
∣∣∣∣
∫ x

0

dx ′

c(x ′)

∣∣∣∣ < t

}
,

(3.7)

which depend on the particular choice of c(x) > 0 (s.t. condition (1.5) is fullfilled for
all x). These probability laws are clearly related to the following partial differential
equations: ⎧⎪⎪⎨

⎪⎪⎩

∂2 p

∂t2
+ 2λ tanh λt

∂ p

∂t
= c(x)

∂

∂x
c(x)

∂ p

∂x
,

∂2 p

∂t2
+ 2λ coth λt

∂ p

∂t
= c(x)

∂

∂x
c(x)

∂ p

∂x
,

(3.8)

respectively.
Another interesting case is λ(t) = α

t , which converts Eq. (3.1) into the classical
Euler–Poisson–Darboux equation

∂2u

∂t2
+ 2α

t

∂u

∂t
= ∂2u

∂x2
, x ∈ R, t > 0. (3.9)

The first probabilistic interpretation of the fundamental solution of the EPD equa-
tion was given by Rosencrans in [16] and some of its generalizations have been
considered in [8]. In the spirit of the previous observations, we have that the solution
of the Cauchy problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2v

∂t2
+ 2α

t

∂v

∂t
= c(x)

∂

∂x
c(x)

∂v

∂x
,

v(x, 0) = δ(x),

∂v
∂t

∣∣∣∣
t=0

= 0

(3.10)

can be written as

v(x, t) = 1

B(α, 1
2 ) c(x)t

⎛
⎜⎜⎜⎝1 −

∣∣∣∣
∫ x

0

dx ′

c(x ′)

∣∣∣∣
2

t2

⎞
⎟⎟⎟⎠

α−1

, for

{
x :
∣∣∣∣
∫ x

0

dw

c(w)

∣∣∣∣ < t

}
.

(3.11)



32 R. Garra and E. Orsingher

We finally observe that it is possible to consider other cases of nonhomogeneous
telegraph processes with space-dependent velocities according to the following sim-
ple steps:

• Consider the equation

∂2 p

∂t2
+ 2λ(t)

∂ p

∂t
= c(x)

∂

∂x
c(x)

∂ p

∂x
, (3.12)

governing a telegraph process on the line, where the changes of direction are given
by a nonhomogeneous Poisson process with a deterministic time-dependent rate
λ(t) and with space-dependent velocity c(x).

• Define the new variables x ′ = ∫ x
0

du
c(u)

and t ′ = ∫ t
0 γ(s)ds, where γ(t) is a

C1[0,+∞) function that will be defined in the next step;
• In the new variables, we have that p(x ′, t ′) satisfies the equation

γ2(t ′)
∂2 p

∂t ′2
+ (

γ′ + 2λγ
) ∂ p

∂t ′
= ∂2 p

∂x ′2 ; (3.13)

• Take γ(t) such that γ′
γ

= −2λ(t). Then the problem is finally reduced to the fol-
lowing D’Alembert equation with a time-depending coefficient

∂2 p

∂t ′2
= 1

γ2(t ′)
∂2 p

∂x ′2 . (3.14)

• By taking the further change of variable (x ′, t ′) → (γ(t ′)x ′, t ′) and calling x ′′ =
γ(t ′)x ′ we finally reduce Eq. (3.14) to the classical D’Alembert equation in the
variables (x ′′, t ′)

∂2u

∂t ′2
= ∂2u

∂x ′′2 . (3.15)

Thus an observer in the framework (x ′′, t ′) sees the original random motion trans-
formed into a deterministic one governed by the classical D’Alembert equation.

4 Time-Fractional Euler–Poisson–Darboux Equation
with Variable Velocity

We here provide some new results about the Euler–Poisson–Darboux equation
involving time-fractional derivatives in the sense of Riemann–Liouville (see [11])
and with space-varying velocity. It is well known that the EPD equation governs a
telegraph process with time-dependent rate λ(t) = α/t . As far as we know this is
the first investigation about the time-fractional EPD equation.
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Theorem 4.1 The d-dimensional time-fractional EPD-type equation

(
∂2ν

∂t2ν
+ C1

tν
∂ν

∂tν

)
u = �u, (4.1)

with ν ∈ (0, 1) \ { 12 , 1
3 ,

1
4 ,

1
5 } and

C1 = −�(1 − 4ν)

