
Chapter 3
Nearly Pseudo-Kähler and Nearly Para-Kähler
Manifolds

3.1 Nearly Pseudo-Kähler and Nearly Para-Kähler
Manifolds

3.1.1 General Properties

In this subsection we collect some information on almost "-Hermitian manifolds
with a special emphasis on the nearly "-Kähler case.

Definition 3.1.1 An almost "-Hermitian manifold .M2m; g; J"; !/ is called nearly
"-Kähler manifold, provided that its Levi-Civita connection r satisfies the nearly
"-Kähler condition

.rXJ"/X D 0; 8X 2 TM:

A nearly "-Kähler manifold is called strict if rXJ" ¤ 0 for all non-trivial vector
fields X.
A tensor field B 2 �..TM�/˝2 ˝ TM/ on a pseudo-Riemannian manifold .M; g/
is called (totally) skew-symmetric if the tensor g.B.X;Y/;Z/ is a three-form. The
following characterisation of a nearly "-Kähler manifold is well-known in the
Riemannian context and we refer to Proposition 3.2 of [110] for the complete proof
in the pseudo-Riemannian setting.

Proposition 3.1.2 An almost "-Hermitian manifold .M2m; g; J"; !/ satisfies the
nearly "-Kähler condition if and only if d! is of real type .3; 0/ C .0; 3/ and the
Nijenhuis tensor is totally skew-symmetric.

Remark 3.1.3 The notion of nearly "-Kähler manifold corresponds to the gener-
alised Gray-Hervella class W1 in [86]. However, in the para-Hermitian case, there
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42 3 Nearly Pseudo-Kähler and Nearly Para-Kähler Manifolds

are two subclasses, see [59]. Indeed, we already observed that

A D �r! 2 ��3;0�
(2.36)D �.ƒ3V� ˚ƒ3H�/

for a nearly para-Kähler manifold.

Definition 3.1.4 A connection Nr on an "-Hermitian manifold .M2m; g; J"; !/ is
called "-Hermitian provided, that it satisfies Nrg D 0 and NrJ" D 0.
The Riemannian case of the next result is due to [57], the para-complex case is
shown in [78]. In fact, the sketched proof in [57] holds literally for the almost
pseudo-Hermitian case with indefinite signature as well. A direct and simultaneous
proof of all cases can be found in Proposition 3.4 of [110].

Theorem 3.1.5 An "-Hermitian manifold .M2m; g; J"; !/ admits an "-Hermitian
connection with totally skew-symmetric torsion if and only if the Nijenhuis tensor
is totally skew-symmetric. If this is the case, the connection Nr and its torsion T are
uniquely defined by

g. NrXY;Z/ D g.rXY;Z/C 1

2
g.T.X;Y/;Z/;

g.T.X;Y/;Z/ D "g.N.X;Y/;Z/ � d!.J"X; J"Y; J"Z/;

and we call Nr the characteristic "-Hermitian connection (with skew-symmetric
torsion).
This connection can be seen as a natural generalisation of the Chern- or Bismut-
connection. Another name for the characteristic connection is canonical connection.

Remark 3.1.6 An almost Hermitian manifold is said to be of type G1 if it admits a
Hermitian connection with skew-symmetric torsion. In terms of the Gray-Hervella
list [68], this means, that it is of type W1 ˚ W3 ˚ W4; i.e. the missing part is the
almost Kähler component W2:

More generally, the proposition justifies to say that an almost "-Hermitian
manifold is of type G1 if it admits an "-Hermitian connection with skew-symmetric
torsion.

In particular, the proposition applies to nearly "-Kähler manifolds .M; g; J"; !/:
In fact, comparing the identities (2.35) and (2.41), we see that the real three-form A
is of type .3; 0/C .0; 3/. Since d! is the alternation of r!, we have

d! D 3r! D �3A 2 ��3;0�; (3.1)

where A is defined in (2.39). Furthermore, if we apply the nearly "-Kähler condition
to the expression (2.37), the Nijenhuis tensor of a nearly "-Kähler structure
simplifies to

N.X;Y/ D 4 J".rXJ"/Y: (3.2)
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We conclude that the Nijenhuis tensor is skew-symmetric since

g.N.X;Y/;Z/ D �4A.X;Y; J"Z/ (2.41)D �4"J"�A.X;Y;Z/: (3.3)

Explicitly the connection Nr is then given by

NrXY D rXY C 1

2
"J".rXJ"/Y; for X;Y 2 �.TM/: (3.4)

In this case, the skew-symmetric torsion T of the characteristic "-Hermitian
connection simplifies to

T.X;Y/ D "J".rXJ"/Y D 1

4
"N.X;Y/

due to the identities (3.1)–(3.3).
For a proof of the next result we may refer to Lemma 2.4 of [16] for nearly Kähler

manifolds, Theorem 5.3 of [78] for nearly para-Kähler manifolds and Proposition
3.2 of [108] for the remaining case. As the attentive reader observes, the proof relies
on the curvature identity (3.20), even though we list it already in this section as one
of the very useful properties of the characteristic connection.

Proposition 3.1.7 The characteristic "-Hermitian connection Nr of a nearly "-
Kähler manifold .M2m; J"; g; !/ satisfies

Nr.rJ"/ D 0 and Nr.T/ D 0:

A direct consequence is the following Corollary.

Corollary 3.1.8 On a nearly "-Kähler manifold .M2m; J"; g; !/ the tensors rJ" and
N D 4"T have constant length.

Remark 3.1.9 In dimension 6, the fact that rJ" has constant length is usually
expressed by the equivalent assertion that a nearly "-Kähler six-manifold is of
constant type, i. e. there is a constant ˛ 2 R such that

g..rXJ"/Y; .rXJ"/Y/ D ˛ f g.X;X/g. Y;Y/� g.X;Y/2 C "g.J"X;Y/2 g: (3.5)

In fact, the constant is ˛ D 1
4
krJ"k2. Furthermore, it is well-known in the

Riemannian case that strict nearly Kähler six-manifolds are Einstein manifolds with
Einstein constant 5˛ [67]. The same is true in the para-Hermitian case [78] and in
the pseudo-Hermitian case [108] or Theorem 3.2.8 of this chapter. The sign of the
type constant depends on the signature .2p; 2q/ of g by sign. p�q/; see for example
[82]. In particular, in the Riemannian case it follows ˛ > 0 and as a consequence a
strict nearly Kähler manifold cannot be Ricci-flat.
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The case krJ"k2 D 0 for a strict nearly "-Kähler six-manifold can only occur in the
para-complex world. We give different characterisations of such structures which
provide an obvious break in the analogy of nearly para-Kähler and nearly pseudo-
Kähler manifolds. To emphasise that we are only considering the nearly para-Kähler
case we write � for J" with " D 1:

Proposition 3.1.10 For a six-dimensional strict nearly para-Kähler manifold
.M6; g; �; !/ the following properties are equivalent:

(i) kr�k2 D kAk2 D 0:

(ii) The three-form A D �r! 2 ��3;0� is either in �.ƒ3V�/ or in �.ƒ3H�/.
(iii) The three-form A D �r! 2 ��3;0� is not stable.
(iv) The metric g is Ricci-flat.

In consequence for a Ricci-flat nearly para-Kähler manifold the 3-forms D!.�; �; �/
and N.�; �; �/ are not stable in the sense of Hitchin [75, 76], cf. Sect. 2.1 of Chap. 2
for details on stable forms and hence the powerful methods of stable forms are not
available. The following observation is used later in this text to construct examples
of non-flat Ricci-flat nearly para-Kähler six-manifolds.

Corollary 3.1.11

(a) On a Ricci-flat nearly para-Kähler six-manifold .M6; �; g/ the 3-forms r! and
N have isotropic support.

(b) Let .M; �; g/ be a nearly para-Kähler manifold such that the Nijenhuis tensor
N has isotropic support, then one has NX ı NY D 0:

Proof The identity (3.5) combined with ˛ D 0 yields g..rX�/Y; .rX�/Y/ D 0 and
further

g.�.rX�/Y; �.rX�/Y/ D 0: (3.6)

This shows that the two 3-forms g..rX�/Y;Z/ and g.�.rX�/Y;Z/ have isotropic
support. Finally we obtain after polarisation of (3.6), that one has

g.NXNYZ;W/ D �16g.�.rY�/Z; �.rX�/W/ D 0

for all X;Y;Z;W 2 �.TM/: This yields the last statement. ut
Remark 3.1.12 Let us consider R2m with its standard para-Hermitian structure
.P0; g0/ and isotropic basis .e1; : : : ; em; f1; : : : ; fm/ with dual isotropic basis
.e1; : : : ; em; f 1; : : : ; f m/; compare Eq. (2.33). Then the m-forms e1 ^ : : : ^ em and
f 1 ^ : : : ^ f m are invariant under SU.P0; g0/; which follows from Eq. (2.34) and
have isotropic support in the above sense for m D 3:

As the (restricted) holonomy of a Ricci-flat para-Kähler six-manifold .M6;P; g/
lies in SU.P0; g0/; it follows that a Ricci-flat para-Kähler six-manifold admits a
family of (non-vanishing) parallel 3-forms with isotropic support.
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Lemma 3.1.13 Let .M; �; g/ be a nearly para-Kähler manifold such that the
Nijenhuis tensor N.X;Y;Z/ has isotropic support, then it holds

.rXN/. Y;Z/ D 0; (3.7)

.rXN/. Y;Z;W/ D 0: (3.8)

In particular, these identities are satisfied for a Ricci-flat nearly para-Kähler six-
manifold.

Proof We directly compute Eq. (3.7) using Theorem 3.1.5 and Corollary 3.1.11 (b)

.rXN/. Y;Z/ D rX.N. Y;Z// � N.rXY;Z/ � N. Y;rXZ/

D
�

NrX � 1

8
NX

�
.N. Y;Z// � N

��
NrX � 1

8
NX

�
Y;Z

�

�N

�
Y;

�
NrX � 1

8
NX

�
Z

�
D . NrXN/. Y;Z/ D 0:

Combining Eq. (3.7) with rg D 0 and N.X;Y;Z/ D g.N.X;Y/;Z/ we obtain
Eq. (3.8). The last statement follows from Corollary 3.1.11 (a). ut

Flat strict nearly para-Kähler manifolds .M; g; J; !/ are classified in work with
V. Cortés, see Sect. 3.6 of this chapter. It turns out that these always satisfy
krJ"k2 D 0. In [59], almost para-Hermitian structures on tangent bundles TN of
real three-dimensional manifolds N3 are discussed. It is shown that the existence of
nearly para-Kähler manifolds satisfying the second condition of Proposition 3.1.10
is equivalent to the existence of a certain connection on N3 without constructing an
example. However, to our best knowledge, there was no reference for an example of
a Ricci-flat non-flat strict nearly para-Kähler structure until the author’s paper [109]
discussed in Sect. 3.7 of this chapter.

3.1.2 Characterisations by Exterior Differential Systems
in Dimension 6

The following lemma explicitly relates the Nijenhuis tensor to the exterior differen-
tial. For " D �1, it gives a characterisation of Bryant’s notion of a quasi-integrable
U. p; q/-structure, p C q D 3, in dimension 6 [24].

Let .M6; g; J"; !/ be a six-dimensional almost "-Hermitian manifold. If
fe1; : : : ; e6 D Je3g is a local "-unitary frame, we define a local frame fE1;E2;E3g
of .TM1;0/� by

Ei WD .ei C i""J"ei/ D .ei C i"eiCm/
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for i D 1; 2; 3 and call it a local "-unitary frame of .1; 0/-forms. The dual vector
fields of the .1; 0/-forms are

Ei D e1;0i D 1

2
.ei C i""J"ei/ D 1

2
.ei C i""eiCm/;

such that the C"-bilinearly extended metric in this kind of frame satisfies

g.Ei; NEj/ D 1

2
�iıij and g.Ei;Ej/ D 0:

Lemma 3.1.14 The Nijenhuis tensor of an almost "-Hermitian six-manifold
.M6; g; J"; !/ is totally skew-symmetric if and only if for every local "-unitary
frame of .1; 0/-forms, there exists a local C"-valued function � such that

.dEs.1//0;2 D � �s.1/ Es.2/ s.3/ (3.9)

for all even permutations s of f1; 2; 3g.

Proof First of all, the identities

N. NV ; NW/ D �4"Œ NV; NW�1;0 and N.V; NW/ D 0

for any vector fields V D V1;0, W D W1;0 in TM1;0 follow immediately from the
definition of N. Using the first identity, we compute in an arbitrary local "-unitary
frame

dEi. NEj; NEk/ D �Ei.Œ NEj; NEk�/ D �2�i g.Œ NEj; NEk�; NEi/

D �2�i g.Œ NEj; NEk�
1;0; NEi/ D 1

2
" �i g.N. NEj; NEk/; NEi/

for all possible indices 1 � i; j; k � 3. If the Nijenhuis tensor is totally skew-
symmetric, Eq. (3.9) follows by setting

� D 1

2
" g.N. NE1; NE2/; NE3/: (3.10)

Conversely, the assumption (3.9) for every local "-unitary frame implies that the
Nijenhuis tensor is everywhere a three-form when considering the same computa-
tion and N.V; NW/ D 0. ut
From the last Lemma we get the following Corollary.

Corollary 3.1.15 For an almost "-Hermitian six-manifold .M6; g; J"; !/ with
totally skew-symmetric Nijenhuis tensor, there exists a function f 2 C1.M/ such
that one has

gp.X;Y/ D f . p/ tr.NX ı NY/; p 2 M; X;Y 2 TpM:
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In particular, if this function f does not vanish, i.e. if the almost complex structure
is quasi-integrable, the almost "-complex structure fixes the conformal class of g:

If there is an SU". p; q/-reduction (cf. Sect. 2.4 of Chap. 2) with closed real part,
this characterisation can be reformulated globally in the following sense.

Proposition 3.1.16 Let .!;  C/ be an SU". p; q/-structure on a six-manifold M
such that  C is closed. Then the Nijenhuis tensor is totally skew-symmetric if and
only if

d � D 	 ! ^ ! (3.11)

for a global real function 	.

Proof It suffices to proof this locally. Let fEig be an "-unitary frame of .1; 0/-forms
with �1 D �2 which is adapted to the SU". p; q/-reduction such that ‰ D  C C
i" � D aE123 for a real constant a as in (2.48). The fundamental two-form is

! D �1
2

i"

mX
kD1

�k EkNk

in such a frame. Furthermore, as  C is closed, we have d‰ D i"d � D �d N‰;
which implies that d‰ 2 ƒ2;2. Considering this, we compute the real 4-form

d � D "i" d‰ D "i"a


.dE1/0;2 ^ E23 C .dE2/0;2 ^ E31 C .dE3/0;2 ^ E12

�

and compare this expression with

! ^ ! D 1

2
".�2�3 E2N23N3 C �1�3 E1N13N3 C �1�2 E1N12N2/

D �1
2
"�3.�1 EN2N323 C �2 EN3N131 C �3 EN1N212/:

Hence, by Lemma 3.1.14, the Nijenhuis tensor is totally skew-symmetric if and only
if d � D 	 !^! holds true for a real function 	. More precisely, the two functions
	 and � are related by the formula

	 D �2�3i"a�: (3.12)

ut
An SU". p; q/-structure .!;  / is called half-flat if

d D 0; d!2 D 0;

and nearly half-flat if

d D 	 ! ^ !
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for a real constant 	. These notions are defined for the Riemannian signature in
[32] respectively [53] and extended to all signatures in our paper [46] presented in
Chap. 4 of this text.

Corollary 3.1.17 Let .!;  C/ be a half-flat SU".p; q/-structure on a six-manifold
M. Then, the Nijenhuis tensor is totally skew-symmetric if and only if .!;  �/ is
nearly half-flat.

Proof If .!;  �/ is nearly half-flat, Eq. (3.11) is satisfied by definition and the
Nijenhuis tensor is skew-symmetric by the previous proposition. In particular one
has d!2 D 0: Conversely, if the Nijenhuis tensor is skew, we know that (3.11) holds
true for a real function 	, since we have d C D 0. Differentiating this equation and
using d!2 D 0, we obtain d	 ^ !2 D 0. The assertion follows as wedging by !2 is
injective on one-forms. ut
Remark 3.1.18 An interesting property of SU". p; q/-structures which are both half-
flat and nearly half-flat in the sense of the corollary is the fact that, given that the
manifold and the SU". p; q/-structure are analytic, the structure can be evolved to
both a parallel G2-structure and a nearly parallel G2-structure via the Hitchin flow.
For details, we refer to [76] and [114] for the compact Riemannian case and Chap. 4
of this text or our paper [46] for the non-compact case and indefinite signatures.

In [33], six-dimensional nilmanifolds N admitting an invariant half-flat SU.3/-
structure .!;  C/ such that .!;  �/ is nearly half-flat are classified. As six
nilmanifolds admit such a structure, we conclude that these structures are not as
scarce as nearly Kähler manifolds. It is also shown in the same article, that these
structures induce invariant G2-structures with torsion on N � S1.

We give another example of a (normalised) left-invariant SU.3/-structure on S3�
S3 which satisfies d C D 0; d � D ! ^ ! such that d! neither vanishes nor
is of type (3,0) + (0,3). We choose a global frame of left-invariant vector fields
fe1; e2; e3; f1; f2; f3g on S3 � S3 such that

de1 D e23 ; de2 D e31 ; de3 D e12 I df 1 D f 23 ; df 2 D f 31 ; df 3 D f 12;

and set with x D 2C p
3

! D e1f 1 C e2f 2 C e3f 3;

 C D �1
2

x2e123 C 2xe12f 3 � 2xe13f 2 � 2xe1f 23 C 2xe23f 1

C 2xe2f 13 � 2xe3f 12 C .4x � 8/f 123;

 � D 1

2
xe123 � 2e1f 23 C 2e2f 13 � 2e3f 12 C 4f 123;

g D x .e1/2 C x .e2/2 C x .e3/2 C 4 . f 1/2 C 4 . f 2/2 C 4 . f 3/2

� 2x e1 �f 1 � 2x e2 �f 2 � 2xe3 �f 3:
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Finally, we come to the characterisation of six-dimensional nearly "-Kähler
manifolds by an exterior differential system generalising the classical result of [103]
which holds for " D �1 and Riemannian metrics.

Theorem 3.1.19 Let .M; g; J"; !/ be an almost "-Hermitian six-manifold. Then M
is a strict nearly "-Kähler manifold with krJ"k2 ¤ 0 if and only if there is a
reduction ‰ D  C C i" � to SU". p; q/ which satisfies

d! D 3 C; (3.13)

d � D 2 ˛ ! ^ !; (3.14)

where ˛ D 1
4
krJ"k2 is constant and non-zero.

Remark 3.1.20 Due to our sign convention ! D g.:; J":/, the constant ˛ is positive
in the Riemannian case and the second equation differs from that of other authors.
Furthermore, we will sometimes use the term nearly "-Kähler manifold of non-zero
type if krJ"k2 ¤ 0.

