
Chapter 2
Q-Conditional Symmetries of Reaction-Diffusion
Systems

Abstract A recently developed theoretical background for searching Q-conditional
(nonclassical) symmetries of systems of evolution partial differential equations is
presented. We generalize the standard definition of Q-conditional symmetry by
introducing the notion of Q-conditional symmetry of the p-th type and show that
different types of symmetry of a given system generate a hierarchy of conditional
symmetry operators. It is shown that Q-conditional symmetry of the p-th type
possesses some special properties, which distinguish them from the standard condi-
tional symmetry. The general class of two-component nonlinear reaction-diffusion
systems is examined in order to find the Q-conditional symmetry operators. The
relevant systems of so-called determining equations are solved under additional
restrictions. As a result, several reaction-diffusion systems possessing conditional
symmetry are constructed. In particular, it is shown that the diffusive Lotka–Volterra
system, the Belousov–Zhabotinskii system (with the correctly specified coefficients)
and some of their generalizations admit Q-conditional symmetry.

2.1 Reaction-Diffusion Systems and Their Applications

In 1952, Turing published a remarkable paper [56], in which a revolutionary
idea about the mechanism of morphogenesis (the development of structures in an
organism during its life) has been proposed. From the mathematical point of view
Turing’s idea immediately leads to the construction of reaction-diffusion systems
(RDSs) (not single equations!) exhibiting so-called Turing instability (see, e.g., [41,
Sect. 14.3]). Nowadays nonlinear RDSs are basic equations for many well-known
nonlinear models used to describe a wide range of processes in physics, biology,
medicine, chemistry, ecology, etc.

This chapter is mostly devoted to the investigation of two-component RDSs of
the form

Ut D �
D1.U/Ux

�
x

C F.U;V/;
Vt D �

D2.V/Vx
�

x C G.U;V/;
(2.1)
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where U D U.t; x/ and V D V.t; x/ are two unknown functions representing
the densities of populations (cells, tumours, chemicals), F.U;V/ and G.U;V/
are the given smooth functions describing the interaction between them and the
environment, the functions D1.U/ and D2.V/ are the relevant diffusivities (hereafter
they are positive smooth functions) and the subscripts t and x denote differentiation
with respect to (w.r.t.) these variables. The class of RDSs (2.1) generalizes a number
of nonlinear models describing various processes in biology, medicine and ecology
(see, e.g., the well-known books [10, 41, 43, 45]).

Usually the diffusivities Dk .k D 1; 2/ are taken to be positive constants dk.
An important subclass of RDSs of the form (2.1) consists of those, which satisfy
the well-known requirements leading to Turing instability, hence they can be
used for description of the chemical basis of morphogenesis [10, Chap. 7], [43,
Chap. 2]. The classical examples of such RDSs are the Gierer–Meinhardt system,
the Schnakenberg system, etc.

The two-component diffusive Lotka–Volterra system (DLVS)

Ut D d1Uxx C U.a1 C b1U C c1V/;
Vt D d2Vxx C V.a2 C b2U C c2V/

(2.2)

is another common RDS of the form (2.1) [10, 41, 43, 45]. System (2.2) is
the standard generalization of the classical Lotka–Volterra system that takes into
account the diffusion process for interacting species (see the terms d1Uxx and
d2Vxx). Although the classical Lotka–Volterra system was independently introduced
by Lotka and Volterra about 90 years ago, its different generalizations are widely
studied at present because of their importance for mathematical modelling of a wide
range of processes in biology, ecology, economics, etc.

It is well known that DLVS (2.2) models several types of interaction between
two populations of species. Three common types are predator–prey interaction, the
competition (for food, space, etc.) of species and mutualism. Each type of species
interaction is defined by the signs of coefficients in DLVS (2.2). For example, the
coefficients

ak > 0; bk � 0; ck � 0; k D 1; 2

are used in order to describe the competition, while the cases c1b2 < 0 and c1 >
0; b2 > 0 model predator–prey interaction and mutualism, respectively (see [42,
Chap. 3] for details).

A separate subclass of the RDS class (2.1) is formed by so-called � � !

systems, which possess spiral wave solutions. Spiral waves occur naturally in a wide
variety of biological, physiological and chemical effects (see [41, Chap. 12] and
the references therein). Typically the � � ! systems have a complicated structure
involving the nonlinearities �.U2 C V2/ and !.U2 C V2/, hence their analysis
is rather complicated. The most widely known are spiral waves occurring in the
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Belousov–Zhabotinskii reaction [41, Sect. 13.3]. In contrast to the � � ! systems,
the corresponding mathematical model is simple and it is the Belousov–Zhabotinskii
system

Ut D d1Uxx C U.a1 � b1U � c1V/C rV;
Vt D d2Vxx � V.a2 C b2U/;

(2.3)

where all the parameters should be nonnegative.
As noted above, typically the diffusivities Dk .k D 1; 2/ in RDSs of the form

(2.1) are taken to be positive constant, however, in certain insect dispersal models
they depend on the densities U and V . For example, a power dependence is adopted
in diffusion models, when there is an increase in diffusion due to population pressure
[29], [41, Sect. 11.4], [42, Sect. 13.4] (see also the application to modelling flows of
thin films of viscous fluid [23]). Probably the simplest nonlinear RDS with variable
diffusivities follows as a particular case from the seminal work [54] and takes the
form

ut D ..d1 C d11u/u/xx C u.a1 � b1u � c1v/;
vt D ..d2 C d22v/v/xx C v.a2 � b2u � c2v/;

(2.4)

where the diffusivities D1 D d1 C 2d11u and D2 D d2 C 2d22v are linear
functions. Systems of the form (2.4) are used in order to model the competition
in a heterogeneous environment (see, e.g., [44] and references cited therein).

Nonlinear multi-component RDSs are an important tool for mathematical mod-
elling of a wide range of processes involving several kinds of species (cells,
chemicals, etc.). Such systems can possess some properties that are not common for
the relevant two-component systems. Thus, it is time to extend the results obtained
for two-component RDSs to the multi-component systems. It turns out that this is a
highly nontrivial problem and there are not many rigorous studies in this direction.
To the best of our knowledge, these studies are mostly focused on investigation
of the multi-component DLVS (see [39, 57, 58] and the papers cited therein). It
should be noted that the multi-component systems describe much more complicated
interactions between n populations than DLVS (2.2). The case n D 3 is studied in
Chap. 3.

During recent decades nonlinear RDSs have been extensively studied by means
of different mathematical methods and techniques. In this chapter and Chaps. 3
and 4, we restrict ourselves to the application of symmetry-based methods (another
terminology is group-theoretical methods) in order to construct subclasses of RDSs
with nontrivial conditional symmetry, to identify and to study in detail those, which
are used in biological applications.
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2.2 Q-Conditional Symmetry for Systems of Partial
Differential Equations

Although finding Lie symmetries of two-component RD systems of the form (2.1)
was initiated about 30 years ago [6, 31, 32, 61], the complete Lie symmetry
classification problem was completed only in the 2000s in papers [12, 21, 22] (for
constant diffusivities) and [23, 24, 36] (for nonconstant diffusivities).

The time is therefore ripe for a complete description of non-Lie symmetries
for the class of RDSs (2.1). However, it seems to be an extremely difficult task
because, firstly, several definitions of non-Lie symmetries have been introduced
(nonclassical symmetry [3, 8], conditional symmetry [20, 34, 35], generalized
conditional symmetry [30, 37, 59], etc.), secondly, an exhaustive description of non-
Lie symmetries needs to solve the corresponding systems of determining equations
(DEs), which are nonlinear and can fully be solved only in exceptional cases.

Hereafter we use the most common notion among non-Lie symmetries, nonclas-
sical symmetry, which we call Q-conditional symmetry following the well-known
book [35] and our previous papers. It is well known that the notion of Q-
conditional symmetry plays an important role in investigation of nonlinear partial
differential equations (PDEs) because, having such symmetries in an explicit form,
one may construct new exact solutions, which are not obtainable by the classical Lie
algorithm. However, for an exhaustive description of such symmetries, one needs to
solve the corresponding nonlinear systems of DEs and this is a very difficult task. To
the best of our knowledge, only a few papers devoted to the search for Q-conditional
symmetries for systems of PDEs were published before 2010 [2, 5, 25, 28, 40]. The
majority of such papers were published during the current decade [4, 13, 15–19, 55].

Generally speaking, in order to solve the Q-conditional symmetry classification
problem for the RDS class (2.1), one should look for new constructive approaches
allowing to solve the relevant nonlinear system of DEs. A possible approach based
on new definitions of Q-conditional symmetry was proposed in [13] and is presented
in this section.

Consider a system of m evolution equations (m � 2) with two independent .t; x/
and m dependent u D .u1; u2; : : : ; um/ variables. Let us assume that the kth-order
(k � 2) equations of evolution type

ui
t D Fi

�
t; x; u; ux; : : : ; u

.k/
x

�
; i D 1; 2; : : : ;m (2.5)

are defined in a domain˝ 	 R2 of the variables t and x. Hereafter, Fi are the smooth
functions of the corresponding variables, the subscripts t and x denote differentiation

w.r.t. these variables, ui
t D @ui

@t and u. j/
x � @ ju

@x j D
�
@ ju1

@x j ; : : : ;
@ jum

@x j

�
; j D 1; 2; : : : ; k.