�(1 − 5ν)
, (4.2)

admits the following nonnegative solution:
for C2 > 0

u(xd , t) =
⎧⎨
⎩

1

tν

[
1 − C2

‖xd‖2
t2ν

]
, ‖xd‖ < tν

C1/2
2

,

0 elsewhere,
(4.3)

while for C2 < 0

u(xd , t) = 1

tν

[
1 − C2

‖xd‖2
t2ν

]
, ∀ xd ∈ R

d (4.4)

where xd = (x1, x2, . . . , xd), d ∈ N and

C2 = − 1

2d

[
�(1 − ν)

�(1 − 3ν)
− �(1 − 4ν)

�(1 − 5ν)

�(1 − ν)

�(1 − 2ν)

]

Proof By considering that (4.1) has the structure of an EPD equation, we determine
a parabolic-type solution. By using the well-known fact that (see [11], p. 71)

∂αtβ

∂tα
= �(β + 1)tβ−α

�(β + 1 − α)
, for α > 0 and β > −1, (4.5)

we can calculate the exact form of the coefficient C2 such that (4.3) is a solution
of (4.1). We assume that ν 
= 1

2 ,
1
3 ,

1
4 ,

1
5 in order to avoid the singularities in the

coefficients appearing in C1 and C2. �

Remark 4.2 It is possible to construct a probability law with compact support, start-
ing from the general Theorem 4.1 in the one-dimensional case, assuming that ν is
such that C2 is positive. In this case, we have that the probability law

p(x, t) = N

tν

[
1 − C2

|x |2
t2ν

]
, |x | <

tν

C1/2
2

, (4.6)
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with

C2 = −1

2

[
�(1 − ν)

�(1 − 3ν)
− �(1 − 4ν)

�(1 − 5ν)

�(1 − ν)

�(1 − 2ν)

]

and N = 3
4

√
C2 the normalizing constant satisfies the one-dimensional

time-fractional EPD-type Eq. (4.1).
We remark that it is not a trivial matter to find the explicit values of ν ∈ (0, 1) such
that the coefficient C2 > 0.

Notice that it is extremely hard to ascertain that functions of the form

u(x, t) = N

tβ

(
1 − ‖xd‖2

tα

)γ

(4.7)

are solutions of (4.1) for γ 
= 1 and suitable β and α.
We can also observe, with the following Proposition, that we are able to find a

solution for a time-fractional EPD-type equation of higher order.

Proposition 4.3 The d-dimensional time-fractional EPD-type equation

(
∂2ν

∂t2ν
+ C1

tν
∂ν

∂tν

)
u =

d∑
j=1

∂2nu

∂x2nj
, n ∈ N, (4.8)

with ν ∈ (0, 1) \ { 12 , 1
3 ,

1
4 ,

1
5 } and

C1 = −�(1 − 4ν)

�(1 − 5ν)
, (4.9)

admits the following nonnegative solution:
for C2 > 0

u(x1, . . . , xd , t) =

⎧⎪⎪⎨
⎪⎪⎩

1
tν

[
1 − C2

∑d
j=1 x

2n
j

t2ν

]
,

d∑
j=1

x2nj <
t2ν

C2
,

0 elsewhere

(4.10)

and for C2 < 0

u(x1, . . . , xd , t) = 1

tν

[
1 − C2

∑d
j=1 x

2n
j

t2ν

]
, ∀ xd ∈ R

d (4.11)

where d ∈ N and

C2 = − 1

(2n)!d
[

�(1 − ν)

�(1 − 3ν)
− �(1 − 4ν)

�(1 − 5ν)

�(1 − ν)

�(1 − 2ν)

]
.
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Starting from (4.6), we have the following corollary.