Proof By Proposition 3.1.2, the manifold M is nearly "-Kähler if and only if d! is
of type .3; 0/C .0; 3/ and the Nijenhuis tensor is totally skew-symmetric.

Therefore, when .g; J"; !/ is a strict nearly "-Kähler structure such that kAk2 D
krJ"k2 is constant (by Corollary 3.1.8) and not zero (by assumption), we can define
the reduction ‰ D  C C i" � by  C D 1

3
d! D �A and  � D J"� C such that

the first equation is satisfied. Since ! is of type .1; 1/ and therefore d.! ^ !/ D
2d! ^ ! D 0, this reduction is half-flat. Thus, Corollary 3.1.17 and the skew-
symmetry of N imply that there is a constant 	 2 R such that d � D 	 ! ^ !.

According to (2.48), we can choose an "-unitary local frame with �1 D �2, such
that

‰ D �A � i"J"
�A D aE123;

where a is constant and satisfies 4˛ D krJ"k2 D k Ck2 D 4a2�3 by (2.52). Now,
the functions defined in Lemma 3.1.14 and Proposition 3.1.16 evaluate as

�
(3.10)D 1

2
"g.N. NE1; NE2/; NE3/ (3.3)D �2J�A. NE1; NE2; NE3/ D �" i"a;

	
(3.12)D �2�3i"a� D 2�3a

2 D 2˛:

Conversely, if a given SU". p; q/-structure satisfies the exterior system, the
real three-form  C is obviously closed and the Nijenhuis tensor is totally skew-
symmetric by Corollary 3.1.17. Considering that d! D 3r! is of type .3; 0/C.0; 3/
by the first equation, the structure is nearly "-Kähler. Since A D � C is stable, the
structure is strict nearly "-Kähler and krJ"k D kAk ¤ 0 by Proposition 3.1.10.
Now, the computation of the constants in the adapted "-unitary frame shows that in
fact krJ"k D 4˛. ut
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3.1.3 Curvature Identities for Nearly "-Kähler Manifolds

Most of these identities are here only used for the almost complex case. If we are
only considering the complex case we write J and in case, that we consider the
para-complex case we write � for the "-complex structure J": The starting point of
a series of curvature identities are

R.W;X;Y;Z/ � R.W;X; JY; JZ/ D g..rWJ/X; .rYJ/Z/; (3.15)

R.W;X;W;Z/ C R.W; JX;W; JZ/ (3.16)

� R.W; JW;X; JZ/ D 2g..rWJ/X; .rWJ/Z/;

R.W;X;Y;Z/ D R. JW; JX; JY; JZ/; (3.17)

which were already proven for pseudo-Riemannian metrics by Gray [67]. In the
para-complex case the analogue of the first identity, i.e. the relation

R.W;X;Y;Z/ C R.W;X; �Y; �Z/ D g..rW�/X; .rY�/Z/; (3.18)

is shown in Proposition 5.2 of [78].
Let feig2n

iD1 be a local orthonormal frame field, then the Ricci- and the Ricci*-
tensor are given by

g.Ric X;Y/ D
2nX

iD1
�i R.X; ei;Y; ei/; g.Ric� X;Y/ D 1

2

2nX
iD1

�i R.X; JY; ei; Jei/

with �i D g.ei; ei/ D g. Jei; Jei/ and X;Y 2 TM: The frame feig2n
iD1 is called adapted

if it holds Jei D eiCn for i D 1; : : : ; n: Then it follows using an adapted frame from
Eqs. (3.16) and (3.17) that

g.rX;Y/ WD g..Ric � Ric�/X;Y/ D
2nX

iD1
�i g..rXJ/ei; .rY J/ei/: (3.19)

Using the right hand-side we see

Œ J; r� D 0:

For the second derivative of the complex structure one has the identity

2g.r2
W;X. J/Y;Z/ D ��X;Y;Z g..rWJ/X; .rYJ/JZ/; (3.20)
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which was proven in [67] for Riemannian metrics and holds true in the pseudo-
Riemannian setting, cf. [82, Proposition 7.1]. This identity implies

2nX
iD1

�ir2
ei;ei
. J/Y D �r. JY/: (3.21)

From Proposition 3.1.7 and the relation (3.4) of the connections r and Nr one obtains
the following identities for the curvature tensor NR of Nr and the curvature tensor R of
the Levi-Civita connection r

NR.W;X;Y;Z/ D R.W;X;Y;Z/ � 1

2
g..rWJ/X; .rYJ/Z/

C1

4
Œg..rWJ/Y; .rXJ/Z/ � g..rWJ/Z; .rXJ/Y/� (3.22)

D 1

4
Œ3R.W;X;Y;Z/C R.W;X; JY; JZ/

C�XYZR.W;X; JY; JZ/�;

NR.W; JW;Y; JZ/ D 1

4
Œ5R.W; JW;Y; JZ/

�R.W;Y;W;Z/ � R.W; JY;W; JZ/�: (3.23)

With the help of Eq. (3.22) it follows

NR.W;X;Y;Z/ D NR. Y;Z;W;X/ D � NR.X;W;Y;Z/ D � NR.W;X;Z;Y/: (3.24)

Using NrJ D 0 and Nrg D 0 we obtain

NR.W;X;Y;Z/ D NR.W;X; JY; JZ/ (3.25)

D NR. JW; JX;Y;Z/ D NR. JW; JX; JY; JZ/:

The general form of the first Bianchi identity (cf. Chapter III of [87]) for a
connection with torsion yields in the case of parallel torsion:

�
XYZ

NR.W;X;Y;Z/ D � �
XYZ

g..rWJ/X; .rYJ/Z/: (3.26)

In a similar way we get from the second Bianchi identity (cf. Chapter III of [87])
for a connection with parallel torsion or from the second Bianchi identity for r

� �
VWX

NrV. NR/.W;X;Y;Z/ D �
VWX

NR..rVJ/JW;X;Y;Z/: (3.27)
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From deriving Eq. (3.22) and the second Bianchi identity of r one gets after a direct
computation

�
VWX

rV. NR/.W;X;Y;Z/ D 1

2
g..rYJ/Z; �

VWX
.rXJ/.rVJ/JW/; (3.28)

which implies

�
VWX

rV. NR/.W;X;Y; JY/ D 0: (3.29)

Proposition 3.1.21 (Proposition 2.3 of [108]) The tensor r on a nearly pseudo-
Kähler manifold .M; J; g/ is parallel with respect to the characteristic connection Nr:
Theorem 3.1.22 (Theorem 2.4 of [108]) Let .M; J; g/ be a nearly pseudo-Kähler
manifold and let W;X be vector fields on M then it holds

2nX
i;jD1

�i�jg.rei; ej/
�
R.W; ei;X; ej/� 5R.W; ei; JX; Jej/

� D 0: (3.30)

Let us remark, that the Riemannian case is done in [67] and the para-Kähler case in
[78].

3.2 Structure Results

As we have seen above, for a nearly pseudo-Kähler manifold r! is a differen-
tial form of type .3; 0/ C .0; 3/: In consequence real two- or four-dimensional
nearly pseudo-Kähler manifolds are automatically pseudo-Kähler. Six dimensional
nearly pseudo-Kähler manifolds are either pseudo-Kähler manifolds or strict nearly
pseudo-Kähler manifolds. Therefore we start this section in real dimension 8.1

3.2.1 Kähler Factors and the Structure in Dimension 8

The aim of this subsection is to split off the pseudo-Kähler factor of a nearly pseudo-
Kähler manifold. This will be done by means of the kernel of rJ and allows to
reduce the (real) dimension from 8 to 6.

For p 2 M we set

Kp D ker.X 2 TpM 7! rXJ/:

1The reference for the section is the author’s paper [108].
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Theorem 3.2.1 Let .M; J; g/ be a nearly pseudo-Kähler manifold. Suppose, that
the distribution K has constant dimension and admits an orthogonal complement,

(i) then M is locally a pseudo-Riemannian product M D K � M1 of a pseudo-
Kähler manifold K and a strict nearly pseudo-Kähler manifold M1:

(ii) if M is complete and simply connected then it is a pseudo-Riemannian product
M D K � M1 of a pseudo-Kähler manifold K and a strict nearly pseudo-Kähler
manifold M1:

Proof The distribution K is parallel for the characteristic connection Nr; since rJ is
Nr-parallel. By the formula (3.4) and the nearly Kähler condition it follows NrXK D
rXK for sections K in K and X in TM: This implies that K is parallel for the Levi-
Civita connection and in consequence its orthogonal complement .K/? is Levi-
Civita parallel. The proof of (i) finishes by the local version of the theorem of de
Rham and the proof of (ii) by the global version. ut
Remark 3.2.2 There exist nearly pseudo-Kähler manifolds .M; J; g/ without
pseudo-Kähler de Rham factor, such that K� ¤ f0g admits no orthogonal
complement. In fact, we construct Levi-Civita flat nearly pseudo-Kähler manifolds
in our paper [41], which is subject of Sect. 3.6 of this chapter, such that the three-
form �p.X;Y;Z/ D gp. J.rXJ/Y;Z/; for p 2 M; has a support †� � TpM
which is a maximally isotropic subspace (Here we identified TpM and T�

p M via
the metric g:). Obviously, J.rXJ/Y and J.rUJ/V are elements of the support of
� for arbitrary X;Y;U;V 2 TpM: It then follows 0 D g. J.rXJ/Y; J.rUJ/V/ D
g. J.rJ.rXJ/YJ/U;V/ for all V 2 TpM: Hence it is †� � K�: Moreover for general
reasons we have shown before †� D K?

� which shows K� \ K?
� ¤ f0g for the

above examples. From these examples we learn, that the Theorem 3.2.1 does not
hold true, if there is no orthogonal complement.

Definition 3.2.3 A nearly pseudo-Kähler manifold .M; J; g/ is called nice if the
three-form g..r�J"/�; �/ has non-zero length in each point p 2 M:

Theorem 3.2.4 Let .M8; J; g/ be a complete simply connected eight-dimensional
nice nearly pseudo-Kähler manifold. Then M D M1 � M2 where M1 is a
two-dimensional Kähler manifold and M2 is a six-dimensional strict nearly pseudo-
Kähler manifold.

Proof Since .M; J; g/ is a nice nearly pseudo-Kähler manifold we can use
Lemma 2.3.6 of Chap. 2 to obtain an orthogonal splitting in the two-dimensional
distribution K and its orthogonal complement, which coincides with †�: Therefore
we are in the situation of Theorem 3.2.1 (ii). ut

3.2.2 Einstein Condition Versus Reducible Holonomy

In this part we study reducible Nr-holonomy and discuss the consequences in small
dimensions.
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Theorem 3.2.5 Let .M; J; g/ be a nearly pseudo-Kähler manifold.

(i) Suppose that r has more than one eigenvalue, then the characteristic Hermitian
connection has reduced holonomy.

(ii) If the tensor field r has exactly one eigenvalue then M is a pseudo-Riemannian
Einstein manifold.

Proof

(i) Let �i for i D 1; : : : ; l be the eigenvalues of r: Then the decomposition in
the according eigenbundles Eig.�i/ is Nr-parallel and hence its holonomy is
reducible.

(ii) From the identity of Theorem 3.1.22 and r D �IdTM we obtain

0 D
2nX

iD1
�i .R.W; ei;X; ei/� 5R.W; ei; JX; Jei// D g..Ric � 5Ric�/W;X/;

where we used the Bianchi identity and an adapted frame to obtain the last
equality. This shows comparing with r D Ric � Ric� that it holds Ric D 5

4
�:

ut
Let us recall, that in the pseudo-Riemannian setting the decomposition into the

eigenbundles is not automatically ensured to be an orthogonal direct decomposition.
Therefore we introduce the following notion.

Definition 3.2.6 A nearly pseudo-Kähler manifold .M; J; g/ is called decompos-
able if the above decomposition into the eigenbundles of the tensor r is orthogonal.

Lemma 3.2.7 Let .M; J; g/ be a decomposable nearly pseudo-Kähler manifold and
denote by �i for i D 1; : : : ; l the eigenvalues of r and by Ei D Eig.�i/; i D 1; : : : ; l;
the corresponding eigenbundles.

(i) For X 2 Ei and Y 2 Ej with i ¤ j one has Ric.X;Y/ D 0:

(ii) For X;Y 2 Ei it is

Ric.X;Y/ D �i

4
g.X;Y/C 1

�i

lX
sD1

�s g.rsX;Y/;

where the tensors rsW TM ! TM; 1 � s � l; are defined as

g.rsX;Y/ WD �trEs ..rXJ/ ı .rYJ// :

Proof Let us first prove (i). We consider a basis of TM which gives a pseudo-
orthonormal basis for the Ei; i D 1; : : : l: The Ricci curvature decomposes w.r.t.
the eigenbundles as

Ric.X;Y/ D
lX

sD1

X
ek2Es

�k R.X; ek;Y; ek/:
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Using NR.X; ek;Y; ek/ D 0 for s ¤ j one gets by Eq. (3.22)

R.X; ek;Y; ek/ D 1

4
g..rXJ/ek; .rYJ/ek/; for ek 2 Es:

Further for s D j one has s ¤ i and again it is

R.X; ek;Y; ek/ D R. Y; ek;X; ek/ D 1

4
g..rXJ/ek; .rY J/ek/; for ek 2 Es:

In summary one obtains

Ric.X;Y/ D
lX

sD1

X
ek2Es

�k R.X; ek;Y ; ek/ D 1

4

X
k

�k g..rXJ/ek; .rY J/ek/ D 1

4
g.rX;Y/ D 0:

This shows (i). Next we show part (ii). From the identity of Theorem 3.1.22 we
conclude

0 D
lX

sD1

X
ek2Es

�s �k .R.W; ek;X; ek/ � 5R.W; ek; JX; Jek// :

As in part (i) we get for s ¤ i with help of Eq. (3.22)

R.X; ek; JY; Jek/ D �3R. Y; ek;X; ek/ D �3
4

g..rXJ/ek; .rYJ/ek/; for ek 2 Es:

It follows, that

4
X
s¤i

�sg.r
sX;Y/C �i

0
@X

ek2Ei

�k .R.W; ek;X; ek/� 5R.W; ek; JX; Jek//

1
A D 0

and another time using Eq. (3.22)

�ig..Ric � 5Ric�/X;Y/C 4
X
s¤i

.�s � �i/g.r
sX;Y/ D 0;

which follows by

g..Ric � 5Ric�/X;Y/ D
lX

sD1

X
ek2Es

�k .R.X; ek;Y; ek/� 5R.X; ek; JY; Jek// :
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The identity (ii) follows now from Ric � Ric� D r and
Pl

sD1 rs D r: In fact, it is

g..Ric � 5Ric�/X;Y/ D �4g.Ric X;Y/C 5g.rX;Y/ D 4

�i

X
s¤i

.�i � �s/g.r
sX;Y/

and in consequence one obtains

4g.Ric X; Y/ D 5g.rX; Y/� 4

�i

X

s¤i

.�i � �s/g.r
sX;Y/ D g.rX; Y/C 4

�i

lX
sD1

�sg.r
sX;Y/;

which finishes the proof. ut
Theorem 3.2.8 A strict nearly pseudo-Kähler six-manifold .M6; J; g/ of constant
type ˛ is a pseudo-Riemannian Einstein manifold with Einstein constant 5˛.

Proof In an adapted basis we obtain from the symmetries of rJ

g.rX;X/ D 2

3X
iD1

�i g..rXJ/ei; .rXJ/ei/ D �2
3X

iD1
�i g..rXJ/2ei; ei/:

This is exactly minus the trace of the operator .rXJ/2 which has a simple form in a
cyclic frame. It follows after polarising g.rX;Y/ D 4˛g.X;Y/: From Theorem 3.2.5
we compute the Einstein constant 5˛ where ˛ is the type constant of the strict nearly
pseudo-Kähler manifold M6: ut
Proposition 3.2.9 Let .M10; J; g/ be a nice nearly pseudo-Kähler ten-manifold.

(i) Then the tensor r in a frame of the first type in Lemma 2.3.8 of Chap. 2 is given
by

re1 D 4.˛2 C ˇ2/e1;

re2 D 4˛2e2; re3 D 4˛2e3;

re4 D 4ˇ2e4; re5 D 4ˇ2e5;

r. Jei/ D Jr.ei/; i D 1; : : : ; 5;

where ˛; ˇ are constants.
(ii) For a frame of the second type in Lemma 2.3.8 of Chap. 2 the tensor r is given

by

r

2
4

e1
e2
e3

3
5 D 4

2
4
˛2 C ˇ2�4�5 0 ˇ2�4�5

0 ˛2 0

ˇ2�4�5 0 ˛2 C ˇ2�4�5

3
5
2
4

e1
e2
e3

3
5
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re4 D 0;

re5 D 4 ˇ2.2�1�4 � 1/e5;
r. Jei/ D Jr.ei/; i D 1; : : : ; 5:

The eigenvalues are f0I 4˛2I 4 ˇ2.2�1�4 � 1/I 4.˛2 C 2ˇ2�4�5/g; where the
eigenbundles are given as

Ker.r/ D spanfe4; Je4g;
Eig.r; 4˛2/ D spanf�e1 C e3; e2;�Je1 C Je3; Je2g;

Eig.r; 4 ˇ2.2�1�4 � 1// D spanfe5; Je5g;
Eig.r; 4.˛2 C 2ˇ2�4�5/// D spanfe1 C e3; Je1 C Je3g;

where ˛; ˇ are constants. For ˇ2 ¤ 0 the second case is not decomposable.
(iii) Suppose ˇ D 0 in the cases (i) and (ii). Then it follows

Eig.r; 4˛2/ D spanfe1; e2; e3; Je1; Je2; Je3g;
Ker.r/ D spanfe4; e5; Je4; Je5g:

Proof In an adapted frame we obtain from the symmetries of rJ

g.rX;Y/ D 2

5X
iD1

�i g..rXJ/ei; .rYJ/ei/ D �2
5X

iD1
�i g..rYJ/.rXJ/ei; ei/:

This is exactly minus the trace of the operator .rYJ/.rXJ/: Using the form of
Lemma 2.3.8 of Chap. 2 one can calculate r by hand or using computer algebra
systems to obtain the claimed results ut
Theorem 3.2.10 Let .M10; J; g/ be a complete simply connected nice decompos-
able nearly pseudo-Kähler manifold of dimension 10. Then M10 is of one of the
following types

(i) the tensor r has a kernel and M10 D K � M6 is a product of a four-dimensional
pseudo-Kähler manifold K and a strict nearly pseudo-Kähler six-manifold M6:

(ii) the tensor r has trivial kernel and r has eigenvalues 4.˛2Cˇ2/ with multiplicity
2; 4˛2; 4ˇ2 with multiplicity 4 for some ˛; ˇ ¤ 0:

A nice nearly pseudo-Kähler manifold .M10; J; g/ is decomposable if the dimension
of the kernel of r is not equal to two.