It is well known (see, e.g., [7, Sect. 4.3]) that in order to find Lie invariance
operators, one needs to consider system (2.5) as the manifold

M D fS1 D 0; S2 D 0; : : : ; Sm D 0g ;
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where

Si � ui
t � Fi

�
t; x; u; ux; : : : ; u

.k/
x

�
.i D 1; 2; : : : ;m/;

in the prolonged space of the variables

t; x; u; u
1
; : : : ; u

k
:

Here, the symbol u
j

( j D 1; 2; : : : ; k) denotes totalities of the jth-order derivatives

w.r.t. the variables t and x.
According to the definition, system (2.5) is invariant (in the Lie sense!) under the

transformations generated by the infinitesimal operator

Q D �0.t; x; u/@t C �1.t; x; u/@x C �1.t; x; u/@u1 C � � � C �m.t; x; u/@um ; (2.6)

if the following invariance criterion is satisfied:

Q
k
.Si/

ˇ̌
ˇ
M

D 0 .i D 1; 2; : : : ;m/: (2.7)

The operator Q
k

is the kth-order prolongation of the operator Q and its coefficients

are expressed via the functions �0; �1; �1; : : : ; �m by well-known formulae (see,
e.g., [46, 49]), which will be specified in the next section for k D 2.

The crucial idea, which is used for introducing the notion of Q-conditional
symmetry (nonclassical symmetry) is to change the manifold M I in particular, the
operator Q is used for such a purpose. It was noted only recently [13] that there are
several different possibilities to realize this idea in the case of PDE systems.

Definition 2.1 ([13]) Operator (2.6) is called Q-conditional symmetry (nonclassi-
cal symmetry) for an evolution system of the form (2.5) if the following invariance
criterion is satisfied:

Q
k
.Si/

ˇ̌
ˇ
Mm

D 0; i D 1; 2; : : : ;m; (2.8)

where the manifold Mm is

˚
S1 D 0; S2 D 0; : : : ; Sm D 0;Q.u1/ D 0; : : : ;Q.um/ D 0

�
;

where Q.ui/ D �0ui
t C �1ui

x � �i .i D 1; 2; : : : ;m/.

Definition 2.2 ([13]) Operator (2.6) is called Q-conditional symmetry of the first
type for an evolution system of the form (2.5) if the following invariance criterion
is satisfied:

Q
k
.Si/

ˇ̌
ˇ
M1

D 0; i D 1; 2; : : : ;m;
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where the manifold M1 is

˚
S1 D 0; S2 D 0; : : : ; Sm D 0;Q.ui1/ D 0

�

with a fixed number i1 .1 � i1 � m/.

Definition 2.3 ([13]) Operator (2.6) is called Q-conditional symmetry of the p-th
type for an evolution system of the form (2.5) if the following invariance criterion
is satisfied:

Q
k
.Si/

ˇ̌
ˇ
Mp

D 0; i D 1; 2; : : : ;m;

where the manifold Mp is

˚
S1 D 0; S2 D 0; : : : ; Sm D 0;Q.ui1/ D 0; : : : ;Q.uip/ D 0

�

with any given numbers i1; : : : ; ip .1 � p � ip � m/.
Obviously, these three definitions coincide in the case of m D 1, i.e., a single

evolution equation. If m > 1, then one obtains a hierarchy of conditional symmetry
operators. It can easily be seen that

Mm 	 Mp 	 M1 	 M ;

hence, each Lie symmetry is automatically a Q-conditional symmetry of the first and
p-th types, while Q-conditional symmetry of the first type is that of the p-th type.
From the formal point of view, it is enough to find all the Q-conditional symmetry
(nonclassical symmetry) operators. Having the full list of Q-conditional symmetries
one may simply check, which of them is the Lie symmetry or/and Q-conditional
symmetry of the p-th type. On the other hand, to construct Q-conditional symmetry
of the p-th type for a system of PDEs, one needs to solve another nonlinear system,
the system of DEs. It turns out that the system of DEs in the case p D m (i.e.,
for searching Q-conditional symmetry) is much more complicated than in the case
p < m, in particular p D 1 (i.e., for search of Q-conditional symmetry of the first
type). As a result, examples of Q-conditional symmetry can be only found using
particular solutions of the relevant system of DEs, while a complete classification of
Q-conditional symmetries of the first type can be derived for many classes of PDE
systems, including the RDS class (2.1).

Hereafter we assume that �0 6D 0, i.e., the so-called no-go case when �0 D 0

is not taken into account. The natural reason to avoid examination of the no-go
case follows the well-known statement (firstly proved in [60]) that exhaustive
description of Q-conditional symmetries with �0 D 0 for scalar evolution equations
is equivalent to solving the equation in question. This statement can be easily
extended to systems of evolution equations using Definition 2.1. However, very
recently (see [19] for details) we have shown that the no-go case can be completely
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examined (at least for some subclasses of class (2.1)) using the notion of Q-
conditional symmetry of the first type.

Using the definition of Q-conditional symmetry of the p-th type, one may prove
that Properties 1.2 and 1.3 (see Chap. 1) are still valid, however Property 1.1 is
no longer valid provided p < m [13]. On the other hand, a new property can be
formulated as follows.

Theorem 2.1 Let us assume that X D
mP

l¤i1; lD1
�l.t; x; u/@ul (with a fixed number

i1; 1 � i1 � m) is a Lie symmetry operator of system (2.5) while Q is a Q-
conditional symmetry of the first type, which was found using the manifold

M1 D ˚
S1 D 0; S2 D 0; : : : ; Sm D 0; Q.ui1 / D 0

�
:

Then any linear combination C1X C C2Q (hereafter C1 and C2 are arbitrary
constants) produces another Q-conditional symmetry of the first type.

Proof In order to prove this theorem, one needs to show that the operator Z D
C1X C C2Q satisfies Definition 2.2 on the manifold

M �
1 D ˚

S1 D 0; S2 D 0; : : : ; Sm D 0;Z.ui1 / D 0
�
:

This means that we need to prove that

Z
k
.Si/

ˇ̌
ˇ
M �

1

D 0; i D 1; 2; : : : ;m: (2.9)

Firstly we note that the manifold M1 coincides with M �
1 in this case because

Z.ui1 / D .C1X C C2Q/.ui1 / D C2Q.ui1 /. So one may write the following equalities

Z
k
.Si/

ˇ̌
ˇ
M �

1

D Z
k
.Si/

ˇ̌
ˇ
M1

D
�

C1X
k

C C2Q
k

�
.Si/

ˇ̌
ˇ
M1

D C1X
k
.Si/

ˇ̌
ˇ
M1

C C2Q
k
.Si/

ˇ̌
ˇ
M1

D C1X
k
.Si/

ˇ̌
ˇ
M1

; i D 1; 2; : : : ;m:
(2.10)

On the other hand

X
k
.Si/

ˇ̌
ˇ
M

D 0; i D 1; 2; : : : ;m

(here M D fS1 D 0; S2 D 0; : : : ; Sm D 0g) because the Lie symmetry X of system
(2.5) must satisfy criterion (2.7).

Finally, one easily realizes that M1 	 M , so that the above equalities produce

X
k
.Si/

ˇ̌
ˇ
M1

D 0; i D 1; 2; : : : ;m: (2.11)



52 2 Q-Conditional Symmetries of Reaction-Diffusion Systems

This means that Z is a Q-conditional symmetry of the first type because (2.9)
immediately follows from (2.10) and (2.11).

The proof is now complete. ut
It should be stressed that Theorem 2.1 is not valid for arbitrary given Q-

conditional symmetry but only for that of the first type. However, this theorem can
be easily generalized on Q-conditional symmetry of the p-th type (p < m) using the
relevant modification of the Lie symmetry operator.

Theorem 2.2 Let us assume that X D
mP

l2A; lD1
�l.t; x; u/@ul (with the fixed set of

numbers A D ˚
i1; : : : ; ip j 1 � ip � m

�
; p < m) is a Lie symmetry operator of

system (2.5) while Q is a Q-conditional symmetry of the p-th type, which was found
using the manifold

˚
S1 D 0; S2 D 0; : : : ; Sm D 0;Q.ui1 / D 0; : : : ;Q.uip/ D 0

�
.

Then any linear combination C1X CC2Q produces another Q-conditional symmetry
of the p-th type of the evolution system (2.5).

2.3 Systems of Determining Equations

In this section, we construct the system of DEs for finding Q-conditional symmetries
for the class of RDSs (2.1) and present its preliminary analysis. From the very
beginning, one notes that RDS (2.1) can be simplified by applying the Kirchhoff
substitution

u D
Z

D1.U/dU; v D
Z

D2.V/dV; (2.12)

where u.t; x/ and v.t; x/ are new unknown functions and Dk 6D 0; k D 1; 2 (in
the case of nonconstant diffusivities, we assume that they have a finite number of
roots). We remind the reader that the diffusivity coefficients must be nonnegative,
hence there exist unique inverse functions to those arising in the right-hand sides of
(2.12). Substituting (2.12) into (2.1), one obtains

uxx D d1.u/ut C C1.u; v/;
vxx D d2.v/vt C C2.u; v/;

(2.13)

where the functions d1; d2 and C1; C2 are uniquely defined via D1; D2 and F; G,
respectively. In fact, (2.1) and (2.13) are related by the formulae

d1.u/ D 1
D1.U/

; d2.v/ D 1
D2.V/

;

C1.u; v/ D �F.U;V/; C2.u; v/ D �G.U;V/;
(2.14)



2.3 Systems of Determining Equations 53

where U D D1�.u/ � �R
D1.u/du

��1
; V D D2�.v/ � �R

D2.v/dv
��1

(the superscripts �1 mean inverse functions). Hereafter we construct conditional
symmetries for the class of RDSs (2.13) instead of (2.1). Having a conditional
symmetry operator and a system of the form (2.13), one may easily transform them
into the relevant operator and RDS of the form (2.1) provided the inverse functions
in (2.14) are known.