Corollary 4.4 Taking ν ∈ (0, 1) such that C2 > 0, the probability law

p(x, t) = N

c(x)tν

⎡
⎢⎢⎢⎣1 − C2

∣∣∣∣
∫ x

0

dx ′

c(x ′)

∣∣∣∣
2

t2ν

⎤
⎥⎥⎥⎦ , for

{
x :
∣∣∣∣
∫ x

0

dx ′

c(x ′)

∣∣∣∣ <
tν

C1/2
2

}
,

(4.12)
with N = 3

4

√
C2 and

C2 = −1

2

[
�(1 − ν)

�(1 − 3ν)
− �(1 − 4ν)

�(1 − 5ν)

�(1 − ν)

�(1 − 2ν)

]
,

satisfies the time-fractional EPD-type equation with nonconstant coefficients

(
∂2ν

∂t2ν
+ C1

tν
∂ν

∂tν

)
p = c(x)

∂

∂x
c(x)

∂ p

∂x
, (4.13)

with

C1 = −�(1 − 4ν)

�(1 − 5ν)
.

5 Planar Random Motions with Space-Varying Velocity

Westart our analysis from thedampedwave equationwith space-dependingvelocities
as follows:

∂2 p

∂t2
+ 2λ

∂ p

∂t
= c1(x)

∂

∂x
c1(x)

∂ p

∂x
+ c2(y)

∂

∂y
c2(y)

∂ p

∂y
. (5.1)

By taking the change of variables

⎧⎪⎪⎨
⎪⎪⎩
z =

∫ x

0

dx ′

c1(x ′)

w =
∫ y

0

dy′

c2(y′)
, (x, y) ∈ R

2,

(5.2)

we obtain
∂2 p

∂t2
+ 2λ

∂ p

∂t
= ∂2 p

∂z2
+ ∂2 p

∂w2
. (5.3)

The transformation (5.2)must be extendedon thewhole plane (x, y) ∈ R
2 by suitably

adapting the considerations discussed in the introduction. The absolutely continuous
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component of the distribution of the position (X (t),Y (t)) of the moving particle
performing the planar motion described in the introduction satisfies (5.3) (see [12]).
Therefore, returning to the original variables (x, y), we are able to understand the
role played by the variable velocity on the model considered in [12]. The absolutely
continuous component of the probability law is given by

p(x, y, t) = λ

2πc1(x)c2(y)

exp

{
− λt + λ

√
t2 −

∣∣∣∣
∫ x

0

dx ′

c1(x ′)

∣∣∣∣
2

−
∣∣∣∣
∫ y

0

dy′

c2(y′)

∣∣∣∣
2}

√
t2 −

∣∣∣∣
∫ x

0

dx ′

c1(x ′)

∣∣∣∣
2

−
∣∣∣∣
∫ y

0

dy′

c2(y′)

∣∣∣∣
2

,

(5.4)

provided that both c1(x) and c2(y) are positive and such that
∫ max{0,x}

min{0,x}
dx ′

c1(x ′)
< ∞

for all x ∈ R and
∫ max{0,y}

min{0,y}
dy′

c2(y′)
< ∞ for all y ∈ R, respectively.

Therefore, the support of p(x, y, t) is given by the set

D :=
{
(x, y) :

∣∣∣∣
∫ x

0

dx ′

c1(x ′)

∣∣∣∣
2

+
∣∣∣∣
∫ y

0

dy′

c2(y′)

∣∣∣∣
2

< t2
}
. (5.5)

The set D is therefore a deformation of the circle representing the support of
(X (t),Y (t)) in the case of constant velocity. From formula (5.4), we can extract the
conditional distribution of this class of generalized planar random motions. Since

P{X (t) ∈ dx, Y (t) ∈ dy} =
∞∑
n=0

P{X (t) ∈ dx, Y (t) ∈ dy|N (t) = n}P{N (t) = n}dxdy, (5.6)

where P{N (t) = n} is the homogeneous Poisson distribution of rate λ, we have that
the conditional distribution is obviously given by

P{X (t) ∈ dx,Y (t) ∈ dy|N (t) = n}

= n

2πtn

[
t2 −

∣∣∣∣
∫ x

0

dx ′

c1(x ′)

∣∣∣∣
2

−
∣∣∣∣
∫ y

0

dy′

c2(y′)

∣∣∣∣
2] n

2 −1 dxdy

c1(x)c2(y)
. (5.7)

The planar motion with space-varying velocity after n changes of direction can be
described as ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

X (t) =
n+1∑
j=1

(∫ t j

t j−1

c1(X (s))ds

)
cos θ j

Y (t) =
n+1∑
j=1

(∫ t j

t j−1

c2(Y (s))ds

)
sin θ j ,

(5.8)
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where 0 = t0 < t1 < · · · < t j < · · · < tn < tn+1 = t are the epochs of the Poisson
process and θ j are the directions of motion assumed at times t j . The reader can
ascertain that (5.8) coincides with equation (12) of [12] in the case c1 = c2 = const..