Proof Since we suppose, that .M10; J; g/ is a nice and decomposable nearly pseudo-
Kähler manifold, Proposition 3.2.9 implies that one has the two different cases:

(i) the distributionK;which is the tangent space of the Kähler factor has dimension
4 and admits an orthogonal complement of dimension 6. This is part (iii) of
Proposition 3.2.9. Part (i) of the Theorem now follows from Theorem 3.2.1.



58 3 Nearly Pseudo-Kähler and Nearly Para-Kähler Manifolds

(ii) the tensor r has trivial kernel and we are in the situation of Proposition 3.2.9
part (i) with ˛; ˇ ¤ 0 and part (ii) follows.

ut
Remark 3.2.11 Nearly pseudo-Kähler manifolds falling in the second case of the
last theorem are related to twistor spaces in Sect. 3.4.5 of this chapter.

3.3 Twistor Spaces over Quaternionic
and Para-Quaternionic Kähler Manifolds

In this section2 we consider pseudo-Riemannian submersions � W .M; g/ !
.N; h/ endowed with a complex structure J on M which is compatible with the
decomposition (2.53).

Lemma 3.3.1 (Lemma 5.1 of [108]) Let � W .M; g/ ! .N; h/ be a pseudo-
Riemannian submersion endowed with a complex structure J on M which is
compatible with the decomposition (2.53). Then .M; g; J/ is a pseudo-Kähler
manifold if and only if the following equations3 are satisfied

�H..rXJ/Y/ D �H..rVJ/X/ D 0; (3.31)

.rV
U J/V D �V..rXJ/V/ D 0; (3.32)

AX. JY/� JAXY D 0; AX. JV/� JAXV D 0; (3.33)

TV. JX/� JTVX D 0; TU. JV/ � JTUV D 0; (3.34)

where X;Y are vector fields in H and U;V are vector fields in V :
Further we define a second complex structure by

OJ WD
(

J on H;
�J on V :

We observe that OOJ D J: This construction was made in [98] for the Riemannian
setting and imitates the construction on twistor spaces, which was first done in [50].

Proposition 3.3.2 Suppose, that the foliation induced by the pseudo-Riemannian
submersion � is totally geodesic and that .M; J; g/ is a pseudo-Kähler manifold and
J is compatible with the decomposition (2.53), then the manifold .M; Og D g 1

2
; OJ/ is a

nearly pseudo-Kähler manifold. The distributions H and V are parallel with respect

2The reference still is the author’s paper [108].
3Please note, the small difference between the torsion T.X; Y/ of Nr and the second fundamental
form TUV; which is not dangerous, as later we are considering totally geodesic fibrations.
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to the characteristic Hermitian connection Nr of .M; Og; OJ/: In other words the nearly
pseudo-Kähler manifold .M; Og; OJ/ has reducible Nr-holonomy.

Proof Let U;V be vector fields in V and X;Y be vector fields in H W In the following
Or is the Levi-Civita connection of Og: Since the fibres are totally geodesic, i.e. T 	 0;

we obtain from Eq. (2.54), that OrUV D OrV
U V C OTUV D rV

U V CTUV D rUV; which
yields . OrU OJ/V D �.rUJ/V D 0:

In the sequel we denote the O’Neill tensors of the pseudo-Riemannian foliations
induced by V on .M; g/ and on .M; Og/ by A and OA; respectively. From Lemma 2.5.2
of Chap. 2 it follows AXY D OAXY and consequently the same Lemma yields rXY D
OrXY:

Since .M; g/ is Kähler, Lemma 3.3.1 implies A ı J D J ı A and we compute

. OrX OJ/Y D OrX.OJY/ � OJ OrXY (3.35)

D �HŒ OrX.JY/�C �V Œ OrX.JY/� � OJ.�H. OrXY/C �V. OrXY//

D �HŒ OrX.JY/ � J OrXY�C �V Œ OrX.JY/C J OrXY�

D �H.. OrXJ/Y/C OAX.JY/C J OAXY

(2.60);(2.62);(3.33)D �H..rXJ/Y/C 2AX. JY/
(3.31)D 2AX. JY/ D 2JAXY:

With the identity AXV D 2 OAXV of Lemma 2.5.2 of Chap. 2 we get

. OrX OJ/V D OrX.OJV/ � OJ OrXV (3.36)

D ��V . OrX.JV//� �H. OrX.JV//C J�V. OrXV/ � J�H. OrXV/

D ��V .. OrXJ/V/ � OAXJV � J OAXV

(2.60);(2.62);(3.33)D ��V ..rXJ/V/ � JAXV D �AXJV:

The vanishing of the second fundamental form T; Eq. (2.61) and a second time
AXV D 2 OAXV show

. OrV OJ/X D �V. OrV.JX//C �V.J OrVX/C �H. OrV .JX/� J OrVX/ (3.37)

(2.63)D OTV. JX/C J. OTVX/C �H..rVJ/X/C 1

2
. JAXV � AJXV/ D JAXV;

where we used AJXV D �JAXV which follows, since AX is alternating (compare
Eq. (2.59)) and commutes with J: The next Lemma finishes the proof. ut
Lemma 3.3.3 (Lemma 5.3 of [108])

1) Suppose, that .M; OJ; Og/ is a nearly pseudo-Kähler manifold and OJ is compatible
with the decomposition (2.53), then the following statements are equivalent:

(i) the splitting (2.53) is Nr-parallel,
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(ii) the fundamental tensors OA and OT satisfy:

OTVX D 0; OJ OTV W D � OTV OJW , LJ OTVW D OTV LJW for LJ D OOJ; (3.38)

OAXV D 1

2
OJ. OrX OJ/V; OAXY D 1

2
�V

�OJ. OrX OJ/Y
�
: (3.39)

2) If it holds . OrV OJ/W D 0 then NrVW 2 V for V;W 2 V is equivalent to TVW D 0:

Moreover it is . OrV
V

OJ/W D 0:

We apply Proposition 3.3.2 to twistor spaces and obtain.

Corollary 3.3.4 The twistor space Z of a quaternionic Kähler manifold of dimen-
sion 4k with negative scalar curvature admits a canonical nearly pseudo-Kähler
structure of reducible holonomy contained in U.1/� U.2k/:

Proof We remark, that in negative scalar curvature the twistor space of a quater-
nionic Kähler manifold is the total space of a pseudo-Riemannian submersion with
totally geodesic fibres. It admits a compatible pseudo-Kähler structure of signature
.2; 4k/; cf. Besse [18, 14.86 b)]. The assumption of positive scalar curvature is
often made to obtain a positive definite metric on Z : Here we focus on pseudo-
Riemannian metrics and consequently on negative scalar curvature. ut
Proposition 3.3.5 The twistor spaces Z of non-compact duals of Wolf spaces and
of Alekseevskian spaces admit a nearly pseudo-Kähler structure.

Proof Non-compact duals of Wolf spaces are known [117] to be quaternionic
Kähler manifolds of negative scalar curvature. The same holds for Alekseevskian
spaces [3, 38]. ut

Studying the lists given in [3, 38, 117] we find examples of six-dimensional
nearly pseudo-Kähler manifolds.

Corollary 3.3.6 The twistor spaces Z of

QHP1 D Sp.1; 1/=Sp.1/Sp.1/ and SU.1; 2/=S.U.1/U.2//

provide six-dimensional nearly pseudo-Kähler manifolds.

Remark 3.3.7 The situation in negative scalar curvature is more flexible than in the
positive case. This is illustrated by the following results in this area: In the main
theorem of [89] it is shown that the moduli space of complete quaternionic Kähler
metrics on R4n is infinite dimensional. A construction of super-string theory, called
the c-map [54], yields continuous families of negatively curved quaternionic Kähler
manifolds. Let us mention, that the c-map enjoys very recent interest [10, 73, 93]
in differential geometry. These results show that Corollary 3.3.4 is a good source of
examples.
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Another source of examples is given by twistor spaces over para-quaternionic
Kähler manifolds. Since these manifolds are less classical than quaternionic Kähler
manifolds, we recall some definitions (cf. [5] and references therein).

Definition 3.3.8 Let .�1; �2; �3/ D .�1; 1; 1/ or some permutation thereof. An
almost para-quaternionic structure on a differentiable manifold M4k is a rank 3
sub-bundle Q � End .TM/; which is locally generated by three anti-commuting
endomorphism-fields J1; J2; J3 D J1J2: These satisfy J2i D �iId for i D 1; : : : ; 3:

Such a triple is called standard local basis of Q: A linear torsion-free connection
preserving Q is called para-quaternionic connection. An almost para-quaternionic
structure is called a para-quaternionic structure if it admits a para-quaternionic
connection. An almost para-quaternionic Hermitian structure .M;Q; g/ is a
pseudo-Riemannian manifold endowed with a para-quaternionic structure such that
Q consists of skew-symmetric endomorphisms. For n > 1 .M4k;Q; g/ is a para-
quaternionic Kähler manifold if Q is preserved by the Levi-Civita connection of g:
In dimension 4 a para-quaternionic Kähler manifold M4 is an anti-self-dual Einstein
manifold.
We use the same notions omitting the word para for the quaternionic case. The
condition that Q is preserved by the Levi-Civita connection is in a given standard
local basis f Jig3iD1 of Q equivalent to the equations

rXJi D ��k.X/�jJj C �j.X/�kJk; for X 2 TM; (3.40)

where i; j; k is a cyclic permutation of 1; 2; 3 and f�ig3iD1 are local one-forms. In
the context of para-quaternionic manifolds one can define twistor spaces for s D
1; 0;�1

Z s WD fA 2 Q j A2 D sId; with A ¤ 0g:

The case of interest in this text is Z D Z�1; since this twistor space is a complex
manifold, such that the conditions of Proposition 3.3.2 hold true (cf. [5]). Therefore
we obtain the following examples of nearly pseudo-Kähler manifolds.

Corollary 3.3.9 The twistor space Z of a para-quaternionic Kähler manifold with
non-zero scalar curvature of dimension 4k admits a canonical nearly pseudo-Kähler
structure of reducible holonomy contained in U.k; k/ � U.1/:

Example 3.3.10 The para-quaternions eH are the R-algebra generated by f1; i; j; kg
subject to the relations i2 D �1; j2 D k2 D 1; ij D �ji D k: Like the quaternions,
the para-quaternions are a real Clifford algebra which in the convention of [88] is
eH D Cl1;1 Š Cl0;2 Š R.2/: One defines the para-quaternionic projective space eHPn

by the obvious equivalence relation on the para-quaternionic right-module eHnC1 of
.n C1/-tuples of para-quaternions. The manifoldeHPn is a para-quaternionic Kähler
manifold [21] in analogue to the quaternionic projective space HPn: This yields
examples of the type described in the last Corollary.
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3.4 Complex Reducible Nearly Pseudo-Kähler Manifolds

Motivation In this section we study the case of a nearly pseudo-Kähler manifold
.M2n; J; g/; such that the holonomy of the characteristic connection Nr is reducible,
in the sense that the tangent bundle TM admits a splitting

TM D H ˚ V

into two Nr-parallel sub-bundles H;V ; which are orthogonal and invariant with
respect to the almost complex structure J: We refer to this situation as complex
reducible. This is motivated by the examples on twistor spaces given in the last
section. In Sect. 3.9.4 we see, that real reducible nearly Kähler manifolds are locally
homogeneous.

3.4.1 General Properties

In this subsection we carefully check, generalising [99] to pseudo-Riemannian
foliations, the information which follows from the decomposition into the J-
invariant sub-bundles.

Lemma 3.4.1 (Lemma 6.1 of [108]) In the situation of this section and for a vector
field X in H; a vector field Y in TM and vector fields U;V in V it is

NR.X;Y;U;V/ D g .ŒrUJ;rVJ�X;Y/ � g ..rXJ/Y; .rUJ/V/ : (3.41)

Corollary 3.4.2 For vector fields X;Y in H and V;W in V one has

(i) .rXJ/.rVJ/W D 0I .rV J/.rXJ/Y D 0I
(ii) .rXJ/.rYJ/Z belongs to H for all Z 2 �.H/I

(iii) .rVJ/.rWJ/X belongs to HI and .rXJ/.rYJ/V belongs to V :
Proof

(i) follows from the fact, that NR. JX; JY;V;W/ D NR.X;Y;V;W/ and that the first
term of Eq. (3.41) has the same symmetry with respect to J: This yields on the
one hand

g ..rJXJ/JY; .rVJ/W/ D g ..rXJ/Y; .rVJ/W/

and on the other hand it is

g ..rJXJ/JY; .rVJ/W/ D �g ..rXJ/Y; .rV J/W/ :
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Consequently one has g ..rXJ/Y; .rVJ/W/ D 0: ExchangingH and V finishes
part (i).

(ii) From (i) one gets the vanishing of

g..rVJ/.rYJ/Z;X/ D g.Z; .rYJ/.rVJ/X/

D �g.Z; .rY J/.rXJ/V/ D �g..rXJ/.rYJ/Z;V/:

(iii) From (i) it follows 0 D NR.X;U;V;W/ D g.ŒrV J;rWJ�X;U/: This yields
ŒrV J;rWJ�X 2 H and by ŒrV J;rJWJ�JX D �frVJ;rWJgX 2 H we get the
first part. The second part follows by replacing H and V :

ut

3.4.2 Co-dimension Two

Motivated by the above section on twistor spaces we suppose from now on that the
real dimension of V is two.

Lemma 3.4.3 (Lemma 6.2 of [108]) Let dimR.V/ D 2:

(i) Then the restriction of the metric g is either of signature .2; 0/ or .0; 2/:
(ii) a) T.V;W/ D 0 for all V;W 2 V :

b) T.X;U/ 2 H for all X 2 H and U 2 V :
c) In dimension 6 it is T.X;Y/ 2 V for all X;Y 2 H:
d) Spanf�V.T.X;Y// j X;Y 2 Hg D V :

Corollary 3.4.4 Let dimR.V/ D 2: Then the foliation V has totally geodesic fibres
and the O’Neill tensor is given by AXY D 1

2
�V . J.rXJ/Y/ and AXV D 1

2
J.rXJ/V:

Moreover it is rVJ D 0:

Proof From Lemma 3.4.3 (ii) a) we obtain .rVJ/W D 0 with V;W 2 �.V/: By
Lemma 3.3.3 part 2) it follows TVW D 0 and rVJ D 0; since the decomposition
H ˚ V is Nr parallel. Part 1) of Lemma 3.3.3 finishes the proof. ut
Proposition 3.4.5 Let .M; J; g/ be a nearly pseudo-Kähler manifold such that the
property of Lemma 3.4.3 (ii) c) is satisfied and such that V has dimension 2, then
.M; LJ D OJ; Lg D g2/ is a pseudo-Kähler manifold.4

It is natural to suppose the property of Lemma 3.4.3 (ii) c), since this holds true in
the cases of twistorial type which are studied in the next sections.

Proof By the last Corollary the data of the submersion is LT D T 	 0;

AXY D LAXY D 1
2
�V. J.rXJ/Y/ and LAXV D 2AXV D J.rXJ/V: Since A anti-

commutes with J it commutes with LJ: This yields the conditions (3.33) and (3.34) of

4Here we use L� for the inverse construction of O�:
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Lemma 3.3.1 on the triple LA; LT; LJ: Further it holds rVJ D 0: From the reasoning of
Eq. (3.35) we obtain �H.. LrX LJ/Y/ D �H..rXJ/Y/ which vanishes by the property
of Lemma 3.4.3 (ii) c). By an analogous argument we get from Eq. (3.36) the
identity �V.. LrX LJ/V/ D ��V ..rXJ/V/: This vanishes by Lemma 3.4.3 (ii) b).

From Eq. (3.37) we derive ��H..rXJ/V/
n:K:D �H..rVJ/X/ D �H.. LrV LJ/X/ C

2�H. JAXV/: The definition of AXV yields �H.. LrV LJ/X/ D 0: These are all the
identities needed to apply Lemma 3.3.1. ut
Proposition 3.4.6 Let X;Y be vector fields in H and V1;V2;V3 be vector fields in
V : Suppose that it holds T.V;W/ D 0 for all V;W 2 V then it is

NR..rXJ/JY;V1;V2;V3/ D g. JY; ŒrV1J; ŒrV2J;rV3J��X/: (3.42)

Moreover, one has NrU NR.V1;V2;V3;V4/ D 0:

Proof For V1;V2;V3 2 V and X 2 H the second Bianchi identity gives

� �
XYV1

NrX. NR/. Y;V1;V2;V3/ D �
XYV1

NR..rXJ/JY;V1;V2;V3/:

As the decompositionH˚V is Nr-parallel the terms on the left hand-side vanish due
to the symmetries (3.24) of the curvature tensor NR: The right hand-side is determined
with the help of Lemma 3.4.1 and Corollary 3.4.2. If we apply Nr to the for-
mula (3.42) we obtain by Nr.rJ/ D 0 the identity g


 NrU. NR/.V1;V2;V3/; .rXJ/Z
� D

0 with Z D JY: This yields the proposition using Lemma 3.4.3 (ii) part d). ut

3.4.3 Six-Dimensional Nearly Pseudo-Kähler Manifolds

Before analysing the general case we first focus on dimension 6.

Lemma 3.4.7 (Lemma 6.7 of [108]) On a six-dimensional nearly pseudo-Kähler
manifold .M6; J; g/ the integral manifolds of the foliation V have Gaussian curva-
ture 4˛ and constant curvature � D 4˛; where ˛ is the type constant.

Let us recall that the sign of ˛ is completely determined by the signature of the
metric g; cf. Remark 3.1.9.

Proposition 3.4.8 The manifold .M; J; g/ is the total space of a pseudo-
Riemannian submersion � W .M; g/ ! .N; h/ where .N; h/ is an almost
pseudo-Hermitian manifold and the fibres are totally geodesic Hermitian symmetric
spaces. In particular, the fibres are simply connected.

Proof The foliation which is induced by V is totally geodesic and each leaf is by
Proposition 3.4.6 a locally Hermitian symmetric space of complex dimension 1.