Let us apply Definition 2.1 to construct the system of DEs for finding the Q-
conditional symmetry operator of the form

Q D @t C �.t; x; u; v/@x C �1.t; x; u; v/@u C �2.t; x; u; v/@v : (2.15)

Conditions (2.8) for system (2.13) take the form

Q
2

�
uxx � d1.u/ut � C1.u; v/

� ˇ̌ˇ
M2

D 0;

Q
2

�
vxx � d2.v/vt � C2.u; v/

� ˇ̌ˇ
M2

D 0;
(2.16)

where the manifold M2 is

˚
uxx D d1.u/ut � C1.u; v/; vxx D d2.v/vt C C2.u; v/; Q.u/ D 0; Q.v/ D 0

�
:

One can apply the second prolongation of the operator Q

Q
2

D Q C �1t
@

@ut
C �2t

@

@vt
C �1x

@

@ux
C �2x

@

@vx

C�1tx
@

@utx
C �2tx

@

@vtx
C �1tt

@

@utt
C �2tt

@

@vtt
C �1xx

@

@uxx
C �2xx

@

@vxx

to each equations of (2.13). Here the coefficients �k and �k with the relevant indices
are calculated by the well-known formulae (see, e.g., [46, 49]) and are presented
below.

Since system (2.13) should be considered as a manifold in the prolonged space
of independent variables

t; x; u; v; ut; vt; ux; vx; utx; vxt; utt; vtt; uxx; vxx;

we arrive at the second-order PDEs

�1d1uut C �1C1
u C �2C1

v C �1t d1 D �1xx;

�2d2vvt C �2C2
v C �1C2

u C �2t d2 D �2xx

(2.17)
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with �1t ; �
2
t ; �

1
xx and �2xx defined in (2.19). To obtain the system of DEs in an explicit

form, one needs to take into account not only system (2.13) (it will lead only to the
system of DEs for Lie symmetry operators!) but also two additional conditions

ut C �ux D �1; vt C �vx D �2 (2.18)

generated by operator (2.15). Thus, inserting into (2.17) the explicit expression for
�k and �k:

�1t D �1t C �1uut C �1vvt � ux .�t C �uut C �vvt/ ;

�2t D �2t C �2uut C �2vvt � vx .�t C �uut C �vvt/ ;

�1xx D �1xx C 2�1xuux C 2�1xvvx C �1uuu2x C �1vvv
2
x C 2�1uvuxvx C �1uuxx

C �1vvxx � ux
�
�xx C 2�xuux C 2�xvvx C �uuu2x C �vvv

2
x C 2�uvuxvx

�
(2.19)

� ux .�uuxx C �vvxx/ � 2uxx .�x C �uux C �vvx/ ;

�2xx D �2xx C 2�2xuux C 2�2xvvx C �2uuu2x C �2vvv
2
x C 2�2uvuxvx C �2uuxx

C �2vvxx � ux
�
�xx C 2�xuux C 2�xvvx C �uuu2x C �vvv

2
x C 2�uvuxvx

�

� ux .�uuxx C �vvxx/ � 2vxx .�x C �uux C �vvx/

and excluding four derivatives ut; vt; uxx; vxx using (2.13) and (2.18), one arrives at
two cumbersome equations of the form

d1
�
�1t C �1u.�

1 � �ux/C �1v.�
2 � �vx/� ux

�
�t C �u.�

1 � �ux/

C�v.�2 � �vx/
��C �1d1u.�

1 � �ux/C �1C1
u C �2C1

v

D �1xx C 2�1xuux C 2�1xvvx C �1uuu2x C �1vvv
2
x C 2�1uvuxvx

� ux
�
�xx C 2�xuux C 2�xvvx C �uuu2x C �vvv

2
x C 2�uvuxvx

�

C �
.�1 � �ux/d

1 C C1
�
.�1u � 2�x � 3�uux � 2�vvx/

C �
.�2 � �vx/d

2 C C2
�
.�1v � �vux/; (2.20)

d2
�
�2t C �2u.�

1 � �ux/C �2v.�
2 � �vx/� vx

�
�t C �u.�

1 � �ux/

C�v.�2 � �vx/
��C �2d2v.�

2 � �vx/C �1C2
u C �2C2

v

D �2xx C 2�2xuux C 2�2xvvx C �2uuu2x C �2vvv
2
x C 2�2uvuxvx

� vx.�xx C 2�xuux C 2�xvvx C �uuu2x C �vvv
2
x C 2�uvuxvx/

C �
.�2 � �vx/d

2 C C2
�
.�2u � 2�x � 3�vvx � 2�uux/

C �
.�1 � �ux/d

1 C C1
�
.�2u � �uvx/:
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The next step is to take into account that the unknown functions �1; �2 and �
do not depend on the derivatives ux and vx and therefore we split two equations
arising in (2.20) w.r.t. u3x ; uxv

2
x ; vxu2x; uxvx; u2x; v

2
x ; vx; ux and v3x ; vxu2x;

uxv
2
x ; uxvx; u2x ; v

2
x ; vx; ux; respectively. As a result, we obtain the nonlinear system

of DEs

.1/ �uu D �vv D �uv D 0;

.2/ �1vv D 0;

.3/ �2uu D 0;

.4/ 2��ud1 C �1uu � 2�xu D 0;

.5/ 2��vd2 C �2vv � 2�xv D 0;

.6/ ��v.d1 C d2/C 2�1uv � 2�xv D 0;

.7/ ��u.d1 C d2/C 2�2uv � 2�xu D 0;

.8/ ��1v.d
1 � d2/C 2�1xv � 2�vC1 � 2�v�

1d1 D 0;

.9/ ��2u.d
2 � d1/C 2�2xu � 2�uC2 � 2�u�

2d2 D 0;

.10/ � ��1d1u C .2�u�
1 � �t � �v�2 � 2��x/d1

C�v�2d2 C 3�uC1 C �vC2 � 2�1xu C �xx D 0;

.11/ � ��2d2v C .2�v�
2 � �t � �u�

1 � 2��x/d2

C�u�
1d1 C 3�vC2 C �uC1 � 2�2xv C �xx D 0;

.12/ .�1/2d1u C .�1t C �2�1v C 2�x�
1/d1 � �2�1vd2

C�1C1
u C �2C1

v � �1uC1 C 2�xC1 � �1vC
2 � �1xx D 0;

.13/ .�2/2d2v C .�2t C �1�2u C 2�x�
2/d2 � �1�2ud1

C�1C2
u C �2C2

v � �2uC1 C 2�xC2 � �2vC
2 � �2xx D 0:

(2.21)

The system of DEs (2.21) is very complicated and it seems to be unrealistic that
its general solution can be derived for arbitrary given functions d1.u/; C1.u; v/;
d2.v/ and C2.u; v/. This means that the conditional symmetry classification can
be done only under additional restrictions (see Sects. 2.4 and 2.5). However, if one
applies Definition 2.2 to search for Q-conditional symmetries of the first type, then
the system of DEs obtained is simpler and the conditional symmetry classification
problem can be completely solved (Chap. 4 is devoted to this topic).

From the point of view of qualitative PDE theory, system (2.21) is an overdeter-
mined nonlinear system of PDEs with seven unknown functions �; �1; �2; d1.u/;
C1.u; v/; d2.v/ and C2.u; v/. An overview of possible approaches in an attempt
to create a general algorithm of integrating overdetermined systems is presented in
[53] (see also discussion in [11]). However, to the best of our knowledge, there is
no constructive algorithm of integration of such systems at present. In order to solve
a given nonlinear overdetermined system, one should develop a separate algorithm,
adapted to the system in question. We study system (2.21) in Sects. 2.4 and 2.5. In
order to construct its solutions, some additional restrictions will be used.

In conclusion of this section, which (together with Sect. 2.2) contains a theoret-
ical background for Chaps. 2–4, we present the following observation. According
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to the definition of conditional symmetry proposed in [9, Chap. 5], the differential
consequences of (2.18) should be used, hence one may reformulate criterion (2.16)
in a such way that the manifold

M �
2 D fuxx D d1.u/ut � C1.u; v/; vxx D d2.v/vt C C2.u; v/; Q.u/ D 0;

Q.v/ D 0; @
@t Q.u/ D 0; @

@x Q.u/ D 0; @
@t Q.v/ D 0; @

@x Q.v/ D 0g

will be used instead of M2. It turns out that the definition obtained does not lead
to any new conditional symmetries of system (2.13) because (2.13) is a system of
evolution equations [13]. Here we present a sketch of the proof (the detailed proof
is presented in [50]).