The intuitive idea underlying (5.8) is that at Poisson times t j the particle chooses
its direction randomly and the displacement performed is determined by the local
velocity field. During (s, s + ds), for example, the x-coordinate makes a step of
length c1(X (s))ds depending on the position occupied at time s.

We also observe that we can arrive at (5.7) by expanding (5.4) and then using (5.6).
In order to understand the role of considering different velocities on both axes,

we consider a general domain that includes some interesting cases. It corresponds
to taking the space-dependent velocities of the form c1(x) = |x |γ

c1
and c2(y) = |y|β

c2
,

with γ,β < 1 and c1, c2 > 0. The functions c1(x) and c2(x) considered here can be
regarded as the limit of approximating smooth functions excluding x = y = 0. With
this choice, we obtain a family of probability laws concentrated inside domains of
the form

Dγ,β :=
{
(x, y) :

(
c1|x |1−γ

1 − γ

)2

+
(
c2|y|1−β

1 − β

)2

< t2
}
. (5.9)

This means that the boundary of the support of this family of probability laws is given
by a superellipse, also known as a Lamé curves including a wide class of geometrical
figures like hypoellipses (for γ = β < 0) and hyperellipses (for γ = β > 0). We
consider, in particular, two interesting cases.

The first one is the case in which c1(x) = c1 and c2(y) = c2 and c1 
= c2 
= 0. In
this case, the support of the probability law is clearly given by the ellipse:

D0,0 :
{
(x, y) : c21|x |2 + c22|y|2 < t2

}
. (5.10)

The second interesting case is given by the choice c1(x) = c1|x |2/3 and c2(y) =
c2|y|2/3, leading to the compact support

D2/3,2/3 :
{
(x, y) : 9c21|x |2/3 + 9c22|y|2/3 < t2

}
. (5.11)

For c1 = c2 = 1/3, we obtain as boundary of D2/3,2/3 the astroid (see Fig. 1). For
c1 
= c2 
= 1, we have instead a squeezed astroid, possibly on both axes.

Another interesting class of d-dimensional random motions at finite velocities is
related to the EPD equation

∂2v

∂t2
+ 2α + d − 1

t

∂v

∂t
=

d∑
j=1

c j (x j )
∂

∂x j
c j (x j )

∂v

∂x j
. (5.12)
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Fig. 1 We represent the boundary of the compact support Dγ,β of the family of probability laws
(5.4), in the hypoelliptic (n = 2/3 leading to the astroid and n = 3/2), elliptic (n = 2), and hyper-
elliptic case (n = 3). Here, we assume that c1 = c2 = 1 and n = 2(1 − γ) = 2(1 − β). We show,
as an example, four sample paths with zero, two, three, and four changes of direction, in the case
when the random motion takes place in the astroid

In this case, the probability law p(x1, x2, . . . , xd , t) of the particle moving in the
d-dimensional space has the form

p(x1, x2, . . . , xd , t) = 1∏d
j=1 c j (x j )

�(α + d
2 )

πd/2�(α)td+2α−2

⎛
⎝t2 −

d∑
j=1

∣∣∣∣
∫ x j

0

du j

c j (u j )

∣∣∣∣
2
⎞
⎠

α−1

,

(5.13)

for
d∑
j=1

∣∣∣∣
∫ x j

0

du j

c j (u j )

∣∣∣∣
2

< t2
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and represents a solution of (5.12). The projection on the axes x1, . . . , xd of the prob-
ability law (5.13) coincides with the one-dimensional motion dealt with in Sect. 3.

A more general random motion in R
d with space-varying velocities leads to

equation

∂2 p

∂t2
+ 2λ(t)

∂ p

∂t
=

d∑
j=1

c j (x1, . . . x j , . . . , xd)
∂

∂x j
c j (x1, . . . x j , . . . , xd)

∂

∂x j
p.

(5.14)
This can be object of future research.
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