It is shown in Lemma 3.4.7 that each leaf has constant curvature �: In the case
� > 0 the leaves are compact and we can apply a result of Kobayashi, cf. [18,
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11.26], to obtain that the leaves are simply connected. Since the leaves are also
simply connected it follows, that the leaf holonomy is trivial and that the foliation
comes from a (smooth) submersion (cf. p. 90 of [113]). In the case � < 0 we
observe, that .M; J;�g/ is a nearly pseudo-Kähler manifold of constant type �˛:
The same argument shows that the fibres are simply connected. ut
Lemma 3.4.9 (Lemma 6.9 of [108]) Let .M6; g; J/ be a strict nearly pseudo-
Kähler six-manifold of constant type ˛: For an arbitrary normalised5 local vector
field V 2 V ; i.e. �V D g.V;V/ 2 f˙1g; we consider the endomorphisms QJ1 WD JjH;
QJ2 W H 3 X 7! pj˛j�1.rVJ/X 2 H and QJ3 D QJ1 QJ2: Then the triple .QJ1; QJ2; QJ3/
defines an "-quaternionic triple on H with �1 D �1 and �2 D �3 D sign.�˛�V /

and it is

�HŒ.r

QJi/Y� D ��k.
/ �j QJjY C �j.
/ �k QJkY;

for a cyclic perm. of i,j,k and with �1.
/ D sign.˛/g. JV; Nr
V/; �2.
/ D
�sign.˛/

pj˛jg.V; J
/ and �3.
/ D sign.˛/
pj˛jg.V; 
/: The sub-bundle of

endomorphisms spanned by .QJ1; QJ2; QJ3/ does not depend on the choice of V:

Lemma 3.4.10 Let .M6; g; J/ be a strict nearly pseudo-Kähler six-manifold of
constant type ˛: Let s W U � N ! M be a (local) section6 of � on some open
set U: Define � by

� D s� ı �� W Hs.n/
��! TnN

s�! s�.TnN/ � Ts.n/M; for n 2 N

and set Jijn WD �� ı QJijs.n/ ı .��jH/�1 for i D 1; : : : ; 3; where QJi are defined in
Lemma 3.4.9. Then . J1; J2; J3/ defines a local �-quaternionic basis preserved by the
Levi-Civita connection rN of N:

Proof We choose U such that the section s is a diffeomorphism onto W D s.U/ and
a vector field V in V defined on a subset containing W:As � is a pseudo-Riemannian
submersion we obtain from �� ı s� D Id that s is an isometry from U onto W:
Therefore it holds s�.rN

X Y/ D �s�TN Œrs�Xs�Y� which yields rN
X Y D ��.rs�Xs�Y/

and

.��jH/�1.rN
X Y/ D �H.rs�Xs�Y/: (3.43)

For convenience let us identify U and W or in other words consider s as the inclusion
W � M: Then the projection on s�TN is � D s��� D ��jH: Moreover, we need
the (tensorial) relation7

rN
X .��Z/� ���H.rM

X Z/ D 0 or equivalently rN
X

QZ � ���H.rM
X �

�1 QZ/ D 0;

5Constant non-zero length suffices.
6Local sections exist, since � is locally trivial [18, 9.3].
7Here QZ is the horizontal lift of Z:
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which can be directly checked for basic vector fields. Using this identity we get for
i D 1; : : : ; 3

rN
X . JiY/ D rN

X .�
QJi�

�1Y/ D �rM
X .

QJi�
�1Y/ D � .rM

X
QJi/ �

�1Y C � QJi rM
X .�

�1Y/

D � .rM
X

QJi/ �
�1Y C � QJi �

�1rN
X Y D � .rM

X
QJi/ �

�1Y C JirN
X Y;

which reads .rN
X Ji/Y D � .rM

X
QJi/ �

�1Y: This finishes the proof, since the right
hand-side is completely determined by Lemma 3.4.9. Therefore we have checked
the condition (3.40), i.e. the manifold N is endowed with a parallel skew-symmetric
(para-)quaternionic structure, see also [18, 10.32 and 14.36]. ut

3.4.4 General Dimension

In the last section we have seen that in dimension 6 the tensor rVJ induces a (para-
)complex structure on H: This motivates the following definition.

Definition 3.4.11 The foliation induced by TM D H ˚ V is called of twistorial
type if for all p 2 M there exists a V 2 Vp such that the endomorphism

rV J W Hp ! Hp

is injective.
Obviously, if rV J defines a (para-)complex structure, then the foliation is of
twistorial type.

Proposition 3.4.12

(a) If the metric induced on H is definite, then the foliation is of twistorial type.
(b) If the foliation is of twistorial type, then for all p 2 M and all 0 ¤ U 2 Vp the

endomorphism

rUJ W Hp ! Hp

is injective.
(c) It holds with A WD rVJ for some vector field V in V of constant length and for

vector fields X 2 H and 
 2 TM

Nr
.A
2/X D 0: (3.44)

Further it holds ŒA2; .rUJ/� D 0 for all U 2 V and

rU.A
2/X D 0 (3.45)

for vector fields U in V :



3.4 Complex Reducible Nearly Pseudo-Kähler Manifolds 67

Proof Part (a) follows from .rVJ/X 2 H for X 2 H and V 2 V ; cf. Lemma 3.4.3
(i). For (b) we observe, that if rV J is injective so is rJVJ D �JrVJ: As V is of
dimension 2 fV; JVg with V ¤ 0 is an orthogonal basis. With a; b 2 R it follows
g..arVJ C brJVJ/X; .arVJ C brJVJ/X/ D .a2 C b2/ g..rVJ/X; .rVJ/X/; which
yields, that raVCbJVJ W Hp ! Hp is injective since a ¤ 0 or b ¤ 0: It remains to
prove part (c). We first observe, that, since V has constant length and since Nr is a
metric connection and preserves V ; it follows Nr
V D ˛.
/JV for some one-form
˛: From Nr.rJ/ D 0 we obtain

. Nr
A/X D . Nr
.rVJ//X D .r Nr
VJ/X D ˛.
/.rJV J/X D �˛.
/JAX

and we compute using fA; Jg D 0

Nr
.A
2/X D A. Nr
A/X C . Nr
A/AX D �˛.
/ŒA. J.AX//C JA2X� D 0:

The equation ŒA2; .rUJ/� D 0 is tensorial in U and holds true for U D V: Therefore
we only need to compute ŒA2; .rJV J/� D �ŒA2; J.rV J/� D �JŒA2; .rV J/� D 0;

where we used that A2 commutes with J: This implies

rU.A
2/X D NrU.A

2/X C 1

2
Œ J.rUJ/;A2�X D �1

2
Œ.rJUJ/;A2�X D 0

and proves part (c). ut
In the following V is a local vector field of constant length �V D g.V;V/ 2 f˙1g:

We denote by � the curvature form of the connection induced by Nr on the
(complex) line bundle V ; which is given by

NR.X;Y/V D �.X;Y/JV; for X;Y 2 TM;V 2 V :

Proposition 3.4.13 If the foliation is of twistorial type,

(i) then the endomorphism A WD rV JjH satisfies A2 D ��VIdH for some real
constant � ¤ 0 and

� D �2�.2!V � !H/;

where !H.X;Y/ D g.X; JY/ is the restriction of the fundamental two-form !

to HI
(ii) for X;Y in H it is .rXJ/Y 2 V :
The proof of this proposition is divided in several steps.

Lemma 3.4.14

(i) For X;Y in H and V in V it is NR.X;Y;V; JV/ D �2g..rVJ/2X; JY/:
(ii) For a given X in H and V in V it follows NR.X;V;V; JV/ D 0:
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Proof

(i) Since H is Nr-parallel we obtain, that �
XYV

NR.X;Y;V; JV/ D NR.X;Y;V; JV/: This

is the left hand-side of the first Bianchi identity (3.26) . The right hand-side
reads

� �
XYV

g..rXJ/Y; .rV J/JV/ D �g..rVJ/X; .rYJ/JV/� g..rYJ/V; .rXJ/JV/

D �2g..rVJ/2X; JY/:

(ii) From the symmetries (3.24) of the curvature tensor NR it follows NR.X;V;V; JV/
D NR.V; JV;X;V/: This expression vanishes since H is Nr-parallel.

ut
From the last lemma we derive the more explicit expression of the curvature form
�.�; �/:

�.�; �/ D f!V.�; �/C �V˛.�; �/; (3.46)

where f is a smooth function, !V is the restriction of the fundamental two-form
! D g.�; J�/ to V and ˛.X;Y/ D �2g.A2X; JY/:

Lemma 3.4.15 (Lemma 6.15 of [108]) It holds with U 2 V and X;Y 2 H W

d!V.X;U; JU/ D 0; (3.47)

d˛.X;U; JU/ D 0; (3.48)

d!V.U;X;Y/ D �g.rUJ/X;Y/; (3.49)

d˛.U;X;Y/ D 4g.A2.rUJ/X;Y/: (3.50)

Proof of the Proposition 3.4.13

(i) Let X;Y be vector fields in H and V be a local vector field in V of constant
length. Since � as a curvature form of a (Hermitian) line bundle is closed,
we obtain from Eq. (3.46) ��V d˛.�; �; �/ D fd!V.�; �; �/ C df ^ !V.�; �; �/:
Equations (3.47) and (3.48) imply dfjH D 0: This implies ŒX;Y�f D 0 and using
that H is Nr-parallel we obtain . NrXY/f D 0 D . NrYX/f which yields finally
0 D T.X;Y/. f / D �Œ J.rXJ/Y�. f /: By Lemma 3.4.3 (ii) d) the last equation
shows dfjV D 0: Since M is connected, it follows f 	 �� for a constant �:

Again using d�.V;X;Y/ D 0 Eqs. (3.49) and (3.50) yield for arbitrary X;Y

�g..rVJ/X;Y/C 4�Vg.A2.rVJ/X;Y/ D 0:

This implies .rVJ/.�IdH C 4�VA2/ D 0: It follows

A2 D ��V
�

4
IdH;



3.4 Complex Reducible Nearly Pseudo-Kähler Manifolds 69

since the foliation is of twistorial type. If we set 4˛ D � in analogue to
dimension 68 one gets A2 D ��V˛IdH:

(ii) Since� is closed, it follows from part (i) and d!V.X;Y;Z/ D 0 for X;Y;Z 2 H
that it is d!H.X;Y;Z/ D 0: Using d!H.X;Y;Z/ D 3g..rXJ/Y;Z/ yields part
(ii).

ut
Proposition 3.4.16 Let .M4kC2; g; J/ be a strict nearly pseudo-Kähler manifold of
twistorial type. Let s W U � N ! M be a (local) section of � on some open set U:
Define � by

� D s� ı �� W Hs.n/
��! TnN

s�! s�.TnN/ � Ts.n/M; for n 2 N

and set Jijn WD �� ı QJijs.n/ ı .��jH/�1 for i D 1; : : : ; 3; where QJi are defined in
Lemma 3.4.9. Then . J1; J2; J3/ defines a local �-quaternionic basis preserved by the
Levi-Civita connection rN of N:

Proof The proof of Lemma 3.4.9 only uses A2 D ��V
�
4
Id and .rXJ/Y 2 V for

X;Y 2 H: Therefore we can generalise it by means of Proposition 3.4.13 to strict
nearly pseudo-Kähler manifolds of twistorial type. ut
Corollary 3.4.17

(i) The tensor r has exactly two eigenvalues. More precisely, it has the eigenvalue
� on H and the eigenvalue �V

�
2
.n � 1/ on V with � D 4˛:

(ii) The Ricci-tensor has exactly two eigenvalues. More precisely, it has the

eigenvalue �
4
.�V.n�1/C3/ onH and the eigenvalue �

�
�V

.n�1/
8

C 1
�

on V : The

base manifold .N; h/ is an Einstein manifold with Einstein constant �
4
�V.n�1/:

Proof By definition we have

g.rX;Y/ D
2nX

iD1
�i g..rXJ/ei; .rYJ/ei/ D �

2nX
iD1

�i g..rYJ/.rXJ/ei; ei/

for some pseudo-orthogonal basis with e1; : : : ; e2n�2 2 H and e2n�1; e2n 2 V . For
V 2 V with g.V;V/ D �V we get

g.rV;V/ D �
2nX

iD1
�i g..rVJ/.rVJ/ei; ei/ D �

2n�2X
iD1

�i g.A2ei; ei/

D �V
�

4

2n�2X
iD1

�i g.ei; ei/ D �V
�

2
.n � 1/:

8Without risk of confusion we use the same latter for the constant ˛ as for the two-form ˛.�; �/.
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Let us now consider X 2 H and V as before and compute

g.rX;X/ D 2�Vg ..rVJ/X; .rVJ/X/C
2n�2X
iD1

�i g..rXJ/ei; .rXJ/ei/:

Since it is .rXJ/ei 2 V ; we get

�i g..rXJ/ei; .rXJ/ei/ D �i �V.g..rXJ/ei;V/
2 C g..rXJ/ei; JV/2/

and for the sum this gives

g.rHX;X/ D
2n�2X
iD1

�i g..rXJ/ei; .rXJ/ei/

D �V

2n�2X
iD1

�i


g..rXJ/V; ei/

2 C g..rXJ/JV; ei/
2
�

D 2�V g ..rVJ/X; .rVJ/X/ D �

2
g.X;X/:

Summarizing it follows g.rX;X/ D 4�V g ..rVJ/X; .rVJ/X/ D �: This shows part
(i).

The statement (ii) follows from (i) using Lemma 3.2.7. Namely, for X;Y 2 H it
is

g.Ric.X/;Y/ D �

4
g.X; Y/C�V

1

�

�

2
.n�1/ g.rVX; Y/„ ƒ‚ …

�
2 g.X;Y/

Cg.rHX;Y/ D �

4
.�V .n�1/C3/g.X; Y/;

since it is using A2 D ��V
�
4
IdH

g.rVX;Y/ D �trV ..rXJ/ ı .rYJ// D �2�V g..rXJ/.rYJ/V;V/

D 2�V g..rYJ/V; .rXJ/V/ D 2�V g..rVJ/Y; .rV J/X/

D 2�V g.AY;AX/ D �

2
g.X;Y/:

Further, for U;V 2 V it is

g.Ric.U/;V/ D �V
�.n � 1/

8
g.U;V/C �V

2

�.n � 1/� g.rHU;V/„ ƒ‚ …
�V

�
2 .n�1/g.U;V/

D �

�
�V
.n � 1/

8
C 1

�
g.U;V/;
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where

g.rHV;V/ D �trH ..rVJ/ ı .rVJ// D �
2n�2X
iD1

�i g..rVJ/.rVJ/ei; ei/

D 2.n � 1/�
4
�V D �V

�

2
.n � 1/:

The last statement follows from O’Neill’s formula with the information, that the
O’Neill tensor is AXY D 1

2
J.rXJ/Y; c.f. Lemma 3.3.3. ut

3.4.5 The Twistor Structure

In this subsection we finally characterise the nearly pseudo-Kähler structures, which
are related to the canonical nearly Kähler structure of twistor spaces.

Theorem 3.4.18 Suppose, that .M2n; J; g/ is a complex reducible nearly pseudo-
Kähler manifold of twistorial type, then one has:

(i) The manifold .M; J D LJ; Lg D g2/ is a twistor space of a quaternionic pseudo-
Kähler manifold, if it is �V� > 0:

(ii) The manifold .M; J D LJ; Lg D g2/ is a twistor space of a para-quaternionic
Kähler manifold, if it is �V� < 0:

Proof Denote by �Z W Z ! N the twistor space of the manifold N endowed
with the parallel skew-symmetric (para-)quaternionic structure constructed from the
foliation � W M ! N of twistorial type, cf. Proposition 3.4.9 for dimension 6 and
Proposition 3.4.16 for general dimension. We observe that the restriction of J to H
yields a (smooth) map

' W M ! Z; m 7! d�m ı Jm jH ı .d�mjH/�1 DW j�.m/;

which by construction satisfies �Z ı ' D � and as a consequence d�Z ı d' D
d�: Since � and �Z are pseudo-Riemannian submersions, the last equation implies
that d' induces an isometry of the according horizontal distributions and maps the
vertical spaces into each other. Let us determine the differential of ' on V :

Claim: For V 2 V one has

d'.V/ D 2 d� ı .rVJ/ ı .d�jH/�1;

d'. JV/ D 2 d� ı .rJVJ/ ı .d�jH/�1 D �2 d� ı J.rVJ/ ı .d�jH/�1:
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To prove the claim we consider a (local) vector field V 2 V and a (local) integral
curve � of V on some interval I 3 0 with �.0/ D m: Let X be a vector field in
N: Denote by QX the horizontal lift of X: The Lie transport of QX along the vertical
curve � projects to X; i.e. it holds d��.t/. QX/ D X for all t 2 I and in consequence

d��.t/ jH

��1
X D QX: In other words d� commutes with this Lie transport, which

implies

d'.V/X D d�..LVJ/ QX/;

as one directly checks using basic vector fields. Therefore we need to determine the
Lie-derivative L of J W

�H..LVJ/ QX/ D �H.ŒV; J QX� � JŒV; QX�/
D �H 
rV . J QX/� rJ QXV � JrV QX C JrQXV

�

D �H
�
.rVJ/ QX � 1

2
J.rJ QXJ/V C 1

2
J



J.rQXJ/
�

V

�
D 2.rVJ/ QX:

This shows d'.V/ D 2 d� ı .rVJ/ ı .d�jH/�1; which implies d'. JV/ D 2 d� ı
.rJVJ/ı .d�jH/�1 D �2 d� ıJ.rVJ/ı .d�jH/�1: Given a local section s W N ! M
and the associated adapted frame of the (para-)quaternionic structure it follows that
' ı s is J1; d'.V/ is related to J2 and d'. JV/ to �J3 which span the tangent space
of the fibre F�.m/ D S2 in '.m/: The complex structure of Z maps J2 to J3: Hence
d' is complex linear for the opposite complex structure LJ on M: Further one sees in
this local frame that ' maps horizontal part into horizontal part. Therefore ' is an
isometry for the metric Lg D g2; where the parameter in the canonical variation of
the metric g is t D 2: This means that .M; LJ; Lg D g2/ is isometrically biholomorph
to Z : ut
Combining Theorems 3.2.10 and 3.4.18 we obtain the following result.

Theorem 3.4.19 Let .M10; J; g/ be a nice decomposable nearly pseudo-Kähler
manifold, then the universal cover of M is either the product of a pseudo-Kähler
surface and a (strict) nearly pseudo-Kähler manifold M6 or a twistor space of an
eight-dimensional (para-)quaternionic Kähler manifold endowed with its canonical
nearly pseudo-Kähler structure.