Let us calculate the differential consequences of the equations Q.u/ D 0 and
Q.v/ D 0 (see (2.18)) w.r.t. the variables t and x:

utt D �1t C �1uut C �1vvt � �tux � �uutux � �vvtux � �uxt; (2.22)

utx D �1x C �1uux C �1vvx � �xux � �uuxux � �vvxux � �uxx; (2.23)

vtt D �2t C �2uut C �2vvt � �tvx � �uutvx � �vvtvx � �vxt; (2.24)

vtx D �2x C �2uux C �2vvx � �xvx � �uuxvx � �vvxvx � �vxx: (2.25)

Obviously, the derivatives utt; utx; vtt and vtx can be easily found from (2.22)–(2.25).
However, the expressions obtained do not affect the algorithm presented above
because the governing equations (2.18) and (2.19) do not involve these derivatives,
hence one again arrives at the system of DEs (2.21).

Other possibilities are to find the first-order derivatives from (2.22)–(2.25) and
substitute into (2.18) and (2.19). However, the resulting system is again (2.21).

2.4 Conditional Symmetries of Reaction-Diffusion Systems
with Constant Diffusivities

As we noted above, the diffusivity coefficients in RDSs are usually taken to be
positive constants. Let us consider system (2.13) in the case d1 D �1 and d2 D �2:

uxx D �1ut C C1.u; v/;
vxx D �2vt C C2.u; v/;

(2.26)
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where �1 and �2 are positive constants. So, the system of DEs (2.21) for finding
coefficients of operator (2.15) takes the form

.1/ �uu D �vv D �uv D 0;

.2/ �1vv D 0;

.3/ �2uu D 0;

.4/ 2�1��u C �1uu � 2�xu D 0;

.5/ 2�2��v C �2vv � 2�xv D 0;

.6/ .�1 C �2/��v C 2�1uv � 2�xv D 0;

.7/ .�1 C �2/��u C 2�2uv � 2�xu D 0;

.8/ .�1 � �2/��
1
v C 2�1xv � 2�vC1 � 2�1�v�1 D 0;

.9/ .�2 � �1/��
2
u C 2�2xu � 2�uC2 � 2�2�u�

2 D 0;

.10/ �1.2�u�
1 � �t � �v�2 � 2��x/C �2�v�

2

C3�uC1 C �vC2 � 2�1xu C �xx D 0;

.11/ �2.2�v�
2 � �t � �u�

1 � 2��x/C �1�u�
1

C3�vC2 C �uC1 � 2�2xv C �xx D 0;

.12/ �1.�
1
t C �2�1v C 2�x�

1/� �2�
2�1v C �1C1

u C �2C1
v

��1uC1 C 2�xC1 � �1vC
2 � �1xx D 0;

.13/ �2.�
2
t C �1�2u C 2�x�

2/ � �1�1�2u C �1C2
u C �2C2

v

��2uC1 C 2�xC2 � �2vC
2 � �2xx D 0:

(2.27)

As pointed out in the previous section, the construction of the general solution
of such systems is a difficult task. Here we solve system (2.27) under the additional
restrictions

� D �.u; v/; �i D �i.u; v/; i D 1; 2 (2.28)

in order to construct Q-conditionally invariant RDSs with constant diffusivities.
Solving Eqs. (1)–(3) of system (2.27), we obtain

� D au C bv C c; �1 D p1.u/v C q1.u/; �2 D p2.v/u C q2.v/; (2.29)

where a; b and c are arbitrary constants, and p1; p2; q1 and q2 are arbitrary smooth
functions. Substituting (2.29) into Eqs. (6) and (7) from (2.27) and splitting the
equations obtained w.r.t. the powers of u and v, we arrive at the system

a2.�1 C �2/ D 0; b2.�1 C �2/ D 0;

.�1 C �2/a.bv C c/C 2p2v D 0; .�1 C �2/b.au C c/C 2p1u D 0:
(2.30)

Obviously, solutions of the first pair of Eq. (2.30) are a D b D 0 because �1 and �2
are positive, hence � D c. Solving Eqs. (4)–(7) of system (2.27), we obtain

pi D const D ˛i .i D 1; 2/; q1 D ˇ1u C 
1; q2 D ˇ2v C 
2;
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where ˇi and 
i .i D 1; 2/ are arbitrary constants. Thus, expressions (2.29) take the
form

� D c; �1 D ˛1v C ˇ1u C 
1; �
2 D ˛2u C ˇ2v C 
2: (2.31)

Substituting (2.31) into Eqs. (8) and (9) of system (2.27), we arrive at

c˛1.�1 � �2/ D 0; c˛2.�1 � �2/ D 0: (2.32)

Solving the system of algebraic equations (2.32), we derive three solutions �1 D
�2; ˛1 D ˛2 D 0 and c D 0. The general solution of the remaining Eqs. (10)–(13)
essentially depends on the above solutions. Examination of the first two solutions
leads to the following theorem.

Theorem 2.3 ([51]) The system of DEs for finding Q-conditional symmetry opera-
tors of the form (2.15) (under restrictions (2.28)) for system (2.26) coincide with
the system of DEs for finding of Lie symmetry operators provided �1 D �2 or
�1v D �2u D 0.

Proof Substituting (2.31), with �1 D �2, into system (2.27), we obtain that Eqs. (1)–
(11) are transformed into identities, while Eqs. (12) and (13) take the form

�1C1
u C �2C1

v � �1uC1 � �1vC
2 D 0;

�1C2
u C �2C2

v � �2uC1 � �2vC
2 D 0:

(2.33)

In [22] the DEs for finding Lie symmetries with condition �1 D �2 were written
down in the explicit form. Substituting conditions (2.28) into these equations, we
see that the equations obtained in this way are identical to Eq. (2.33).

Substituting (2.31), with ˛1 D ˛2 D 0; into system (2.27), we see, that Eqs. (1)–
(11) also transform into identities, and Eqs. (12) and (13) take the form

�1C1
u C �2C1

v � �1uC1 D 0;

�1C2
u C �2C2

v � �2vC2 D 0:
(2.34)

Comparing Eq. (2.34) with equations, which are obtained for finding Lie symmetries
of system (2.26) with conditions (2.28) from [21], we see that they are identical.

The proof is now complete. ut
Thus, to find Q-conditional symmetry operators, which are inequivalent to Lie

symmetry operators, we must assume that �1 ¤ �2; ˛
2
1 C ˛22 ¤ 0. Now one needs

to set c D 0 (see Eq. (2.32)). In this case expressions (2.31) take the form

� D 0; �1 D ˛1v C ˇ1u C 
1; �
2 D ˛2u C ˇ2v C 
2: (2.35)
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So, Eqs. (1)–(11) of system (2.27) are satisfied identically by expressions (2.35),
while Eqs. (12) and (13) take the form

.˛1v C ˇ1u C 
1/C1
u C .˛2u C ˇ2v C 
2/C1

v � ˇ1C1 � ˛1C2

D ˛1.�2 � �1/.˛2u C ˇ2v C 
2/;

.˛1v C ˇ1u C 
1/C2
u C .˛2u C ˇ2v C 
2/C2

v � ˛2C1 � ˇ2C2

D ˛2.�1 � �2/.˛1v C ˇ1u C 
1/:

(2.36)

Thus, we can formulate the following theorem.

Theorem 2.4 ([51]) Nonlinear RDS (2.26) is Q-conditionally invariant under
operator (2.15) with coefficients (2.35) if and only if (iff) the nonlinearities C1; C2

are the solutions of the linear first-order system (2.36).
To find the general solution of system (2.36) one needs to analyse the two cases

˛2 D 0 and ˛2 ¤ 0. The case ˛2 ¤ 0; i.e., �2u ¤ 0 (then automatically �1v ¤ 0)
is much more complicated and needs a separate examination (see a particular result
in [51]).

In the case ˛2 D 0, system (2.36) contains an autonomous equation and has the
form

.˛1v C ˇ1u C 
1/C1
u C .ˇ2v C 
2/C1

v D ˇ1C1 C ˛1C2 C ˛1.�2 � �1/.ˇ2v C 
2/;

.˛1v C ˇ1u C 
1/C2
u C .ˇ2v C 
2/C2

v D ˇ2C2:
(2.37)

Since ˛1 ¤ 0, renaming C1 ! ˛1C1; u ! ˛1u; 
1 ! ˛1
1, and taking into
account that we can get rid of the parameter 
1 using linear substitutions w.r.t. u and
v, system (2.37) can be reduced to the form

.v C ˇ1u/C1
u C .ˇ2v C 
2/C1

v D ˇ1C1 C C2 C .�2 � �1/.ˇ2v C 
2/;

.v C ˇ1u/C2
u C .ˇ2v C 
2/C2

v D ˇ2C2:
(2.38)

One notes the particular solution of system (2.38)

C1
part D 1

2
.�2 � �1/.˛1v C ˇ1u C 
1/; C2

part D 1

2
.�1 � �2/.ˇ2v C 
2/:

In order to construct the general solution of (2.38), we need to solve the correspond-
ing homogeneous system, that is

.v C ˇ1u/C1
u C .ˇ2v C 
2/C1

v D ˇ1C1 C C2;

.v C ˇ1u/C2
u C .ˇ2v C 
2/C2

v D ˇ2C2:
(2.39)

The general solution of (2.39) depends essentially on the parameters ˇ1; ˇ2 and 
2.
As a result, the following theorem is proved.
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Table 2.1 Q-conditional symmetry operators of RDS (2.26) with �1 ¤ �2