3.5 A Class of Flat Pseudo-Riemannian Lie Groups

In this section we consider flat pseudo-Riemannian Lie groups which are closely
related to nearly Kähler geometry (cf. Sect. 3.6). These geometric objects are also
of independent interest [13]. Let V D .Rn; h�; �i/ be the standard pseudo-Euclidian
vector space of signature .k; l/, n D k C l: Using the (pseudo-Euclidian) scalar
product we shall identify V Š V� and ƒ2V Š so.V/. These identifications provide
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the inclusion ƒ3V � V� ˝ so.V/. Using it we consider a three-vector � 2 ƒ3V as
an so.V/-valued one-form. Further we denote by �X 2 so.V/ the evaluation of this
one-form on a vector X 2 V . Let us recall, that the support of � 2 ƒ3V is defined by

†� WD spanf�XY j X;Y 2 Vg � V: (3.51)

Theorem 3.5.1 Each

� 2 C.V/ WD f� 2 ƒ3V j†� (totally) isotropicg D
[
L�V

ƒ3L

defines a 2-step nilpotent simply transitive subgroup L.�/ � Isom.V/; where the
union runs over all maximal isotropic subspaces. The subgroups L.�/, L.�0/ �
Isom.V/ associated to �; �0 2 C.V/ are conjugated if and only if �0 D g � � for some
element of g 2 O.V/:

Proof Using Lemma 2.3.2 of Chap. 2 any three-vector � 2 ƒ3V satisfies � 2 ƒ3†�:

This implies the equation C.V/ D S
L�V

ƒ3L. Let an element � 2 C.V/ be given. By

Lemma 2.3.4 of Chap. 2 its support†� is isotropic if and only if the endomorphisms
�X 2 so.V/ satisfy �X ı �Y D 0 for all X;Y 2 V: The 2-step nilpotent group

L.�/ WD
�

exp

�
�X X
0 0

�
D
�

Id C �X X
0 1

� ˇ̌
ˇ̌ X 2 V

	

acts simply transitively on V Š V � f1g � V � R by isometries:

�
Id C �X X
0 1

��
0

1

�
D
�

X
1

�
:

Let us consider next �; �0 2 C.V/, g 2 O.V/. The computation

gL.�/g�1 D
� �

Id C g�Xg�1 gX
0 1

� ˇ̌
ˇ̌ X 2 V

	
D
� �

Id C g�g�1Yg�1 Y
0 1

� ˇ̌
ˇ̌ Y 2 V

	

shows that gL.�/g�1 D L.�0/ if and only if �0
X D .g � �/X D g �g�1X g�1 for all

X 2 V . ut
Let L � Isom.V/ be a simply transitive group. Pulling back the scalar product on

V by the orbit map L 3 g 7! g0 2 V yields a left-invariant flat pseudo-Riemannian
metric h on L. A pair .L; h/ consisting of a Lie group L and a flat left-invariant
pseudo-Riemannian metric h on L is called a flat pseudo-Riemannian Lie group.
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Theorem 3.5.2

(i) The class of flat pseudo-Riemannian Lie groups .L.�/; h/ defined in Theo-
rem 3.5.1 exhausts all simply connected flat pseudo-Riemannian Lie groups
with bi-invariant metric.

(ii) A Lie group with bi-invariant metric is flat if and only if it is 2-step nilpotent.

Proof

(i) The group L.�/ associated to a three-vector � 2 C.V/ is diffeomorphic to Rn by
the exponential map. We have to show that the flat pseudo-Riemannian metric
h on L.�/ is bi-invariant. The Lie algebra of L.�/ is identified with the vector
space V endowed with the Lie bracket

ŒX;Y� WD �XY � �YX D 2�XY; X;Y 2 V:

The left-invariant metric h on L.�/ corresponds to the scalar product h�; �i on
V . Since � 2 ƒ3V , the endomorphisms �X D 1

2
adX are skew-symmetric. This

shows that h is bi-invariant.
Conversely, let .V; Œ�; ��/ be the Lie algebra of a pseudo-Riemannian Lie group

of dimension n with bi-invariant metric h. We can assume that the bi-invariant
metric corresponds to the standard scalar product h�; �i of signature .k; l/ on V .
Let us denote by �X 2 so.V/, X 2 V , the skew-symmetric endomorphism of
V which corresponds to the Levi-Civita covariant derivative DX acting on left-
invariant vector fields. From the bi-invariance and the Koszul formula we obtain
that �X D 1

2
adX and, hence, R.X;Y/ D � 1

4
adŒX;Y� for the curvature. The last

formula shows that h is flat if and only if the Lie group is 2-step nilpotent. This
proves (ii). To finish the proof of (i) we have to show that, under this assumption,
� is completely skew-symmetric and has isotropic support. The complete skew-
symmetry follows from �X D 1

2
adX and the bi-invariance. Similarly, using the

bi-invariance, we have

4h�XY; �ZWi D hŒX;Y�; ŒZ;W�i D �hY; ŒX; ŒZ;W��i D 0;

since the Lie algebra is 2-step nilpotent. This shows that †� is isotropic.
ut

Corollary 3.5.3 With the above notations, let L � V be a maximally isotropic
subspace. The correspondence � 7! L.�/ defines a bijection between the points of
the orbit spaceƒ3L=GL.L/ and isomorphism classes of pairs .L; h/ consisting of a
simply connected Lie group L endowed with a flat bi-invariant pseudo-Riemannian
metric h of signature .k; l/.

Corollary 3.5.4 Any simply connected Lie group L with a flat bi-invariant metric h
of signature .k; l/ contains a normal subgroup of dimension � max.k; l/ � 1

2
dim V

which acts by translations on the pseudo-Riemannian manifold .L; h/ Š R
k;l.
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Proof Let a WD ker.X 7! �X/ � V be the kernel of �. Then a D †?
� is co-isotropic

and defines an Abelian ideal a � l WD LieL Š V Š Rk;l. The corresponding
normal subgroup A � L D L.�/ is precisely the subgroup of translations. So we
have shown that dim A � max.k; l/ � 1

2
dim V . ut

Remarks 3.5.5

1) The number dim†� is an isomorphism invariant of the groups L D L.�/, which
is independent of the metric. We will denote it by s.L/. Let L3 � L4 � � � � � L
be a filtration, where dim Lj D j runs from 3 to dim L. The invariant dim†�
defines a decomposition of ƒ3L=GL.L/ as a union

f0g [
dim L[
jD3

ƒ3
regLj=GL.Lj/;

where ƒ3
regR

j � ƒ3
R

j is the open subset of 3-vectors with j-dimensional
support. The points of the stratum ƒ3

regLj=GL.Lj/ Š ƒ3
regR

j=GL. j/ correspond
to isomorphism classes of pairs .L; h/ with s.L/ D j.

2) Since in the above classification †� is isotropic, it is clear that a flat (or 2-step
nilpotent) bi-invariant metric on a Lie group is indefinite, unless � D 0 and the
group is Abelian. It follows from Milnor’s classification of Lie groups with a flat
left-invariant Riemannian metric [95] that a 2-step nilpotent Lie group with a flat
left-invariant Riemannian metric is necessarily Abelian.

Since a nilpotent Lie group with rational structure constants has a (co-compact)
lattice [94], we obtain.

Corollary 3.5.6 The groups .L.�/; h/ admit lattices � � L.�/, provided that � has
rational coefficients with respect to some basis. M D M.�; �/ WD � n L.�/ is a flat
compact homogeneous pseudo-Riemannian manifold. The connected component
of the identity in the isometry group of M is the image of the natural group
homomorphism � from L.�/ into the isometry group of M.

Proof First we remark that the bi-invariant metric h induces an L.�/-invariant
metric on the homogeneous space M D �nL.�/. Let G be the connected component
of the identity in the isometry group of .L.�/; h/ Š Rk;l. The connected component
of the identity in the isometry group of M is the image of the centraliser ZG.�/ of
� in G under the natural homomorphism ZG.�/ ! Isom.M/. Now the statement
about the isometry group follows from the fact that the centraliser of the left-action
of � � L.�/ on L.�/ is precisely the right-action of L.�/ on L.�/, since � � L.�/
is Zariski-dense, see Theorem 2.1 of [101] . ut
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3.6 Classification Results for Flat Nearly "-Kähler Manifolds

3.6.1 Classification Results for Flat Nearly Pseudo-Kähler
Manifolds

In this section we denote by C
k;l the complex vector space .Cn; Jcan/, n D k C l,

endowed with the standard Jcan-invariant pseudo-Euclidean scalar product gcan of
signature .2k; 2l/.

Let .M; g; J/ be a flat nearly pseudo-Kähler manifold. Then there exists for each
point p 2 M an open set Up � M containing the point p, a connected open set U0 of
C

k;l containing the origin 0 2 C
k;l and an isometry

ˆ W .Up; g/ Q!.U0; gcan/;

such that at the point p we have:

ˆ�Jp D Jcanˆ�:

In other words, we can suppose, that locally M is a connected open subset of Ck;l

containing the origin 0 and that g D gcan and J0 D Jcan:

Proposition 3.6.1 Let .M; g; J/ be a flat nearly pseudo-Kähler manifold. Then

1) �X ı �Y D 0 for all X;Y;
2) r� D Nr� D 0:

Proof From the curvature identity (3.15) we have for X;Y;Z;W 2 TM

0 D R.W;X;Y;Z/ � R.W;X; JY; JZ/ D g..rXJ/Y; .rZJ/W/ D �g..rZJ/.rXJ/Y;W/

D �g. J.rZJ/J.rXJ/Y;W/ D �4g.�Z �XY;W/:

This shows �X ı �Y D 0 for all X;Y 2 TM and finishes the proof of part 1). The
second part follows from 1) and Nr� D 0: In fact, one has

.rX�/Y D . NrX�/Y C ��XY C Œ�X ; �Y � D 0; for X;Y 2 TM;

which shows part 2). ut
From Theorem 3.1.5 and Proposition 3.6.1 we obtain.

Corollary 3.6.2 Let M � Ck;l be an open neighborhood of the origin endowed with
a nearly pseudo-Kähler structure .g; J/ such that g D gcan and J0 D Jcan. Then the
.1; 2/-tensor

� WD 1

2
JrJ
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defines a constant three-form on M � Ck;l D R2k;2l defined by

�.X;Y;Z/ WD g.�XY;Z/

satisfying

(i) �X �Y D 0; 8X;Y 2 TM;
(ii) f�X; Jcang D 0; 8X 2 TM:

Conversely, we have the next Lemma.

Lemma 3.6.3 (Lemma 5 of [41]) Let � be a constant three-form on an open
connected neighbourhood M � Ck;l of 0 satisfying (i) and (ii) of Corollary 3.6.2.
Then there exists a unique almost complex structure J on M such that

a) J0 D Jcan;

b) f�X; Jg D 0; 8X 2 TM;
c) DJ D �2J�;

where D stands for the Levi-Civita connection of the pseudo-Euclidian vector space
C

k;l. With Nr WD D � � and assuming b), the last equation is equivalent to

c’) NrJ D 0:

More precisely, the almost complex structure is given by the formula

J D exp

 
2

2nX
iD1

xi �@i

!
Jcan

.i/D
 

Id C 2

2nX
iD1

xi �@i

!
Jcan; (3.52)

where xi are linear coordinates of Ck;l D R2k;2l D R2n and @i D @
@xi :

Theorem 3.6.4 Let � be a constant three-form on a connected open set U � C
k;l

containing 0 which satisfies (i) and (ii) of Corollary 3.6.2. Then there exists a unique
almost complex structure given by Eq. (3.52) on U such that

a) J0 D Jcan;

b) M.U; �/ WD .U; g D gcan; J/ is a flat nearly pseudo-Kähler manifold.

Any flat nearly pseudo-Kähler manifold is locally isomorphic to a flat nearly
pseudo-Kähler manifold of the form M.U; �/:

Now we discuss the general form of solutions of (i) and (ii) of Corollary 3.6.2. In
the following we shall freely identify the real vector space V WD Ck;l D R2k;2l D R2n

with its dual V� by means of the pseudo-Euclidian scalar product g D gcan.
Let us recall, that the support of � 2 ƒ3V is defined by

†� WD spanf�XY j X;Y 2 Vg � V:
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Proposition 3.6.5 A three-form � 2 ƒ3V� Š ƒ3V satisfies (i) of Corollary 3.6.2 if
and only if there exists an isotropic subspace L � V such that � 2 ƒ3L � ƒ3V. If
� satisfies (i) and (ii) of Corollary 3.6.2 then there exists a Jcan-invariant isotropic
subspace L � V with � 2 ƒ3L.

Proof The proposition follows from Lemmata 2.3.2 and 2.3.4 of Chap. 2 by taking
L D †�. ut
Remark 3.6.6 From the Proposition 3.6.5 we conclude that there are no strict flat
nearly pseudo-Kähler manifolds of dimension less than 8. We shall see later that the
dimension cannot be smaller than 12, see Corollary 3.6.8.
In the following we set ƒ�W WD �ƒ3;0W Cƒ0;3W�; where W is a complex vector
space.

Theorem 3.6.7 A three-form � 2 ƒ3V� Š ƒ3V satisfies (i) and (ii) of Corol-
lary 3.6.2 if and only if there exists an isotropic Jcan-invariant subspace L � V such
that � 2 ƒ�L � ƒ3L � ƒ3V. (The smallest such subspace L is †�.)

Proof By Proposition 3.6.5, the conditions (i) and (ii) of Corollary 3.6.2 imply the
existence of an isotropic Jcan-invariant subspace L � V such that � 2 ƒ3L. By
Lemma 2.3.3 of Chap. 2 the condition (ii) is equivalent to � 2 ƒ�V: Therefore
� 2 ƒ3L \ƒ�V D ƒ�L. The converse statement follows from the same argument.

ut
Corollary 3.6.8 There are no strict flat nearly pseudo-Kähler manifolds of dimen-
sion less than 12.

Proof By Theorems 3.6.4 and 3.6.7 any flat nearly pseudo-Kähler manifold M is
locally of the form M.U; �/, where � 2 ƒ�L for an isotropic Jcan-invariant subspace
L � V and U � V is an open subset. M.U; �/ is strict if and only if � ¤ 0, which is
possible only for dimC L � 3, i.e. for dim M � 12. ut
Theorem 3.6.9 Any strict flat nearly pseudo-Kähler manifold is locally a pseudo-
Riemannian product M D M0 � M.U; �/ of a flat pseudo-Kähler factor M0 of
maximal dimension and a strict flat nearly pseudo-Kähler manifold M.U; �/ of
(real) signature .2m; 2m/, 4m D dim M.U; �/ � 12. The Jcan-invariant isotropic
support†� has complex dimension m.

Proof By Theorems 3.6.4 and 3.6.7, M is locally isomorphic to an open subset of
a manifold of the form M.V; �/, where � 2 ƒ3V has a Jcan-invariant and isotropic
support L D †�. We choose a Jcan-invariant isotropic subspace L0 � V such that
V 0 WD L C L0 is nondegenerate and L \ L0 D 0 and put V0 D .L C L0/?. Then
� 2 ƒ3V 0 � ƒ3V and M.V; �/ D M.V0; 0/ � M.V 0; �/. Notice that M.V0; 0/ is
simply the flat pseudo-Kähler manifold V0 and that M.V 0; �/ is strict and of split
signature .2m; 2m/, where m D dimC L � 3. ut
Corollary 3.6.10 Let .M; g; J/ be a flat nearly Kähler manifold with a (positive or
negative) definite metric g then � D 0; Nr D D and DJ D 0; i.e. .M; g; J/ is a Kähler
manifold.
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For the rest of this section we consider the case V Š Cm;m and denote a maximal
Jcan-invariant isotropic subspace by L. We will say that a complex three-form � 2
ƒ3.Cm/� has maximal support if spanf�.Z;W; �/jZ;W 2 Cmg D .Cm/�.

Corollary 3.6.11 Any non-zero complex three-form � 2 ƒ3;0L Š ƒ3.Cm/� defines
a complete flat simply connected strict nearly pseudo-Kähler manifold M.�/ WD
M.V; �/, � D � C N� 2 ƒ3L � ƒ3V, of split signature. M.�/ has no pseudo-Kähler
de Rham factor if and only if � has maximal support.

Conversely, any complete flat simply connected nearly pseudo-Kähler manifold
without pseudo-Kähler de Rham factor is of this form.

Proof This follows from the previous results observing that the support of � is
maximally isotropic if and only if � has maximal support. ut
Corollary 3.6.12 The map � 7! M.� C N�/ induces a bijective correspondence
between GLm.C/-orbits on the open subset ƒ3

reg.C
m/� � ƒ3.Cm/� of three-forms

� with maximal support and isomorphism classes of complete flat simply connected
nearly pseudo-Kähler manifolds M.� C N�/ of real dimension 4m � 12 and without
pseudo-Kähler de Rham factor.

Example 3.6.13

1) The case m � 5.
For m D 3; 4; 5 the group GLm.C/ acts transitively on ƒ3

reg.C
m/� D

ƒ3.Cm/� n f0g. Therefore there exists precisely one complete flat simply
connected strict nearly pseudo-Kähler manifold of dimension 12, 16 and 20
respectively.

2) The case m D 6.
GL6.C/ has precisely one open orbit in ƒ3

reg.C
6/�. This orbit consists of

the stable three-forms ƒ3
stab.C

6/� in the sense of Hitchin [75], cf. Sect. 2.1
in Chap. 2. We may recall, that a three-form � on C6 is stable if and only
if � D e�

1 ^ e�
2 ^ e�

3 C e�
4 ^ e�

5 ^ e�
6 for some basis .e1; e2; : : : ; e6/ of C6.

ƒ3.C6/� n ƒ3
stab.C

6/� is precisely the zero-set of the unique homogeneous
quartic SL6.C/-invariant and we have the following strict inclusions:

ƒ3
stab.C

6/� � ƒ3
reg.C

6/� � ƒ3.C6/� n f0g:

An example of an instable regular form is

e�
1 ^ e�

2 ^ e�
3 C e�

1 ^ e�
4 ^ e�

5 C e�
2 ^ e�

4 ^ e�
6 :

3.6.2 Classification of Flat Nearly Para-Kähler Manifolds

In this subsection we consider .Cn; �can/ endowed with the standard �can-anti-
invariant pseudo-Euclidian scalar product gcan of signature .n; n/:
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Let .M; g; �/ be a flat nearly para-Kähler manifold. Then there exists for each
point p 2 M an open set Up � M containing the point p; a connected open set U0

of Cn containing the origin 0 2 Cn and an isometry ˆ W .Up; g/ Q!.U0; gcan/; such
that in p 2 M we haveˆ��p D �canˆ�: In other words, we can suppose, that locally
M is a connected open subset of Cn containing the origin 0 and that g D gcan and
�0 D �can:

Proposition 3.6.14 Let .M; g; �/ be a flat nearly para-Kähler manifold. Then

1) �X ı �Y D 0 for all X;Y 2 TM;
2) r� D Nr� D 0:

Summarising Theorem 3.1.5 and Proposition 3.6.14 we obtain the next Corollary.

Corollary 3.6.15 Let M � Cn be an open neighbourhood of the origin endowed
with a nearly para-Kähler structure .g; �/ such that g D gcan and �0 D �can. The
.1; 2/-tensor

� WD �1
2
�D�

defines a constant three-form on M � Cn D Rn;n given by �.X;Y;Z/ D g.�XY;Z/
and satisfying

(i) � 2 C.V/; i.e. �X �Y D 0; 8X;Y 2 TM;
(ii) f�X; �cang D 0; 8X 2 TM:

The rest of this subsection is devoted to the local classification result. In Sect. 3.6.2
we study the structure of the subset of C.V/ given by the condition (ii) in more detail
and give global classification results. The converse statement of Corollary 3.6.15 is
given in the next lemma.