C1.u; v/ C2.u; v/ Q

1 f .v/C ug.v/ vg.v/ @t C v@u

2 .v C u/f .v/� g.v/ g.v/ @t C ˇ1.v C u/@u; ˇ1 ¤ 0

3 f .!/C g.!/vC
1
2
.�2 � �1/v

g.!/C 1
2
.�1 � �2/

! D 2u � v2
@t C v@u C @v

4 f .!/Cg.!/vC 1
2
.�2��1/v ˇ2g.!/ .v C 
2/C 1

2
ˇ2.�1 �

�2/.v C 
2/

! D ˇ2u � vC 
2 ln .v C 
2/

@t C v@u C ˇ2.v C 
2/@v;

ˇ2 ¤ 0

5 f .!/v C
g.!/v ln.v/C 1

2
.�2 �

�1/.v C ˇ1u/

ˇ1g.!/v C 1
2
.�1 � �2/ˇ1v

! D v�1 exp
�
ˇ1u
v

� @t C .vC ˇ1u/@u C ˇ1v@v;

ˇ1 ¤ 0

6 f .!/v
ˇ1
ˇ2 C g.!/vC

1
2
.�2 � �1/.v C ˇ1u/

.ˇ2 � ˇ1/g.!/vC 1
2
.�1 �

�2/ˇ2v

! D v
�

ˇ1
ˇ2 ..ˇ1 � ˇ2/u C v/

@t C .vC ˇ1u/@u C ˇ2v@v;

ˇ1ˇ2.ˇ1 � ˇ2/ ¤ 0

7 f .!/ exp.ˇ1v/� 
2g.!/C
1
2
.�2 � �1/ˇ1.u C 
2v/

g.!/C 1
2
.�1 � �2/

! D exp.�ˇ1v/��
u C 
2v C 
2

ˇ1

�
@t C ˇ1.u C 
2v/@u C
@v; ˇ1
2 ¤ 0

Theorem 2.5 ([51]) RDS (2.26) with �1 ¤ �2 is Q-conditionally invariant under
operator (2.15) under restrictions (2.28) and �2u D 0 iff the system and correspond-
ing operator have one of the seven forms listed in Table 2.1. Any other system of the
form (2.26) admitting operator (2.15) with the above restrictions is reduced to one
of those from Table 2.1 by the linear transformation u ! c1u C c2; v ! c3v C c4
with correctly specified constants c1 ¤ 0; c2 ¤ 0; c3 and c4.

Table 2.1 presents seven subclasses of RDSs with the constant diffusivities,
which admit Q-conditional symmetry. Each subclass involves arbitrary smooth
functions f and g of the relevant arguments. Depending on the form of f and g,
one may extract RDSs arising in applications and construct exact solutions for
them using the symmetry operators obtained. This approach is realized for several
nonlinear RDSs in Chaps. 3 and 4. Here we present an interesting example only. Let
us consider case 4 from Table 2.1. Assuming that f D c1!2 � a1! (c1 6D 0) and
g D c1! � a2 C �2��1

2
, one may extract the nonlinear RDS

uxx D �1ut C ˇ2u.�a1 C ˇ2c1u � c1v/C rv;
vxx D �2vt C ˇ2v.�a2 C ˇ2c1u � c1v/;

(2.40)

where all the coefficients are arbitrary constants, while a2 D a1 � r C �2 � �1.
Making the discrete transformation v ! �v and setting ˇ2 D 1 (for simplicity),
system (2.40) and its symmetry operator are transformed into

�1ut D uxx C u.a1 � c1u � c1v/C rv;
�2vt D vxx C v.a2 � c1u � c1v/

(2.41)
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and

@t � v@u C v@v:

Now one realizes that system (2.41) with r D 0 is the DLVS describing, for example,
the competition of two populations (provided all parameters are nonnegative), while
(2.41) with r 6D 0 and a2 < 0 is the Belousov–Zhabotinskii type system.

2.5 Conditional Symmetries of Reaction-Diffusion Systems
with Power-Law Diffusivities

In this section, we find Q-conditional symmetry operators of the form

Q D @t C �.t; x;U;V/@x C �1.t; x;U;V/@U C �2.t; x;U;V/@V (2.42)

of two-component RDSs with the power-law diffusivities

Ut D .UkUx/x C F.U;V/;
Vt D .VlVx/x C G.U;V/:

(2.43)

As pointed out in Sect. 2.1, a power dependence of the diffusion coefficients D1.U/
and D2.V/ is typically adopted in models with variable diffusivities. Hence, RDSs
of the form (2.43) form the most important class of such systems, if one wants to
apply the results obtained for some real-world models. Note that RDSs with the
diffusivities D1 D d1Uk and D2 D d2Vl (d1 and d2 are arbitrary positive constants)
are reduced to the form (2.43) via scale transformations [23].

First of all we apply the local substitution

u D UkC1; k ¤ �1;
v D VlC1; l ¤ �1 (2.44)

(this is a particular case of the Kirchhoff substitution (2.12)) in order to simplify
the further computations. Of course, the cases k D l D �1 and k D �1; l 6D
�1 (l D �1; k 6D �1 is symmetric) are special and need separate investigation.
Substitution (2.44) reduces operator (2.42) to the form (2.15) with @u D 1

kC1U�k@U ;

@v D 1
lC1V�l@V , while system (2.43) takes the form

uxx D umut C C1.u; v/;
vxx D vnvt C C2.u; v/;

(2.45)

where m D � k
kC1 ¤ �1; n D � l

lC1 ¤ �1; C1.u; v/ D �.k C 1/F
�

u
1

kC1 ; v
1

lC1

�

and C2.u; v/ D �.l C 1/G
�

u
1

kC1 ; v
1

lC1

�
.
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Thus, the system of DEs (2.21) corresponding to the RDS system (2.45) takes
the form

.1/ �uu D �vv D �uv D 0;

.2/ �1vv D 0;

.3/ �2uu D 0;

.4/ 2��uum C �1uu � 2�xu D 0;

.5/ 2��vv
n C �2vv � 2�xv D 0;

.6/ ��v.um C vn/C 2�1uv � 2�xv D 0;

.7/ ��u.um C vn/C 2�2uv � 2�xu D 0;

.8/ ��1v.u
m � vn/C 2�1xv � 2�vC1 � 2�v�1um D 0;

.9/ ��2u.v
n � um/C 2�2xu � 2�uC2 � 2�u�

2vn D 0;

.10/ � m��1um�1 C .2�u�
1 � �t � �v�2 � 2��x/um

C�v�2vn C 3�uC1 C �vC2 � 2�1xu C �xx D 0;

.11/ � n��2vn�1 C .2�v�
2 � �t � �u�

1 � 2��x/v
n

C�u�
1um C 3�vC2 C �uC1 � 2�2xv C �xx D 0;

.12/ m.�1/2um�1 C .�1t C �2�1v C 2�x�
1/um � �2�1vv

n

C�1C1
u C �2C1

v � �1uC1 C 2�xC1 � �1vC
2 � �1xx D 0;

.13/ n.�2/2vn�1 C .�2t C �1�2u C 2�x�
2/vn � �1�2uum

C�1C2
u C �2C2

v � �2uC1 C 2�xC2 � �2vC
2 � �2xx D 0:

(2.46)

Equations (1) from system (2.46) are easily integrated and lead to

� D a.t; x/u C b.t; x/v C c.t; x/; (2.47)

where a; b and c are arbitrary (at the moment) smooth functions. Substituting (2.47)
into Eqs. (6) and (7) of (2.46) and taking into account the second and third equations
of (2.46), one arrives at the requirement a D b D 0. Thus, Eqs. (2)–(7) of system
(2.46) can be straightforwardly integrated and their general solution takes the form

� D �.t; x/;

�1 D q1.t/v C r1.t; x/u C p1.t; x/; (2.48)

�2 D q2.t/u C r2.t; x/v C p2.t; x/;

where the functions in the right-hand sides are arbitrary.
The remaining Eqs. (8)–(13) of system (2.46) involving the functions C1 and C2

are the classification equations. To solve them one should consider three different
cases depending on the functions q1.t/; q2.t/ and �.t; x/ arising in (2.48):

(a) q1.t/ D q2.t/ D 0; �.t; x/ ¤ 0I
(b) q1.t/ D q2.t/ D 0; �.t; x/ D 0I
(c) q1.t/2 C q2.t/2 ¤ 0; �.t; x/ D 0:
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Remark 2.1 The fourth possible case q1.t/2 C q2.t/2 ¤ 0; �.t; x/ 6D 0 arises only
under the restriction m D n D 0, which follows from Eqs. (8)–(9) of system (2.46).
Hereafter we assume m2 C n2 6D 0; because RDSs with constant diffusivities were
examined in Sect. 2.4.

It turns out that case (a) does not lead to any Q-conditional symmetry operators
of the form (2.42).

Theorem 2.6 ([50]) RDS (2.43) with k2 C l2 ¤ 0 and .k C 1/.l C 1/ 6D 0 admits
only such operators of the form (2.42) with � ¤ 0 and �1V D �2U D 0, which are
equivalent to the Lie symmetry operators.