Lemma 3.6.16 (Lemma 2.10 of [43]) Let � be a constant three-form on an
open connected neighbourhood M � Cn of the origin 0 satisfying (i) and (ii) of
Corollary 3.6.15. Then there exists a unique para-complex structure � on M such
that

a) �0 D �can;

b) f�X; �g D 0; 8X 2 TM;
c) D� D �2��;
where D is the Levi-Civita connection of the pseudo-Euclidian vector space Cn:

Let Nr WD D � � and assume b) then c) is equivalent to

c)’ Nr� D 0:

Furthermore, this para-complex structure � is skew-symmetric with respect to gcan:

In fact, one shows, that the para-complex structure � is given by the following
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formula

� D exp

 
2

2nX
iD1

xi �@i

!
�can

.i/D
 

Id C 2

2nX
iD1

xi �@i

!
�can; (3.53)

where xi are linear coordinates of Cn D R
n;n D R

2n and @i D @
@xi :

Theorem 3.6.17 Let � be a constant three-form on a connected open set U � Cn

containing the origin 0 which satisfies (i) and (ii) of Corollary 3.6.15. Then there
exists a unique almost para-complex structure

� D exp

 
2

2nX
iD1

xi �@i

!
�can (3.54)

on U such that a) �0 D �can; and b) M.U; �/ WD .U; g D gcan; �/ is a flat nearly
para-Kähler manifold. Any flat nearly para-Kähler manifold is locally isomorphic
to a flat nearly para-Kähler manifold of the form M.U; �/:

The Variety C�.V/

Now we discuss the solution of (i) and (ii) of Corollary 3.6.15. In the following
we shall freely identify the real vector space V WD Cn D Rn;n D R2n with its
dual V� by means of the pseudo-Euclidian scalar product g D gcan. The geometric
interpretation is given in terms of an affine variety C� .V/ � ƒ3V:

Proposition 3.6.18 A three-form � 2 ƒ3V� Š ƒ3V satisfies (i) of Corol-
lary 3.6.15, i.e. �X ı �Y D 0;X;Y 2 V; if and only if there exists an isotropic
subspace L � V such that � 2 ƒ3L � ƒ3V. If � satisfies (i) and (ii) of
Corollary 3.6.15 then there exists a �can-invariant isotropic subspace L � V with
� 2 ƒ3L.

Proof The proposition follows from Lemmata 2.3.2 and 2.3.4 of Chap. 2 by taking
L D †�. ut
A three-form � on a para-complex vector space .W; �can/ decomposes with respect
to the grading induced by the decomposition W1;0 ˚ W0;1 into � D �C C ��: In the
remainder of this subsection we set for convenience �C 2 ƒCW WD ƒ2;1WCƒ1;2W
and �� 2 ƒ�W WD ƒ3;0W Cƒ0;3W:

Theorem 3.6.19 A three-form � 2 ƒ3V� Š ƒ3V satisfies (i) and (ii) of
Corollary 3.6.15 if and only if there exists an isotropic �can-invariant subspace L
such that � 2 ƒ�L D ƒ3;0L C ƒ0;3L � ƒ3L � ƒ3V (The smallest such subspace
L is †�.).

Proof By Proposition 3.6.18, the conditions (i) and (ii) of Corollary 3.6.15 imply
the existence of an isotropic �can-invariant subspace L � V such that � 2 ƒ3L.
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By Lemma 2.3.3 of Chap. 2 the condition (ii) is equivalent to � 2 ƒ�V: Therefore
� 2 ƒ3L \ƒ�V D ƒ�L. The converse statement follows from the same argument.

ut
Corollary 3.6.20

(i) The conical affine variety

C� .V/ WD f� j � satisfies .i/ and .ii/g � ƒ3V

has the following description

C� .V/ D
[
L�V

ƒ�L D
[
L�V

.ƒ3LC Cƒ3L�/;

where the union is over all �-invariant maximal isotropic subspaces.
(ii) If dim V < 12 then it holds C� .V/ D ƒ3VC [ƒ3V�:

(iii) Any flat nearly para-Kähler manifold M is locally of the form M.U; �/, for
some � 2 C� .V/ and some open subset U � V:

(iv) There are no strict flat nearly para-Kähler manifolds of dimension less than 6.

Proof

(i) follows from Theorem 3.6.19.
(ii) Let L � V be a �-invariant isotropic subspace. If dim V < 12; then dim L < 6

and, hence, either dim LC < 3 or dim L� < 3: In the first case we have

ƒ�L D ƒ3LC Cƒ3L� D ƒ3L� � ƒ3V�;

in the second case it is ƒ�L D ƒ3LC Cƒ3L� D ƒ3LC � ƒ3VC:
(iii) is a consequence of (i), Theorems 3.6.17 and 3.6.19.
(iv) By (iii) the strict flat nearly para-Kähler manifold M is locally of the form

M.U; �/; which is strict if and only if � ¤ 0. This is only possible for dim L �
3, i.e. for dim M � 6.

ut
Example 3.6.21 We have the following example which shows that part (ii) of
Corollary 3.6.20 fails in dimension � 12:

Consider .V; �/ D .C6; i"/ D R6 ˚ i"R6; for " D 1; with a basis given by
.eC
1 ; : : : ; e

C
6 ; e

�
1 ; : : : ; e

�
6 /; such that ei̇ form a basis of V˙ with g.eC

i ; e
�
j / D ıij:

Then the form � WD eC
1 ^ eC

2 ^ eC
3 C e�

4 ^ e�
5 ^ e�

6 lies in the variety C� .V/:
Theorem 3.6.22 Any strict flat nearly para-Kähler manifold is locally a pseudo-
Riemannian product M D M0�M.U; �/ of a flat para-Kähler factor M0 of maximal
dimension and a flat nearly para-Kähler manifold M.U; �/, � 2 C� .V/, of signature
.m;m/, 2m D dim M.U; �/ � 6 such that †� has dimension m.
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Proof By Theorems 3.6.17 and 3.6.19, M is locally isomorphic to an open subset of
a manifold of the form M.V; �/, where � 2 ƒ3V has a �can-invariant and isotropic
support L D †�. We choose a �can-invariant isotropic subspace L0 � V such that
V 0 WD L C L0 is nondegenerate and L \ L0 D 0 and put V0 D .L C L0/?. Then
� 2 ƒ3V 0 � ƒ3V and M.V; �/ D M.V0; 0/ � M.V 0; �/. Notice that M.V0; 0/ is
simply the flat para-Kähler manifold V0 and that M.V 0; �/ is strict of split signature
.m;m/, where m D dim L � 3. ut
Corollary 3.6.23 Any simply connected nearly para-Kähler manifold with a
(geodesically) complete flat metric is a pseudo-Riemannian product M D M0�M.�/
of a flat para-Kähler factor M0 D Rl;l of maximal dimension and a flat nearly para-
Kähler manifold M.�/ WD M.V; �/, � 2 C� .V/, of signature .m;m/ such that †�
has dimension m D 0; 3; 4; : : :.

Next we wish to describe the moduli space of (complete simply connected)
flat nearly para-Kähler manifolds M of dimension 2n up to isomorphism. Without
restriction of generality we will assume that M D M.�/ has no para-Kähler de Rham
factor, which means that � 2 C� .V/ has maximal support †�, i.e. dim†� D n. We
denote by Creg

� .V/ � C� .V/ the open subset consisting of elements with maximal
support. The group

G WD Aut.V; gcan; �can/ Š GL.n;R/

acts on C� .V/ and preserves Creg
� .V/. Two nearly para-Kähler manifolds M.�/ and

M.�0/ are isomorphic if and only if � and �0 are related by an element of the group G.
For � 2 C� .V/ we denote by p, q the dimensions of the eigenspaces of � on †�

for the eigenvalues 1;�1, respectively. We call the pair . p; q/ 2 N0 � N0 the type
of �. We will also say that the corresponding flat nearly para-Kähler manifold M.�/
has type . p; q/. We denote by Cp;q

� .V/ the subset of C� .V/ consisting of elements of
type . p; q/. Notice that p C q � n with equality if and only if � 2 Creg

� .V/. We have
the following decomposition

Creg
� .V/ D

[
. p;q/2…

Cp;q
� .V/;

where … WD f. p; q/j p; q 2 N0 n f1; 2g; p C q D ng. The group G D GL.n;R/ acts
on the subsets Cp;q

� .V/ and we are interested in the orbit space Cp;q
� .V/=G.

Fix a �-invariant maximally isotropic subspace L � V of type . p; q/ and put
ƒ�

regL WD ƒ�L \ Creg
� .V/ � Cp;q

� .V/. The stabiliser GL Š GL.LC/ � GL.L�/ Š
GL.p;R/ � GL.q;R/ of L D LC C L� in G acts on ƒ�

regL.

Theorem 3.6.24 There is a natural one-to-one correspondence between complete
simply connected flat nearly para-Kähler manifolds of type . p; q/, p C q D n, and
the points of the following orbit space:

Cp;q
� .V/=G Š ƒ�

regL=GL � ƒ�L=GL D ƒ3LC=GL.LC/ �ƒ3L�=GL.L�/:
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Proof Consider two complete simply connected flat nearly para-Kähler manifolds
M, M0. By the previous results we can assume that M D M.�/, M0 D M.�0/ are
associated with �; �0 2 Cp;q

� .V/. It is clear that M and M0 are isomorphic if � and �0
are related by an element of G. To prove the converse we assume that ' W M ! M0
is an isomorphism of nearly para-Kähler manifolds. By the results of Sect. 3.5 �
defines a simply transitive group of isometries. This group preserves also the para-
complex structure � , which is r-parallel and hence left-invariant. This shows that
M and M0 admit a transitive group of automorphisms. Therefore, we can assume
that ' maps the origin in M D V to the origin in M0 D V . Now ' is an isometry of
pseudo-Euclidian vector spaces preserving the origin. Thus ' is an element of O.V/
preserving also the para-complex structure � and hence ' 2 G.

The identification of orbit spaces can be easily checked using Lemma 2.3.2 and
the fact that any �-invariant isotropic subspace† D †C C†� can be mapped onto
L by an element of G. ut

3.7 Conical Ricci-Flat Nearly Para-Kähler Manifolds

Definition 3.7.1 A conical semi-Riemannian manifold .M; g; �/ is a semi-
Riemannian manifold .M; g/ endowed with a vector field � such that

r� D Id ; (3.55)

where r is the Levi-Civita connection of g: It is called regular, if the function
k WD g.�; �/ has no zeros.

A conical nearly para-Kähler manifold .M; �; g; �/ is a nearly para-Kähler
manifold .M; �; g/ such that .M; g; �/ is conical and a conical para-Kähler manifold
.M;P; g; �/ is a para-Kähler manifold .M;P; g/ such that .M; g; �/ is conical.
For a proof of the following Proposition we refer to Proposition 6 of [39].

Proposition 3.7.2 Let .M; g; �/ be a regular conical semi-Riemannian manifold.
Then the level sets Mc WD fk D cg; c 2 R; are smooth hypersurfaces perpendicular
to � or empty. If Mc ¤ ;; then g induces a semi-Riemannian metric gc on Mc:

Theorem 3.7.3 Let .M; �; g; �/ be a Ricci-flat conical (strict) nearly para-Kähler
manifold and define an endomorphism field P by

P WD
�

Id C 1

4
N�

�
ı �: (3.56)

(i) If N.X;Y;Z/ has isotropic support, then .M;P; g/ is a para-Kähler manifold.
(ii) If the real dimension of M is 6, then .M;P; g/ is a para-Kähler manifold.
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We remark that the tuple .g; �/ remains the same and in consequence .M; g; �/
is conical and Ricci-flat. Hence .M; �; g; �/ is a Ricci-flat conical para-Kähler
manifold.

Proof It suffices to show (i), since by Corollary 3.1.11 the Nijenhuis tensor
N.X;Y;Z/ has isotropic support in dimension 6. Using fN� ; �g D 0; where N� was
defined as the endomorphism field given by N�Y D N.�;Y/; we compute

P2 D
��

Id C 1

4
N�

�
ı �
�2

D
�

Id C 1

4
N�

�
ı
�

Id � 1

4
N�

�
ı �2

D Id � 1

16
N� ı N� D Id:

Moreover, the condition

g.PX;Y/ D �g.X;PY/

follows, since N� ı � is skew-symmetric. In fact, we have

g.N� �X;Y/ D g.N.�; �X/;Y/ D 4g.�.r��/�X;Y/ D �4g..r��/X;Y/;

which is skew-symmetric in X;Y:Hence .M;P; g/ defines an almost para-Hermitian
structure. To show that it is para-Kähler we determine

.rXP/Y D rX

��
Id C 1

4
N�

�
ı �
�

Y D .rX�/Y C 1

4
rX.N� ı �/Y

D .rX�/Y C 1

4

�
.rXN� /�Y C N� .rX�/Y

�

D .rX�/Y C 1

4
NrX� .�Y/ D .rX�/Y � 1

4
�NXY D 0:

In this computation we used that N.�; �; �/ has isotropic support and that N.X;Y/ is
r-parallel (by Lemma 3.1.13). Namely, it is

.rXN� /W D rX.N.�;W// � N.�;rXW/ D .rXN/.�;W/C N.rX�;W/ D NrX�W:

The statement that N.X;Y;Z/ is r-parallel is also shown in Lemma 3.1.13 and it
does not vanish if .M; �; g/ is strict nearly para-Kähler. ut
Remark 3.7.4 As the attentive reader observes, the ansatz P D 


Id C 1
4
N�
�ı� yields

an almost para-complex structure, if N is of type .3; 0/ C .0; 3/ and has isotropic
support. This structure is para-Kähler if and only if it holds NrX�Y D 4�.rX�/Y;
i.e. NXY D NrX�Y: If M is strict nearly para-Kähler, this implies rX� D X: This
means � needs to be conical.
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Theorem 3.7.5 Let .M;P; g; �/ be a Ricci-flat conical para-Kähler manifold of
(real) dimension 2m carrying a (non-vanishing) parallel 3-form '.X;Y;Z/ of type
.3; 0/C .0; 3/ with isotropic support and define an endomorphism field � by

� D
�

Id � 1

4
'�

�
ı P: (3.57)

Then .M; �; g/ is a (strict) nearly para-Kähler manifold.
As the pair .g; �/ is not changed, .M; g; �/ is conical and Ricci-flat. In consequence
.M; �; g; �/ is a (strict) Ricci-flat conical nearly para-Kähler manifold.

Proof Here the endomorphism field 'X is given by 'XY WD g�1 ı '.X;Y; �/:9 Since
'.X;Y;Z/ has type .3; 0/C.0; 3/ one has f'�;Pg D 0 (this follows from Eq. (2.35))
and we compute as before

�2 D
��

Id � 1

4
'�

�
ı P

�2
D
�

Id � 1

16
'� ı '�

�
ı P2 D Id:

The last step follows, since '.X;Y;Z/ has isotropic support (cf. the proof of
Corollary 3.1.11 (b)). By the type condition it is '.�;PX;Y/ D '.P�;X;Y/ D
�'.P�;Y;X/ which means that '� ı P is skew-symmetric. From this it follows
g.�X;Y/ D �g.X; �Y/: It is left to check the nearly para-Kähler condition

.rX�/Y D rX

��
Id � 1

4
'�

�
ı P

�
Y D .rXP/Y � 1

4
rX.'� ı P/Y

D �1
4

�
.rX'�/ ı PY C '�.rXP/Y

� D �1
4
'rX�.PY/ D 1

4
P.'XY/;

which is skew-symmetric, since '.X;Y;Z/ is a 3-form. Hence .M; �; g/ is a nearly
para-Kähler manifold. If '.X;Y;Z/ is non-vanishing, then .M; �; g/ is strict nearly
para-Kähler. ut
Remark 3.7.6 One may choose �'.�; �; �/; 0 ¤ � 2 R; in place of '.�; �; �/:
Geometrically this corresponds to rescaling the conical vector field � by the factor �:

Remark 3.7.7 Let us make an observation concerning Theorems 3.7.3 and 3.7.5.
The Ansatz for � only gives a para-complex structure, if it is '� ı '� D 0:

This implies, that '.X;Y;Z/ has isotropic support and a para-Hermitian metric
has automatically split signature. Therefore we only can have these examples for
indefinite metrics (compare also Remark 3.7.11 for more comments).
In the following, we suppose that � is space-like, i.e. it is g.�; �/ > 0:We can always
achieve this by replacing the metric g by �g: Since ˙g have the same Levi-Civita
connection, this operation is compatible with the nearly para-Kähler condition (3.1)

9Here g�1 is the inverse of the map g W TM ! T�M; X 7! g.X; �/.
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and the conical condition (3.55). One observes that one always can assume M1 D
fg.�; �/ D 1g ¤ ; after rescaling g by a positive constant without violating neither
the nearly para-Kähler nor the conical condition.

Proposition 3.7.8 Let .M;P; g; �/ be a regular conical para-Kähler manifold with
M1 ¤ ;; then M1 with the induced metric g1 and the Reeb vector field T D P�jM1

is
a para-Sasaki manifold.

The manifold M is Ricci-flat if and only if M1 is an Einstein manifold with scalar
curvature 2m.2m C 1/:

Proof The conical vector field � is regular and Proposition 3.7.2 implies that
.M1; g1/ is a semi-Riemannian manifold. Denote by r1 the Levi-Civita connection
of g1: By construction T is time-like, i.e. g1.T;T/ D �1 and tangential (see
Proposition 3.7.2). Moreover, T is a Killing vector field, since one has for vector
fields X;Y on M1

LTg1.X;Y/ D g1.r1
XT;Y/C g1.X;r1

YT/ D g.rXP�;Y/C g.X;rYP�/

D g.PrX�;Y/C g.X;PrY�/ D g.PX;Y/C g.X;PY/ D 0:

Additionally T is geodesic, since for X 2 TM1 it is

g1.r1
TT;X/ D g.rTT;X/ D g.rTP�;X/ D g.PT;X/ D 0:

Since T is a Killing vector field ˆ WD r1T is skew-symmetric and we have

ˆX D r1
XT D .rXT/tan D .PX/tan D PX � g.�;PX/� D PX C g1.T;X/�;

where �tan is the projection on TM1: This meansˆT D 0 andˆX D PX for X 2 TM1

perpendicular to T: It follows

ˆ2.X/ D PˆX C g1.T; ˆX/� D PˆX D X C g1.T;X/T:

We compute .r1
Xˆ/Y for Y D T

.r1
Xˆ/T D r1

X.ˆT/ �ˆ.r1
XT/ D �ˆ2.X/ D �X � g1.T;X/T

and for Y perpendicular to T

.r1
Xˆ/Y D r1

X.ˆY/ �ˆ.r1
XY/

.�/D P.r1
XY/ � g.�;Pr1

XY/� �ˆ.r1
XY/ � g1.X;Y/T

.��/D �g1.X;Y/T:
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For .�/ we used

r1
X.ˆY/ D r1

X.PY/ D .rX.PY//tan D .PrXY/tan D .P.rXY/tan/tan C g.rXY; �/T

D .P.r1
XY//tan � g. Y;rX�/T D P.r1

XY/ � g.�;Pr1
XY/� � g1.X; Y/T

and .��/ follows from

P.r1
XY/ � g.�;Pr1

XY/� �ˆ.r1
XY/ D g1.P�;r1

XY/� � g1.T;r1
XY/� D 0:

Summarizing it holds

.r1
Uˆ/V D �g1.U;V/T C g1.V;T/U:

Hence we have checked all the conditions of Definition 2.6.1 and conclude that M1

is a para-Sasaki manifold. In consequence the cone cM1 is a para-Kähler manifold,
which is Einstein if and only if .M1; g1/ is Einstein and the scalar curvature of g1
equals 2m.2m C 1/ (cf. Remark 2.6.2 (i) and (ii)). ut
Theorem 3.7.9 Let .N5; g;T/ be a para-Sasaki Einstein manifold of dimension 5
and denote by .M6 D bN;bg;P; �/ the associated conical Ricci-flat para-Kähler
manifold on the cone M D bN over N; then the cone M can be endowed with the
structure of a conical Ricci-flat strict nearly para-Kähler six-manifold .M; �;bg; �/:
Moreover, M is flat if and only if N has constant curvature.