Proof Here we present only a sketch of the proof. In order to prove Theorem 2.6
one should solve the system of DEs (2.46) under conditions q1.t/ D q2.t/ D 0;

�.t; x/ ¤ 0 and (2.48). In particular, DEs (10)–(13) from (2.46) take the form

�
�t C 2��x C m�r1

�
um C m�p1um�1 C 2r1x � �xx D 0;

�
�t C 2��x C n�r2

�
vn C n�p2vn�1 C 2r2x � �xx D 0;

�
r1u C p1

�
C1

u C �
r2v C p2

�
C1
v C �

2�x � r1
�

C1 � p1xx � r1xxu C m
�

p1
�2

um�1

C �
p1t C 2mh1p1 C 2�xp1

�
um C �

r1t C m.r1/2 C 2�xr1
�

umC1 D 0; (2.49)
�
r1u C p1

�
C2

u C �
r2v C p2

�
C2
v C �

2�x � r2
�

C2 � p2xx � r2xxv C n
�

p2
�2
vn�1

C �
p2t C 2nh2p2 C 2�xp2

�
vn C

�
r2t C n

�
r2
�2 C 2�xr2

�
vnC1 D 0:

Now one notes that the third and fourth equations of system (2.49) are linear first-
order PDEs w.r.t. C1 and C2. According to the standard technique of solving such
equations, one needs to find variable !, using the following ordinary differential
equation (ODE)

du

r1u C p1
D dv

r2u C p2
:

Obviously, its solution essentially depends on r1; p1; r2 and p2. As a result, one
needs to examine six different cases

(1) r1 D p1 D r2 D p2 D 0;

(2) r1 D p1 D r2 D 0; p2 ¤ 0;

(3) r1 D p1 D 0; r2 ¤ 0;

(4) r1 D r2 D 0; p1 ¤ 0; p2 ¤ 0;

(5) r1 D 0; p1 ¤ 0; r2 ¤ 0;

(6) r1 ¤ 0; r2 ¤ 0:
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Note that three additional cases

r2 D p2 D r1 D 0; p1 ¤ 0;

r2 D p2 D 0; r1 ¤ 0;

r1 ¤ 0; r2 D 0; p2 ¤ 0

can be excluded from the examination because each of them can be obtained from
those above by renaming u ! v, v ! u.

Here we consider in detail only case (1). In this case, the third and fourth
equations of system (2.49) take the form

�x C1 D 0; �x C2 D 0;

hence two subcases, �x D 0 and C1 D C2 D 0, arise. The latter simply means that
F1.U;V/ D F2.U;V/ D 0, i.e., RDS (2.43) reduces to two independent diffusion
equations.

The first subcase implies that �t D 0 (see the first and second equations in (2.49)),
hence � D const. Thus, we conclude that the nonlinear RDS

uxx D umut C C1.u; v/;
vxx D vnvt C C2.u; v/

(2.50)

admits only Q-conditional symmetry operators of the form

Q D @t C 
@x; 
 D const.

On the other hand, system (2.50) is invariant w.r.t. the Lie symmetry operators
Pt D @t and Px D @x; hence the above operator Q is nothing else but the Lie
symmetry operator.

Cases (2)–(6) can be studied in a quite similar way. Finally, the detailed
examination leads exactly to the Lie symmetry operators, which are listed in Table 1
[24], in each case.

The sketch is now complete. ut
In contrast to case (a), examination of case (b) leads to new results.

Theorem 2.7 ([25, 50]) RDS (2.43) with k2 C l2 ¤ 0 and .k C 1/.l C 1/ 6D 0 is
Q-conditional invariant under the operator (2.42) with � D 0 and �1V D �2U D 0 iff
it and the relevant operator have the forms listed in Table 2.2 (in the table, f and
g are arbitrary smooth functions of the relevant argument, while �j . j D 1; 2; 3; 4/

are arbitrary constants).

Proof To prove the theorem one needs to construct the general solution of sub-
system (8)–(13) of system (2.46) having the general solution (2.48) of subsystem
(1)–(7) and applying the restrictions � D 0 and �1v D �2u D 0. Obviously, Eqs. (8)
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Table 2.2 Q-conditional symmetries of RDS (2.43)

RDSs of the form (2.43) Q-conditional operators Restrictions

1 Ut D .UkUx/x C f .UkC1/

Vt D
�

V�
1
2 Vx

�
x
�2�V

1
2 Cg.UkC1/

@t C 2p.x/V
1
2 @V pxx D p2 C �p; p ¤ 0

2 Ut D .UkUx/x C �1U�k C
f .UkC1 � ˛VlC1/

Vt D .VlVx/x C �2V�l C
g.UkC1 � ˛VlC1/

@t C �1U�k@U C
�2V�l@V

˛ D �1.kC1/

�2.lC1/
; �2 ¤ 0;

�21 C l2 ¤ 0

3 Ut D
�

U�
1
2 Ux

�
x

� 2�U
1
2 C

f
�

U
1
2 � V

1
2

�

Vt D
�

V�
1
2 Vx

�
x

� 2�V
1
2 C

g
�

U
1
2 � V

1
2

�

@t C 2p.x/
�

U
1
2 @UC

V
1
2 @V

�
pxx D p2 C �p; p ¤ 0

4 Ut D .UkUx/x C �1U�k C f .!/
Vt D .VlVx/x C .VlC1 �
�3/.g.!/ C �2V�l/

@t C �1U�k@UC
�2.V � �3V�l/@V

! D exp.�2.lC1/UkC1/

.VlC1
��3/

�1.kC1/ ;

�2 ¤ 0; either �21 C �23 ¤
0 or
�23Ck2 ¤ 0 or �21Cl2 ¤ 0

5 Ut D .UkUx/xC
.UkC1 � �1/. f .!/C �2U�k/

Vt D .VlVx/xC
.VlC1 � �3/.g.!/ C �4V�l/

@tC �2.U � �1U�k/@UC
�4.V � �3V�l/@V

! D .UkC1
��1/

�4.lC1/

.VlC1
��3/

�2.kC1/ ;

�2�4 ¤ 0;

either �21 C �23 ¤ 0; or
�23Ck2 ¤ 0 or �21Cl2 ¤ 0

and (9) are automatically satisfied, while Eqs. (10) and (11) are reduced to the form
�1xu D 0 and �2xv D 0; respectively, i.e.:

r1 D r1.t/; r2 D r2.t/:

So, the remaining Eqs. (12) and (13) take the form

�
r1u C p1

�
C1

u C �
r2v C p2

�
C1
v � r1C1

C �
r1t C m.r1/2

�
umC1 C �

p1t C 2mr1p1
�

um C m
�

p1
�2

um�1 � p1xx D 0;�
r1u C p1

�
C2

u C �
r2v C p2

�
C2
v � r2C2

C �
r2t C n.r2/2

�
vnC1 C �

p2t C 2nr2p2
�
vn C n

�
p2
�2
vn�1 � p2xx D 0:

(2.51)

System (2.51) consists of two independent first-order linear PDEs w.r.t. the
unknown functions C1.u; v/ and C2.u; v/, therefore its general solution can be
straightforwardly constructed, however we should remember that the coefficients
in (2.51) are functions of t and x. To construct all possible solutions of (2.51) one
needs to consider the cases (1)–(6) as above (up to renaming u ! v and v ! u):

In case (1), operator (2.42) immediately takes the form Q D @t; which is, of
course, the Lie symmetry operator. A similar situation occurs in case (3) because all
the operators obtained are equivalent to the relevant Lie symmetry operators listed
in [23]. The most interesting cases are (2) and (4)–(6).
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Consider case (2) in detail. In this case system (2.51) takes the form

p2C1
v D 0;

p2C2
v C p2t v

n C n. p2/2vn�1 � p2xx D 0
(2.52)

and its formal integration leads to the solution

C1 D f .u/

C2 D R � p2xx
p2

� p2t
p2
vn � np2vn�1

�
dv C g.u/;

(2.53)

where f and g are arbitrary smooth functions. Since the function C2 does not depend
on t and x, three subcases should be separately examined: n D 0, n D 1 and n 6D 0I 1.

The first subcase immediately gives C2 D p2xx�p2t
p2

v C g.u/; so that

p2xx � p2t
p2

D �;

where � is an arbitrary constant. So, the system

uxx D umut C f .u/;
vxx D vt C �v C g.u/

(2.54)

admits the Q-conditional symmetry operator

Q D @t C p2.t; x/@v; (2.55)

where p2.t; x/ is the general solution of the linear PDE p2t D p2xx � �p2. However, if
one now applies substitution (2.44) to (2.54) and (2.55), then the RDS and the Lie
symmetry listed in [23] (see case 5 in Table 1) are obtained. So, subcase n D 0 does
not lead to any Q-conditional symmetries.

In the subcase n D 1 the general solution of (2.52) takes the form

C1 D f .u/; C2 D �v C g.u/;

where � D p2xx
p2

� p2. So, the system

uxx D umut C f .u/;
vxx D vvt C �v C g.u/

(2.56)

admits the Q-conditional symmetry operator

Q D @t C p2.x/@v; (2.57)
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where the function p2.x/ is the general solution of the nonlinear ODE

p2xx D . p2/2 C �p2: (2.58)

Applying now substitution (2.44) to (2.56)–(2.57) and introducing the relevant
notations, one arrives at the system and the Q-conditional symmetry operator listed
in case 1 of Table 2.2.

Considering the subcase n ¤ 0I 1; we immediately obtain p2 D � D const (see
(2.53)) and this leads to the system

uxx D umut C f .u/;
vxx D vnvt � �vn C g.u/

(2.59)

and the operator

Q D @t C �@v: (2.60)

Operator (2.60) is reduced to the form Q D @t C �
lC1V�l@V with � 6D 0 by using

substitution (2.44). On the other hand, system (2.59) and operator (2.60) correspond
to a particular case at �1 D ˛ D 0 of those listed in case 2 of Table 2.2. Thus, case
(2) is completely investigated.