Proof By Remark 2.6.2 (ii) the cone bN is a conical Ricci-flat para-Kähler six-
manifold .bN; Og;P; �/ and hence admits a non-vanishing parallel three-form ' with
isotropic support. From Theorem 3.7.5 we obtain a strict nearly para-Kähler
structure � on bN such that .bN; �; Og; �/ is a conical Ricci-flat nearly para-Kähler six-
manifold. The last statement follows from the fact that bN is flat if and only if N has
constant curvature. ut
In the following we call a nearly para-Kähler manifold M, which is the space-like
metric cone M D bN over some semi-Riemannian manifold N a nearly para-Kähler
cone. Summarising we have shown the following result.

Theorem 3.7.10 There is a one to one correspondence between Ricci-flat strict
nearly para-Kähler cones with isotropic Nijenhuis tensor and space-like cones over
para-Sasaki Einstein manifolds endowed with a parallel 3-form having isotropic
support.

Remarks 3.7.11

(a) An analogous Ansatz can be made in almost complex geometry.

(i) In this setting one still needs a form with isotropic support. Since non-trivial
three-forms with isotropic support do not exist for Riemannian metrics,
the Ansatz does only give something new, i.e. non-Kähler examples,
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for pseudo-Riemannian metrics and real dimension dim M � 12; cf.
Theorem 3.6.7 and Corollary 3.6.8.

(ii) Further one would get a cone over a Sasaki Einstein manifold with
indefinite metric. Such manifolds can for instance be obtained as T-duals
of homogeneous Sasaki manifolds of real dimension at least 11. These
manifolds are only classified in dimensions � 7 and the classification is
possibly extended to dimension 9 and 11 using [19] (see Section 11.1.1 of
[20]).

Details shall be postponed to future work.
(b) When we are not insisting on irreducible examples, one has the following

construction in the almost pseudo-Hermitian world: Denote by .Mm; gM; JM/

and .Nn; gN ; JN/ two nearly Kähler Einstein-manifolds with the same Einstein
constant, then the pseudo-Riemannian product .M � N; gM ˚ .�gN/; JM ˚ JN/

is a nearly pseudo-Kähler manifold with vanishing Ricci curvature.

3.8 Evolution of Hypo Structures to Nearly Pseudo-Kähler
Six-Manifolds

3.8.1 Linear Algebra of Five-Dimensional Reductions
of SU.1; 2/-Structures

In this short section we prepare the linear algebra of dimensional reductions.

Lemma 3.8.1 Let V be a six-dimensional real vector space and .!; �/ 2 ƒ2V� �
ƒ3V� a compatible normalised pair of stable forms. Denote by h D h.!;�/ the
induced metric, let N 2 V be a unit vector with h.N;N/ D �" 2 f˙1g and denote
by W D N? the orthogonal complement of R �N: Then the quadruple .�; !1; !2; !3/
defined by

� D ˇ .Ny!/; !1 D ˛ !jW ; !2 D NyJ�
� �; !3 D �Ny� (3.58)

with ˛; ˇ 2 f˙1g defines an SU". p; q/-structure with p C q D 2 on W:
Moreover, one has

! D ˛ !1 C ˇ n ^ �;
� D �"ˇ � ^ !2 � n ^ !3;

J�
� � D �"ˇ � ^ !3 C n ^ !2;

where n 2 V� is the dual of N and

� ^ !2 D �"ˇ �jW and � ^ !3 D �"ˇ J�
� �jW :
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Proof As above (see Eqs. (2.7) and (2.20) of Chap. 2) we may choose a basis
fe1; : : : ; e6g of V; such that the stable forms !; � and J�

� � are given in the normal
forms

! D �e12 � e34 C e56;

� D e135 � .e146 C e236 C e245/

with �.�/ D �4	˝2 for 	 D e123456 > 0. Furthermore, it holds J�ei D �eiC1,
J�eiC1 D ei for i 2 f1; 3; 5g and

J�
� � D e246 � .e235 C e145 C e136/:

1) In the case " D 1 we can suppose N D e1 and obtain

� D �ˇ e2; ˛ !1 D �e34 C e56; !2 D �e36 � e45; !3 D �e35 C e46:

One easily sees

!21 D �!22 D �!23 D �2e3456 and � ^ !2j D 2ˇ e23456 ¤ 0

and !j ^ !k D 0 for 1 � j < k � 3:

Moreover, one gets

! D ˛ !1 C ˇ n ^ �;
� D �ˇ � ^ !2 � n ^ !3 and

J�
� � D �ˇ � ^ !3 C n ^ !2;

where n is the dual of N: Further, one has

� ^ !2 D �ˇ �jW and � ^ !3 D �ˇ J�
� �jW :

2) For " D �1 we can choose N D e5 and get

� D ˇ e6; ˛ !1 D �e12 � e34; !2 D �e14 � e23; !3 D �e13 C e24:

One easily sees

!21 D !22 D !23 D 2e1234 and � ^ !2j D 2ˇ e12346 ¤ 0

and !j ^ !k D 0 for 1 � j < k � 3:
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Moreover, one gets

! D ˛ !1 C ˇ n ^ �;
� D ˇ � ^ !2 � n ^ !3 and

J�
� � D ˇ � ^ !3 C n ^ !2;

where n is the dual of N: Finally, one has

� ^ !2 D ˇ �jW and � ^ !3 D ˇ J�
� �jW :

ut

3.8.2 Evolution of Hypo Structures

A five-manifold N5 carries an SU". p; q/-structure with p C q D 2 provided,
that its frame bundle admits a reduction to SU". p; q/: For the group SU.2/ it is
shown in [36], that such a structure is determined by a quadruple of differential
forms .!1; !2; !3; �/:We shortly derive the analogous statement for our setting. Let
f W N5 ! M6 be an oriented hypersurface in a six-manifold M6 endowed with an
SU.1; 2/-structure given by a triple .!;  C;  �/ of compatible stable forms (cf.
Sect. 2.1).

This SU.1; 2/-structure induces an SU". p; q/-structure with p Cq D 2 on N5 via
the definitions

!1 D ˛ f �!; b� !2 D 	y �; bC !3 D 	y C; � D ˇ 	y!; (3.59)

where ˛; ˇ; bC; b� 2 f˙1g are real constants and 	 denotes the unit normal vector
field of N5 of length " D �g.	; 	/:

In case, that the holonomy of M6 is contained in SU.1; 2/ or in other words the
SU.1; 2/-structure is integrable, which is equivalent to the equations

d! D 0; d C D 0 and d � D 0 (3.60)

we obtain a hypo structure on N in the sense of the next Definition.

Definition 3.8.2 An SU". p; q/-structure with p C q D 2 determined by
.�; !1; !2; !3/ is called hypo provided, that it satisfies

d!1 D 0; d.� ^ !2/ D 0 and d.� ^ !3/ D 0:

For the Riemannian case the next lemma is shown in [36].
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Lemma 3.8.3 Let f W N5 ! M6 be an oriented hypersurface in a six-manifold
M6 endowed with an integrable SU.1; 2/-structure, then the induced SU". p; q/-
structure, given by (3.59) and with p C q D 2; on N5 is a hypo-structure.

Proof From ˛ f �! D !1 one has d!1 D ˛ d. f �!/ D ˛ f �.d!/ D 0: Moreover,
with help of the Lemma 3.8.1 one has

bC f � C D �"ˇ � ^ !2 and b� f � � D �"ˇ � ^ !3;

which implies using (3.60)

�"ˇ d.� ^ !3/ D b� d. f � �/ D b� f �d � D 0

D bC d. f � C/ D bC f �d C D �"ˇ d.� ^ !2/:

This shows, that the induced SU". p; q/-structure is a hypo structure on N5: ut
Starting with an SU". p; q/-structure with p C q D 2 on N5 determined by

.�; !1; !2; !3/ we define a two-form

! D ˛!1 C "ˇ dt ^ � (3.61)

and three-forms  ˙ on N5 � R by

 C D aC� ^ !2 C bCdt ^ !3;  � D a�� ^ !3 C b�dt ^ !2; (3.62)

where t is the coordinate on R and ˛; ˇ; a˙; b˙ 2 f˙1g are non-zero real constants.
Note, that the a˙ are determined from ˛; ˇ and b˙ by Lemma 3.8.1. Then a partial
converse of the result of the last Lemma is given in the next Proposition.

Proposition 3.8.4 One can lift a hypo SU". p; q/-structure with p C q D 2 to an
integrable SU.1; 2/-structure on N � R if it belongs to a one-parameter family
of SU". p; q/-structures .�.t/; !1.t/; !2.t/; !3.t//; where t is the coordinate on R;

satisfying the Conti-Salamon type evolution equations

@t!1 D "ˇ˛ d5�; (3.63)

@t.� ^ !3/ D a� b� d!2; (3.64)

@t.� ^ !2/ D aC bC d!3: (3.65)

Proof In this proof we write d5 and d6 for the exterior differentials on N5 and M6 D
N � R: With (3.61) it follows, that

0 D d6! D ˛d5!1 C .˛@t!1 � "ˇ d5�/ ^ dt:
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This is equivalent to d5!1 D 0 and @t!1 D "ˇ˛ d5�; i.e. Eq. (3.63). From the
definition of  C one gets, that

0 D d6 C D aCd5.!2 ^ �/C dt ^ 
aC@t.!2 ^ �/ � bCd5!3
�

is equivalent to d5.!2 ^ �/ D 0 and @t.!2 ^ �/ D aCbC d5!3; i.e. Eq. (3.65). For
 � as given in (3.62) we obtain, that

0 D d6 � D a�d5.!3 ^ �/C dt ^ .a�@t.!3 ^ �/ � b�d5!2/

itself is equivalent to d5.!3 ^ �/ D 0 and Eq. (3.64). ut
Examples of this type are given by the pseudo-Riemannian cousins of Sasaki-

Einstein manifolds, namely para-Sasaki-Einstein and Lorentzian-Sasaki-Einstein
manifolds. These can be characterised by the fact, that the space-like/time-like cone
is a Ricci-flat Kähler-Einstein manifold or equivalently this cone has an integrable
SU.1; 2/-structure. Here one considers the special solution of the above evolution
equations on N5 � R given by

! D t2˛!1 C t"ˇdt ^ �; (3.66)

 C D aCt3� ^ !2 C t2bCdt ^ !3; (3.67)

 � D a�t3� ^ !3 C t2b�dt ^ !2: (3.68)

The integrability conditions read

0 D d! D d.t2˛!1 C t"ˇdt ^ �/ D tdt ^ .2˛!1 � "ˇd�/;

0 D d C D d.aCt3� ^ !2 C t2bCdt ^ !3/
D t2dt ^ .3aC� ^ !2 � bCd5!3/C t3aCd5.� ^ !2/;

0 D d � D d.a�t3� ^ !3 C t2b�dt ^ !2/
D t2dt ^ .3a�� ^ !3 � b�d5!2/C t3a�d5.� ^ !3/:

This is equivalent to the para-Sasaki-Einstein or Lorentz-Sasaki-Einstein equations

d� D 2"˛ ˇ !1; d!2 D 3b�a�!3 ^ �; d!3 D 3bCaC!2 ^ �: (3.69)

Obviously, Eq. (3.69) imply the hypo equations.
The next result has been discovered in the Riemannian case in [53].

Proposition 3.8.5 Let f W N5 ! M6 be a totally geodesic oriented hypersurface in a
nearly pseudo-Kähler manifold M6 with unit normal vector field 	; then the induced
SU". p; q/-structure with p C q D 2 and " D �g.	; 	/ satisfies the hypo equations.
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Proof From the first nearly Kähler equation one has

d!1 D ˛d. f �!/ D ˛f �d! D 3˛f � C D 3.˛aC/� ^ !2: (3.70)

Moreover, we compute

ˇ�1 d� D d.	y!/ D .L	!/ � 	yd! D .L	!/ � 3	y C D .L	!/� 3bC!3;

where L	 is the Lie-derivative. Since N5 is totally geodesic, it is .L	!/ D r	!:

Using Nr! D 0 we get with Nr D r C 1
2
T

r	!.X;Y/ D Nr	!.X;Y/C 1

2
Œ!.T.	;X/;Y/C !.X;T.	;Y//�

D !.T.	;X/;Y/ D bC!3.X;Y/;

as with !.�; �/ D g.�; J�/ it is

!.T.	;X/; Y/ D �g. J.r	J/X; JY/ D g.X; .r	J/Y/ D  C.	;X; Y/ D bC!3.X; Y/;

which shows

d� D �2ˇbC !3:

Finally, we compute with help of d � D �2! ^ !, i.e. the second nearly Kähler
equation

b�d!2 D d.	y �/ D L	 � � 	yd � D r	 
� C 2	y.! ^ !/

D Nr	 
� � 1

4
	y
X

k

�k.eky �/ ^ .eky �/C 2	y.! ^ !/

.�/D �1
4
	y.2! ^ !/C 2	y.! ^ !/ D 3

2
	y.! ^ !/ D 3.˛ˇ/� ^ !1;

where fe1; : : : ; e6 D 	g is some adapted basis and where in .�/ we used

6X
kD1

�k.eky �/ ^ .eky �/ D 2! ^ !;

which holds for a nearly pseudo-Kähler six-manifold. ut
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Theorem 3.8.6 Any totally geodesic hypersurface N5 of a nearly pseudo-Kähler
six-manifold M6 carries a hypo structure given by the quadruplet . Q�; Q!1; Q!2; Q!3/ D
.�;�"!3; !2; !1/; and in consequence the Conti-Salamon type evolution equations
can be solved on N � R:

Proof By the last Lemma we obtain a hypo SU". p; q/-structure . Q�; Q!1; Q!2; Q!3/;
which is a solution of the first and the third para-Sasaki-Einstein or Lorentz-Sasaki-
Einstein equations (3.69). Using bC D �1 and aC D �ˇ (by Lemma 3.8.1) and
setting ˛ D �1 yields

d Q� D d� D �2.ˇbC/ !3 D 2ˇ !3
ŠŠD 2 ".ˇ˛/ Q!1;

d Q!3 D d!1
(3.70)D 3.˛aC/ � ^ !2 D �3.˛ˇ/ Q� ^ Q!2 ŠŠD 3.bCaC/ Q� ^ Q!2;

since again by Lemma 3.8.1,10 it is bCaC D ˇ D �a�b�: The remaining para-
Sasaki-Einstein or Lorentz-Sasaki-Einstein equation

d Q!2 D d!2 D 3.b�˛ˇ/� ^ !1 D 3.˛ˇ/ Q� ^ Q!3 ŠŠD 3.b�a�/ Q� ^ Q!3
holds true using b� D 1 (by Lemma 3.8.1). ut

3.8.3 Evolution of Nearly Hypo Structures

In this subsection we generalise results of [53] to construct examples of nearly
pseudo-Kähler manifolds via the nearly hypo evolution equations.

Definition 3.8.7 An SU". p; q/-structure with p C q D 2 determined by
.�; !1; !2; !3/ is called nearly hypo provided, that it satisfies the conditions

d!1 D 3˛aC� ^ !2; d.� ^ !3/ D �2a�!1 ^ !1: (3.71)

Proposition 3.8.8 An SU". p; q/-structure .�; !1; !2; !3/ with p C q D 2 can be
lifted to a nearly pseudo-Kähler structure .!.t/;  C.t/;  �.t// on N5 � R defined
in (3.61) and (3.62) if and only if it is a nearly hypo structure which generates
a 1-parameter family of SU". p; q/-structures .�.t/; !k.t// satisfying the following
nearly hypo evolution equations

@t!1 D 3bC˛ !3 C "ˇ˛ d�;

@t.� ^ !3/ D a�b�d!2 � 4"a�˛ˇ!1 ^ �; (3.72)

@t.� ^ !2/ D aCbC d!3:

10Observe, that there is a relative factor " between dual and the metric dual of 	:
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Remark 3.8.9 Setting ˇ D 1 and with b� D 1 D �bC and bCaC D �b�a� D
ˇ D 1 (by Lemma 3.8.1) we get

@t.˛!1/ D �3 !3 C " d�;

@t.� ^ !3/ D �d!2 C 4"�^ .˛!1/; (3.73)

@t.� ^ !2/ D d!3:

For . Q�; Q!1; Q!2; Q!3/ D .��; ˛!1; !2; !3/; this yields

@t Q!1 D �3 Q!3 � " d Q�;
@t. Q� ^ Q!3/ D d Q!2 � 4" Q� ^ Q!1; (3.74)

@t. Q� ^ Q!2/ D �d Q!3:

Hence the exterior differential system on the modified data . Q�; Q!1; Q!2; Q!3/ looks
formally the same as the system found in the Riemannian case [53].

Proof From the definitions of !1; !2 and � we get, that the first nearly Kähler
equation is equivalent to

d! D d.˛!1 C "ˇdt ^ �/ D ˛d!1 C dt ^ .˛@t!1 � "ˇd�/

D 3 C D 3aC� ^ !2 C 3bCdt ^ !3;

i.e. d!1 D 3˛aC� ^ !2 and @t!1 D 3bC˛ !3 C "ˇ˛ d�: For the second nearly
Kähler equation we have

d � D d.a�� ^ !3 C b�dt ^ !2/ D a�d.� ^ !3/C dt ^ .a�@t.� ^ !3/ � b�d!2/

D �2.˛!1 C "ˇdt ^ �/2 D �2!1 ^ !1 � 4"˛ˇ dt ^ !1 ^ �;

which is equivalent to

d.� ^ !3/ D �2a�!1 ^ !1 and @t.� ^ !3/ D a�b�d!2 � 4"a�˛ˇ!1 ^ �:

These are the first two evolution equations and the nearly hypo equations. The third
equation is needed to show, that the nearly hypo property is conserved along the
evolution. Firstly, one has

@t.d!1 � 3˛aC� ^ !2/ D d.@t!1/� 3˛aC@t.� ^ !2/
D d.3bC˛ !3 C "ˇ˛ d�/ � 3˛aC@t.� ^ !2/
D 3bC˛ d!3 � 3˛aC@t.� ^ !2/;
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which vanishes by the third evolution equation @t.� ^ !2/ D aCbC d!3: For the
other nearly hypo equation we compute

@tŒd.� ^ !3/C 2a�!1 ^ !1� D dŒ@t.� ^ !3/�C 2a�@t.!1 ^ !1/
D dŒa�b�d!2 � 4"a�˛ˇ!1 ^ ��

C4a�@t.!1/ ^ !1
D �4"a�˛ˇd.!1 ^ �/

C4a�!1 ^ .3bC˛ !3 C "ˇ˛ d�/

D �4"a�˛ˇ.d.!1 ^ �/ � !1 ^ d�/

D �4"a�˛ˇ d!1 ^ � D 0;

where we used, that by the already proven first hypo equation d!1 is (along the flow)
a multiple of � ^ !2: Hence the nearly hypo condition is preserved along a solution
of the system (3.72). ut
Proposition 3.8.10 Any SU". p; q/-structure with p C q D 2 satisfying the para-
or pseudo-Sasaki equations (3.69) defines a nearly hypo structure . Q�; Q!1; Q!2; Q!3/ D
.�; !3; !2; !1/:

Proof From (3.69) one has after setting ˛ D bC D �1 (by Lemma 3.8.1)

d Q!1 D d!3 D 3bCaC !2 ^ � D 3˛aC Q� ^ Q!2
and

d. Q�^ Q!3/ D d.�^!1/ D d�^!1 D 2"˛ˇ !1^!1 D �2˛ˇ !3^!3 ŠŠD �2a� Q!1^ Q!1;

where we used !1 ^ !1 D �" !3 ^ !3: This yields the claim, since one has a� D
�ˇ D ˛ˇ (by Lemma 3.8.1). ut
Proposition 3.8.11 Let f W N5 ! M6 be an immersion of an oriented 5-manifold
into a 6-dimensional nearly pseudo-Kähler manifold, then the induced SU". p; q/-
structure . Q�; Q!1; Q!2; Q!3/ D .�; !1; !2; !3/ with pCq D 2 is a nearly hypo structure.