Case (4) can be examined in a quite similar way and the system

uxx D umut � ˛�um C f .u � ˛v/;
vxx D vnvt � �vn C g.u � ˛v/ (2.61)

and the operator

Q D @t C �.˛@u C @v/ (2.62)

are obtained, where ˛ ¤ 0 is an arbitrary constant. It is easily seen that systems and
operators (2.59)–(2.62) can be united, i.e., the restriction ˛ ¤ 0 is not essential.
Applying now substitution (2.44) to (2.61)–(2.62) and introducing the relevant
notations, one arrives at the system and the Q-conditional symmetry operator listed
in case 2 of Table 2.2. It turns out that the power m D n D 1 leads to an additional
symmetry in this case. In fact, the system

uxx D uut C �u C f .u � v/;
vxx D vvt C �v C g.u � v/ (2.63)

is conditionally invariant w.r.t. the operator

Q D @t C p2.x/.@u C @v/; (2.64)
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where p2.x/ is the general solution of the nonlinear ODE (2.58). Formulae (2.63)–
(2.64) together with the substitution (2.44) generate the system and the operator
listed in case 3 of Table 2.2. Those listed in cases 4 and 5 of the table can be similarly
obtained by examination of cases (5) and (6).

Finally, we note that all operators arising in Table 2.2 are not Lie symmetry
operators because any Lie symmetry operator of RDS (2.43) must be linear on U
and V [23].

The proof is now complete. ut
Remark 2.2 Restrictions on the coefficients �k arising in the last column of
Table 2.2 guarantee that the relevant operators do not coincide with Lie symmetries.
Of course, those operators are still Q-conditional symmetry operators if some �k

vanish, however, they are equivalent to the relevant Lie symmetry operators obtained
in [23].

Case (c) is the most complicated. In order to examine this case, one needs to
consider separately three subcases

(c1) p1x D 0; p2x ¤ 0;

(c2) p1x ¤ 0; p2x ¤ 0;

(c3) p1x D p2x D 0:

We note that the subcase p2x D 0; p1x ¤ 0 is reduced to (c1).
A complete analysis of subcase (c1) is done in [50] and the result can be

formulated as follows.

Theorem 2.8 RDS (2.43) with k2C l2 ¤ 0 and .k C1/.l C1/ 6D 0 is Q-conditional
invariant under the operator (2.42) with p1x D 0; p2x ¤ 0 iff it and the relevant
operator have 16 forms listed below (F.U/ is an arbitrary smooth function, ˛; ˇ; 

and �j . j D 1; 2; 3; 4/ are arbitrary constants).

Ut D .UkUx/x C F1;

Vt D Vxx C F2; k ¤ 0:

1. F1 D �1UkC1 C �2; F2 D �3V C F.U/;
Q D @t C �


 exp ..��1.k C 1/C �3/ t/UkC1 C p
�
@V ;

pt D pxx C �3p C 
�2 exp ..��1.k C 1/C �3/ t/ ; 
 ¤ 0.
2. F1 D F.U/; F2 D �3V � �2.k C 1/F.U/C �2�3UkC1;

Q D @t C �


�
�2UkC1 C V

�C p
�
@V ;

pt D pxx C �3p; 
�2 ¤ 0.
3. F1 D �1 C �2U�k; F2 D �3V C �4U2.kC1/ C �5UkC1;

Q D @t C �2U�k@U C
��

e�3t � 2�2�4.kC1/

�3

�
UkC1 C p

�
@V ;

pt D pxx C �3p � .k C 1/
�
.�1 C �2/

�

e�3t C 2�2.kC1/�4

�3

�
C �2�5

�
;

�2�3 ¤ 0.
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4. F1 D �1 C �2U�k; F2 D �3U2.kC1/ C �4UkC1;
Q D @t C �2U�k@U C

�
.2�2�3.k C 1/t C 
/UkC1 C p

�
@V ;

pt D pxx � .2�2�3t C 
/.�2 C �1/.k C 1/C �2�4; �2 ¤ 0.
5. F1 D �1 C �2U�k; F2 D �3V C �4UkC1 C �5 exp

�
˛UkC1� ;

Q D @t C�2U�k@UC
��

e�3tC˛�2�4.kC1/

�3

�
UkC1C˛�2.k C 1/V C p

�
@V ;

pt D pxx � �3p � .�1 C �2/.k C 1/
�

e�3t C ˛�2�4.kC1/

�3

�
C �2�4.k C 1/;

˛�2�3 ¤ 0.
6. F1 D �1 C �2U�k; F2 D �3UkC1 C �4 exp

�
˛UkC1� ;

Q D @t C�2U�k@U C
�
.
 � ˛�2�3.k C 1/t/UkC1C˛�2.kC1/V Cp

�
@V ;

pt D pxx � .�1 C �2/.k C 1/.
 � ˛�2�3t/C �2�3.k C 1/; ˛�2 ¤ 0.

7. F1 D
�
�1 � �2

kC1
�

UkC1 C �2U;

F2 D �1.k C 1/V � �3.k C 1/U C �3UkC1;
Q D @t C �2

1�˛ exp.�2kt/U@U

C
�
�3..�2�ˇ/ exp.�2kt/C˛ˇ/

�2˛.kC1/ UkC1 C ˇV C p
�
@V ;

pt D pxx C �1.k C 1/p; �2˛ ¤ 0.
8. F1 D .�1 � �2/UkC1 C �2.k C 1/U;

F2 D �1.k C 1/V � �3.k C 1/U C �3UkC1 C �4.k C 1/ ln U;

Q D @t C �2.kC1/
1�
 exp.�2k.kC1/t/U@U C

�
�3


�1 exp.��2k.kC1/t/UkC1Cp
�
@V ;

pt D pxx C �1.k C 1/p � �2�4.kC1/2
1�
 exp.�2k.kC1/t/ ; �2
 ¤ 0.

9. F1 D �
UkC1 C ˛

� �
�1 C �2U�k

�
;

F2 D .�1 C �2/.k C 1/V C �3
�
UkC1 C ˛

�ˇ C �4
�
UkC1 C ˛

�
;

Q D @t C �2
�
U C ˛U�k

�
@U

C
�
.
 � �2�4.ˇ � 1/.k C 1/t/UkC1 C ˇ�2.k C 1/V C p

�
@V ;

pt D pxx C .�1 C �2/.k C 1/p � ˛�2�4.k C 1/.ˇ � 1/
�˛.�1 C �2/.k C 1/.�2�4.k C 1/.ˇ � 1/t C 
/; �2ˇ.ˇ � 1/ ¤ 0.

10. F1 D �
UkC1 C ˛

� �
�1 C �2U�k

�
;

F2 D �3V C �4
�
UkC1 C ˛

�ˇ C �5
�
UkC1 C ˛

�
;

Q D @t C �2.U C ˛U�k/@U C
��

 exp..�1 � �2.k C 1/C �3/t/

C �2�5.ˇ�1/.kC1/
�1��2.kC1/C�3

�
UkC1 C ˇ�2.k C 1/V C p

�
@V ;

pt D pxx C �3p C ˛
�
.�1 � �2.k C 1// 
 exp ..�1 � �2.k C 1/C �3/t/

��2�3�5.ˇ�1/.kC1/
�1��2.kC1/C�3

�
; �2.�1 � �2.k C 1/C �3/ˇ.ˇ � 1/ ¤ 0.

11. F1 D �
UkC1 C ˛

� �
�1 C �2U�k

�
;

F2 D �3V C �
UkC1 C ˛

� �
�4 ln.UkC1 C ˛/C �5

�
;

Q D @t C �2
�
U C ˛U�k

�
@U C

��

 exp ..�1 � �2.k C 1/C �3/t/

� �2�4.kC1/
�1��2.kC1/C�3

�
UkC1 C �2.k C 1/V C p

�
@V ;
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pt D pxx C �3p � ˛.�1 C �2/.k C 1/
 exp ..�1 � �2.k C 1/C �3/t/

C ˛�2�3�4.kC1/
�1��2.kC1/��3 ; �1 � �2.k C 1/C �3 ¤ 0.

12. F1 D �
UkC1 C ˛

� �
�1 C �2U�k

�
;

F2 D .�1 C �2/.k C 1/V C �
UkC1 C ˛

� �
�3 ln.UkC1 C ˛/C �4

�
;

Q D @t C �2.U C ˛U�k/@U C
�
.�2�3.k C 1/t C 
/UkC1

C�2.k C 1/V C p
�
@V ;

pt D pxx C .�1 C�2/.k C 1/
�

p �˛.�2�3.k C 1/t C 
/
�

C˛�2�3.k C 1/.

13. F1 D �
UkC1 C ˛

� �
�1 C �2U�k

�
;

F2 D .�1 C �2/.k C 1/V C �3 ln
�
UkC1 C ˛

�C �4
�
UkC1 C ˛

�
;

Q D @t C �2.U C ˛U�k/@U C
�
.�2�4.k C 1/t C 
/UkC1 C p

�
@V ;

pt D pxx C .k C 1/
�
.�1 C �2/ .p � ˛.�2�4.k C 1/t C 
//

C�2.˛�4 C �3/
�

.

14. F1 D �
UkC1 C ˛

� �
�1 C �2U�k

�
;

F2 D �3V C �4 ln
�
UkC1 C ˛

�C �5
�
UkC1 C ˛

�
;

Q D @t C �2
�
U C ˛U�k

�
@U

C
��

 exp ..�3 � .�1 C �2/.k C 1//t/C �2�5

.�1C�2/.kC1/��3
�

UkC1 C p
�
@V ;

pt D pxx C �3p � ˛.�1 C �2/.k C 1/
 exp ..�3 � .�1 C �2/.k C 1///

C�2
�

˛�3�5
�3�.�1C�2/.kC1/ C �4

�
; �3 � .�1 C �2/.k C 1/ ¤ 0:

15. F1 D �1U C �2U�k C �3U�kV � �3V C �4UkC1 C �5;

F2 D .�4 � �1/.k C 1/V;
Q D @t C �

�3V � �1UkC1 C �2
�

U�k@U C �
˛UkC1 C ˇV C p

�
@V ;

pt D pxx C .k C 1/ ..�4 � �1/p � ˛.�5 C �2// ; �3 ¤ 0.

Ut D .UkUx/x C F1;

Vt D .V� 1
2 Vx/x C F2:

16. F1 D �1V � 2�1

�
V
1
2 C ˛

�
U�k C �3UkC1 � 2�1�2U C �4;

F2 D 2�3.k C 1/
�

V
1
2 C ˛

�
� 2�2.k C 1/.�1V C �4/;

Q D @t�2�1
�

V
1
2 C �2UkC1 C ˛

�
U�k@U C2

�
p.x/ � �1�2.k C 1/V

1
2

�
V
1
2 @V ;

p00 D p2 � �3.k C 1/p C �1�2.k C 1/2.�2�4 � ˛�3/; �1 ¤ 0.

The detailed proof of Theorem 2.8 is based on the construction of the general
solution of the system of DEs (2.46) provided the given restrictions on the operator
Q take place. We omit here the relevant cumbersome calculations.

Remark 2.3 Each Q-conditional symmetry presented in cases 1–15 involves the
function p.t; x/, which is an arbitrary solution of the linear diffusion equation
pt D pxx CpR1.t; x/CR0.t; x/, where R1.t; x/ and R0.t; x/ are the correctly specified



2.5 Conditional Symmetries of Reaction-Diffusion Systems with Power-Law. . . 71

functions. The Q-conditional symmetry arising in case 16 contains the function p.x/,
which is an arbitrary solution of the integrable ODE.

Remark 2.4 In case 16, we have corrected inexactnesses arising in [50].

Remark 2.5 Each system arising in Theorem 2.8 is semi-coupled, i.e., contains
autonomous equations. It is unlikely that such systems can reflect any general
physical or biological laws. However, they may be governing equations for some
specific models describing real-world processes. For example, case 1 with �1 D
�2 D �3 D F.U/ D 0 generates a system of two autonomous diffusion equations
admitting the Q-conditional symmetry Q D @t C .
UkC1 C p/@V . These are
governing equations for the classical Stefan type problem modelling melting and
evaporation of metals (see, e.g., [1, 14]).

In contrast to (c1), examination of case (c2) leads to a trivial result: RDS (2.43)
is not invariant under the operator (2.42) provided p1x ¤ 0 and p2x ¤ 0. The proof
of this statement can be derived by solving the system of DEs (2.46) under the
restrictions

q1.t; x/2 C q2.t; x/2 ¤ 0; � D 0; p1x ¤ 0; p2x ¤ 0:

Finally, examination of case (c3) leads to the system

.q1v C r1u C p1/C1
u C .q2u C r2v C p2/C1

v � r1C1 � q1C2

C.q1.q2u C r2v C p2/C q1t v C r1t u C p1t /u
m

Cm.q1v C r1u C p1/2um�1 � q1.q2u C r2v C p2/vn D 0;

.q1v C r1u C p1/C2
u C .q2u C r2v C p2/C2

v � r2C2 � q2C1

C.q2.q1v C r1u C p1/C q2t u C r2t v C p2t /v
n

Cn.q2u C r2v C p2/2vn�1 � q2.q1v C r1u C p1/um D 0

(2.65)

(here qi D qi.t/; ri D ri.t/; pi D pi.t/; i D 1; 2), which should be solved w.r.t. the
functions Ci D Ci.u; v/; i D 1; 2. Although system (2.65) is linear, the algorithm
for the construction of its general solution is cumbersome because the functions
qi; ri and pi .i D 1; 2/ are not specified. Of course, the general solution can be
easily constructed in the case of correctly specified coefficients. For example, if
q1 D 0, then the first equation is autonomous and system (2.65) can be solved in a
similar way as it was done in [51].

As examples, we examined the systems

uut D uxx C u.a1 C b1u C c1v/;
vvt D vxx C v.a2 C b2u C c2v/

(2.66)

and

uut D uxx C u.a1 � b1u � c1v/C rv;
vvt D vxx � v.a2 C b2u/:

(2.67)
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Obviously, systems (2.66) and (2.67) are natural generalizations of DLVS (2.2)
and of the Belousov–Zhabotinskii system (2.3), respectively. It turns out that both
systems admit Q-conditional symmetry operators, which can be constructed using
particular solutions of system (2.65) with m D n D 1 and the functions Ck .k D
1; 2/ taken from (2.66) and (2.67). Finally, we conclude that the generalized DLVS
(2.66) admits Q-conditional symmetry of the form

Q D @t C .a1 C b1u C c1v/@u C .a2 C b2u C c2v/@v

(the restriction c21 C b22 ¤ 0 guarantees that it is a non-Lie symmetry) and the
generalized Belousov–Zhabotinskii system (2.67) with

c1 D r.2b1 � b2/.r C a1 C a2/.a1 C a2/
�2 and a1 C a2 6D 0

is conditionally invariant w.r.t. the operator

Q D .a1 C a2/
2@t � r2.2b1 � b2/v@u C r.a1 C a2/.2b1 � b2/v@v

(the restriction r.2b1 � b2/ ¤ 0 guarantees that it is a non-Lie symmetry).

2.6 Concluding Remarks

A novel way to find new type of symmetries for PDEs was proposed in 1969 [8].
In the same paper, the idea was realized in the form of an algorithm for finding
new symmetries of the linear heat (diffusion) equation. Although the algorithm is
based on the classical Lie scheme [46, 49], the resulting symmetries can be non-
Lie symmetries of the equation in question, therefore they were called nonclassical
symmetries. Following [27, 35], we call them Q-conditional symmetries in order
to distinguish from other types of symmetries (weak symmetry [47, 48, 52],
conditional symmetry [20, 34, 35], generalized conditional symmetry [30, 59])
because each non-Lie symmetry can be called nonclassical. From the applicability
point of view, the algorithm for finding Q-conditional symmetry of a given PDE is
highly nontrivial (each time a nonlinear system of PDEs must be integrated) and this
was a reason why nontrivial examples of Q-conditional symmetries were not found
for a long time. In 1987 the Bluman–Cole algorithm was rediscovered in [33, 47]
and later successfully applied to a wide range of nonlinear PDEs (see, e.g., [9, 26]
and the references therein), especially reaction-diffusion-convection equations (see
Chap. 1 for details).

It turns out that the problem of finding Q-conditional symmetry becomes much
more complicated in the case of (multi-component) nonlinear systems of PDEs.
To the best of our knowledge, there are very few papers devoted to the search for
Q-conditional (nonclassical) symmetries of systems of evolution equations, which
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were published before 2005 [5, 28, 38]. A majority of such papers were published
during the last 10 years [4, 13, 15–19, 25, 40, 55].

In this chapter, the recently developed theoretical background for searching for
Q-conditional symmetries of evolution systems of PDEs is presented. We generalize
the standard notation of Q-conditional (nonclassical) symmetry by introducing the
notion of Q-conditional symmetry of the p-th type and show that different types
of Q-conditional symmetry of a given system generate a hierarchy of conditional
symmetry operators. It is shown that Q-conditional symmetry of the p-th type
possesses some properties, which distinguish it from nonclassical symmetry.

The class of two-component nonlinear RDSs (2.1) is examined in order to find Q-
conditional symmetry operators. The relevant system of DEs was derived and solved
under additional restrictions, so that several RDSs of the form (2.1) possessing
conditional symmetry were obtained. In particular, it was shown that the DLVS and
the Belousov–Zhabotinskii system (with correctly specified coefficients) and some
of their generalizations admit Q-conditional symmetry operators.

Finally, it is worth highlighting the following remarks about Q-conditional
symmetry of the class of RDSs (2.1).

1. The system of DEs (2.21) is very complicated and we believe that its general
solution cannot be derived without additional restrictions on the symmetry
operators in question. In the case of scalar reaction-diffusion equations (RDEs),
the relevant system of DEs is essentially simpler, hence its general solution can
be constructed (see Chap. 1).

2. Particular solutions of system (2.21) usually lead to RDSs involving arbitrary
function(s) in reaction terms (see Tables 2.1 and 2.2). Scalar RDEs with Q-
conditional symmetry do not involve any arbitrary functions, but arbitrary
constants only (see Chap. 1).

3. The definition of Q-conditional symmetry of the first type should be applied in
order to obtain a system of DEs, which can be integrated without any restrictions
(in contrast to (2.21)). Thus, a complete classification of such symmetries could
be derived (see Chap. 4).
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