Proof Let us first observe, that one has

aC � ^ !2 D f � C and a� � ^ !3 D f � �;

which implies

d Q!1 D d!1 D ˛ d. f �!/ D ˛f �.d!/

D 3 ˛ f � C D 3 ˛ aC � ^ !2 D 3˛aC Q� ^ Q!2;
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a�d. Q� ^ Q!3/ D a�d.� ^ !3/ D f �d �

D �2f �.! ^ !/ D �2 !1 ^ !1 D �2 Q!1 ^ Q!1:

This proves the nearly hypo equations. ut
Theorem 3.8.12 Let .N5; �; !01 ; !

0
2 ; !

0
3/ be an "-Sasaki-Einstein SU". p; q/-

structure, then

!1 D f 2"



f"!
0
1 C f 0

"!
0
3

�
; (3.75)

!2 D f 2" !
0
2 ; (3.76)

!3 D �f 2"



f 0
"!

0
1 C "f"!

0
3

�
; (3.77)

� D f"�
0 (3.78)

with

f".t/ WD sin".t/ D
(

sinh.t/; for t 2 R and " D 1;

sin.t/; for t 2 Œ0; �� and " D �1
and I" WD

(
R� for " D 1;

.0; �/ for " D �1

is a solution of the nearly hypo evolution equations and yields a nearly pseudo-
Kähler structure on N � I" Metrik angeben, anpassen with metric g D dt2 C f 2" gN

with conical singularities in f0g and f0; �g respectively.

Proof Recall, that we have to solve (where we omit the Q�) the following system

@t!1 D �3 !3 � " d�;

@t.� ^ !3/ D d!2 � 4"� ^ !1; (3.79)

@t.� ^ !2/ D �d!3:

As Ansatz we consider the following family of SU". p; q/-structures with p C q D 2

!1 D f 2



f!01 ˙ f 0!03
�
;

!2 D � f 2!02 ;

!3 D �f 2



f 0!01 ˙ "f!03
�
;

� D � f�0;
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where we set f .t/ D sin".t/; which yields f 00 D "f and f 02 � "f 2 D 1: First we
compute ˛ˇ D 1

@t!1 D 3 f 2f 0!01 ˙
�
2f f 02 C f 2f 00�!03

.�/D 3



f 2f 0!01 ˙ "f 3!03
�˙ 2f!03

D �3 !3 ˙ "fd�0 D �3 !3 ˙ �"d�
ŠŠD �3 !3 � "d�;

where in .�/ we used

2f . f 0/2 C "f 3 D f .2f 02 C "f 2/ D 2f ."f 2 C 1/C "f 3 D 3 " f 3 C 2f

and d�0 D 2"!03; since N5 is an "-Sasaki manifold. Hence we need to fix � D 
1:
Next we calculate

@t .� ^ !2/ D @t



f 3�0 ^ !02
� D 3f 2f 0 �0 ^ !02

and using d!03 D 0 and d!01 D 3aCbC�0 ^ !02 yields

�bCaC d!3 D bCaC d5



f 2



f 0!01 ˙ "f!03
�� D bCaC f 2f 0d5!01 D 3 f 2f 0 �0 ^ !02 ;

which shows @t .� ^ !2/ D �bCaC d!3 D �d!3: It remains to determine the
evolution of � ^ !3

�@t .� ^ !3/ D �@t

˙"f 4�0 ^ !03 C f 3f 0�0 ^ !01

�

D �

˙4" f 3f 0�0 ^ !03 C 


3f 2. f 0/2 C f 3f 00� �0 ^ !01
�

.�/D 4"�

˙ f 3f 0�0 ^ !03 C f 4�0 ^ !01

�C 3� f 2�0 ^ !01
D 4" �^ !1 C �b�a�f 2d!02

b�a�D�1D 4" � ^ !1 � � f 2d!02

D 4" �^ !1 � d!2;

where in .�/ we used

3f 2f 02 C " f 4 D 3f 2."f 2 C 1/C "f 4 D 4 "f 4 C 3f 2:

This yields

@t .� ^ !3/ D �4" � ^ !1 C d!2

and finishes the proof of the Theorem. ut
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3.9 Results in the Homogeneous Case

3.9.1 Consequences for Automorphism Groups

An automorphism of an SU". p; q/-structure on a six-manifold M is an automor-
phism of principal fibre bundles or equivalently, a diffeomorphism of M preserving
all tensors defining the SU". p; q/-structure. By our discussion on stable forms in
Sect. 2.1 of Chap. 2, an SU". p; q/-structure is characterised by a pair of compatible
stable forms .!; �/ 2 �2M ��3M. Since the construction of the remaining tensors
J;  � and g is invariant, a diffeomorphism preserving the two stable forms is already
an automorphism of the SU". p; q/-structure and in particular an isometry.

This easy observation has the following consequences when combined with the
exterior systems of the previous section and the naturality of the exterior derivative.

Proposition 3.9.1 Let .!;  C/ be an SU". p; q/-structure on a six-manifold M.

(i) If the exterior differential equation

d! D �  C

is satisfied for a constant � ¤ 0, then a diffeomorphism ˆ of M preserving !
is an automorphism of the SU". p; q/-structure and in particular an isometry.

(ii) If the exterior differential equation

d � D 	 ! ^ !

is satisfied for a constant 	 ¤ 0, then a diffeomorphismˆ of M preserving

(a) the real volume form and  C;
(b) or the real volume form and  �;
(c) or the "-complex volume form ‰ D  C C i" �;

is an automorphism of the SU". p; q/-structure and in particular an isometry.

We like to emphasise that both parts of the Proposition apply to strict nearly
"-Kähler structures of non-zero type. The same holds true for the following
Proposition.

Proposition 3.9.2 Let .M6; g; J"; !/ be an almost "-Hermitian six-manifold with
totally skew-symmetric Nijenhuis tensor and ˆ be a diffeomorphism of M pre-
serving the almost "-complex structure J". Suppose, that the structure J" is
quasi-integrable,

(i) then ˆ is a conformal map.
(ii) and additionally, assume, that one has d!2 D 0; then ˆ is a homothety on

connected components of M: If moreover, ˆ preserves the volume, then it is an
isometry.
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Proof As ˆ preserves the "-complex structure, it also preserves the Nijenhuis
tensor. From Corollary 3.1.15 it follows g.X;Y/ D f tr.NX ı NY/ for some function
f on M: This yields in p 2 M

gˆ. p/.ˆ�X; ˆ�Y/ D f .ˆ. p//tr.Nˆ�X ı Nˆ�Y/

D f .ˆ. p// tr


.ˆ�N/X ı .ˆ�N/Y

� D f .ˆ. p//f . p/ gp.X;Y/;

i.e. the conformal factor is c WD f �ˆ�f : Further let us assume, that one has d!2 D 0:

From above we knowˆ�.! ^ !/ D c2.! ^ !/; which yields

0 D d.c2! ^ !// D d.c2/ ^ !2 C c2d!2 D d.c2/ ^ !2:

Using, that the map � 2 ƒ1T�M6 ! � ^ !2 2 ƒ5T�M6 is an isomorphism, we
obtain d.c2/ D 0 and hence the function c is constant on connected components
of M: Recall, that the metric volume is a multiple of !3: This implies, that one has
c D 1: ut
Corollary 3.9.3 Let .M; J"; g; !/ be a nearly "-Kähler six-manifold with krJ"k2 ¤
0; then a diffeomorphismˆ of M preserving J" is an automorphism of the SU". p; q/-
structure and in particular an isometry.

Proof The second nearly "-Kähler equation implies d!2 D 0: Hence we obtain
from Proposition 3.9.2, that one has ˆ�.!/ D c!; for some constant c (on each
connected component) and by the first nearly pseudo-Kähler equation

ˆ�. C/ D d.ˆ�!/
3

D c

3
d! D c C:

As J" is preserved, this yields ˆ�. �/ D c � and another time using the second
nearly pseudo-Kähler equation

cd � D ˆ�.d �/ D 	ˆ�.!2/ D 	c2!2;

forces c D 1: ut
Conversely, it is known for complete Riemannian nearly Kähler manifolds,

that orientation-preserving isometries are automorphism of the almost Hermitian
structure except for the round sphere S6, see for instance [26, Proposition 4.1].
However, this is not true if the metric is incomplete. In [53, Theorem 3.6], a nearly
Kähler structure is constructed on the incomplete sine-cone over a Sasaki-Einstein
five-manifold .N5; �; !1; !2; !3/. In fact, the Reeb vector field dual to the one-form
� is a Killing vector field which does not preserve !2 and !3. Thus, by the formulae
given in [53], its lift to the nearly Kähler six-manifold is a Killing field for the sine-
cone metric which does neither preserve ‰ nor ! nor J.
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3.9.2 Left-Invariant Nearly "-Kähler Structures
on SL.2 ;R/ � SL.2 ;R/

The following lemma is the key to proving the forthcoming structure result, since
it considerably reduces the number of algebraic equations on the nearly "-Kähler
candidates.

Lemma 3.9.4 (Lemma 4.1 of [110]) Denote by .R1;2; h�; �i/ the vector space R3

endowed with its standard Minkowskian scalar-product and denote by SO0.1; 2/ the
connected component of the identity of its group of isometries. Consider the action
of SO0.1; 2/ � SO0.1; 2/ on the space of real 3 � 3 matrices Mat.3;R/ given by

ˆ W SO0.1; 2/ � Mat.3;R/ � SO0.1; 2/ ! Mat.3;R/

.A;C;B/ 7! AtCB:

Then any invertible element C 2 Mat.3;R/ lies in the orbit of an element of the
form

0
@
˛ x y
0 ˇ z
0 0 �

1
A or

0
@
0 ˇ z
˛ x y
0 0 �

1
A

with ˛; ˇ; �; x; y; z 2 R and ˛ˇ� ¤ 0:

Finally, we prove our main result of this subsection which is the following
theorem. By a homothety, we define the rescaling of the metric by a real number
which we do not demand to be positive since we are working with all possible
signatures.

Theorem 3.9.5 Let G be a Lie group with Lie algebra sl.2;R/. Up to homothety,
there is a unique left-invariant nearly "-Kähler structure with krJ"k2 ¤ 0 on G �
G. This is the nearly pseudo-Kähler structure of signature (4,2) constructed as 3-
symmetric space in Sect. 3.9.4. In particular, there is no left-invariant nearly para-
Kähler structure.

Remark 3.9.6 The proof also shows that there is a left-invariant nearly "-Kähler
structure of non-zero type on G � H with Lie.G/ D Lie.H/ D sl.2;R/ if G ¤ H
which is unique up to homothety and exchanging the orientation.

Proof More precisely, we will prove uniqueness up to equivalence of left-invariant
almost "-Hermitian structures and homothety. We will consider the algebraic
exterior system

d! D 3 C; (3.80)

d � D 2 ! ^ ! (3.81)



3.9 Results in the Homogeneous Case 103

on the Lie algebra sl.2;R/˚ sl.2;R/. By Theorem 3.1.19, solutions of this system
are in one-to-one correspondence to left-invariant nearly "-Kähler structure on G �
G with krJ"k2 D 4. This normalisation can always be achieved by applying a
homothety. Furthermore, two solutions which are isomorphic under an inner Lie
algebra automorphism from

Inn.sl.2;R/˚ sl.2;R// D SO0.1; 2/� SO0.1; 2/

are equivalent under the corresponding Lie group isomorphism. Since both factors
are equal, we can also lift the outer Lie algebra automorphism exchanging the two
summands to the group level. In summary, it suffices to show the existence of a
solution of the algebraic exterior system (3.80), (3.81) on the Lie algebra which is
unique up to inner Lie algebra automorphisms and exchanging the summands.

A further significant simplification is the observation that all tensors defining a
nearly "-Kähler structure of non-zero type can be constructed out of the fundamental
two-form ! with the help of the first nearly Kähler equation (3.80) and the
stable form formalism described in Sect. 2.4 of Chap. 2. We break the main part
of the proof into three lemmas, step by step simplifying ! under Lie algebra
automorphisms in a fixed Lie bracket.

We call fe1; e2; e3g a standard basis of so.1; 2/ if the Lie bracket satisfies

de1 D �e23 ; de2 D e31 ; de3 D e12:

In this basis, an inner automorphism in SO0.1; 2/ acts by usual matrix multiplication
on so.1; 2/.

Lemma 3.9.7 Let g D h D so.1; 2/ and let ! be a non-degenerate two-form in

ƒ2.g ˚ h/� D ƒ2g� ˚ .g ˝ h/˚ƒ2h�:

Then we have

d!2 D 0 , ! 2 g ˝ h: (3.82)

Proof By inspecting the standard basis, we observe that all two-forms on so.1; 2/
are closed whereas no non-trivial 1-form is closed. Thus, when separately taking
the exterior derivative of the components of !2 in ƒ4 D .ƒ3g� ˝ h�/˚ .ƒ2g� ˝
ƒ2h�/˚ .g� ˝ƒ3h�), the equivalence is easily deduced. ut
Lemma 3.9.8 Let g D h D so.1; 2/ and let fe1; e2; e3g be a basis of g� and
fe4; e5; e6g a basis of h� such that the Lie brackets are given by

de1 D �e23; de2 D e31; de3 D �e12 and de4 D �e56; de5 D e64; de6 D e45

(3.83)
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for some � 2 f˙1g. Then, every non-degenerate two-form ! on g ˚ h satisfying
d!2 D 0 can be written

! D ˛ e14 C ˇ e25 C � e36 C x e15 C y e16 C z e26 (3.84)

for ˛; ˇ; � 2 R � f0g and x; y; z 2 R modulo an automorphism in SO0.1; 2/ �
SO0.1; 2/.

Proof We choose standard bases fe1; e2; e3g for g and fe4; e5; e6g for h. Using the
previous lemma and the assumption d!2 D 0, we may write ! D P3

i;jD1 cijei. jC3/
for an invertible matrix C D 


cij
� 2 Mat.3;R/. When a pair .A;B/ 2 SO0.1; 2/ �

SO0.1; 2/ acts on the two-form !, the matrix C is transformed to AtCB. Applying
Lemma 3.9.4, we can achieve by an inner automorphism that C is in one of the
normal forms given in that lemma. However, an exchange of the base vectors e1 and
e2 corresponds exactly to exchanging the first and the second row of C. Therefore,
we can always write ! in the claimed normal form by adding the sign � in the Lie
bracket of the first summand g. ut
Lemma 3.9.9 (Lemma 4.6 of [110]) Let fe1; : : : ; e6g be a basis of so.1; 2/ �
so.1; 2/ such that

de1 D �e23 ; de2 D e31 ; de3 D e12 and de4 D �e56 ; de5 D e64 ; de6 D e45:
(3.85)

Then the only SU". p; q/-structure .!;  C/ modulo inner automorphisms and
modulo exchanging the summands, which solves the two nearly "-Kähler equa-
tions (3.80) and (3.81), is determined by

! D
p
3

18
.e14 C e25 C e36/: (3.86)

In fact, the uniqueness, existence and non-existence statements claimed in the
theorem follow directly from this lemma and formula obtained for the quartic
invariant which implies �



1
3
d!
�
< 0.

As explained in Sect. 3.9.4, we know that there is a left-invariant nearly pseudo-
Kähler structure of indefinite signature on all the groups in question. After applying
a homothety, we can achieve krJ"k2 D 4 and this structure has to coincide with
the unique structure we just constructed. Therefore, the indefinite metric has to be
of signature (4,2) by our sign conventions.

We summarise the data of the unique nearly pseudo-Kähler structure in the
basis (3.85) and can easily double-check the signature of the metric explicitly:

! D 1

18

p
3 .e14 C e25 C e36/

 C D 1

54

p
3 .e126 � e135 C e156 � e234 C e246 � e345/
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 � D � 1

54
.2 e123 C e126 � e135 � e156 � e234 � e246 C e345 C 2 e456/

J.e1/ D �1
3

p
3 e1 � 2

3

p
3 e4 ; J.e4/ D 2

3

p
3 e1 C 1

3

p
3 e4

J.e2/ D �1
3

p
3 e2 C 2

3

p
3 e5 ; J.e5/ D �2

3

p
3 e2 C 1

3

p
3 e5

J.e3/ D �1
3

p
3 e3 C 2

3

p
3 e6 ; J.e6/ D �2

3

p
3 e3 C 1

3

p
3 e6

g D 1

9
. .e1/2 � .e2/2 � .e3/2 C .e4/2 � .e5/2

� .e6/2 � e1 � e4 � e2 � e5 � e3 � e6/:

ut
Observing that in [25] very similar arguments have been applied to the Lie group

S3 � S3, we find the following non-existence result.

Proposition 3.9.10 On the Lie groups G � H with Lie.G/ D Lie.H/ D so.3/,
there is neither a left-invariant nearly para-Kähler structure of non-zero type nor a
left-invariant nearly pseudo-Kähler structure with an indefinite metric.

Proof The unicity of the left-invariant nearly Kähler structure S3 � S3 is proved
in [25, Section 3], with a strategy analogous to the proof of Theorem 3.9.5. In the
following, we will refer to the English version [26]. There, it is shown in the proof
of Proposition 2.5, that for any solution of the exterior system

d! D 3 C

d C D �2�!2

there is a basis of the Lie algebra of S3 � S3 and a real constant ˛ such that

de1 D e23 ; de2 D e31 ; de3 D e12 and de4 D e56 ; de5 D e64 ; de6 D e45;

! D ˛.e14 C e25 C e36/:

In this basis, a direct computation or formula (18) in [26] show that the quartic
invariant that we denote by � is

� D � 1

27
˛4

with respect to the volume form e123456. Therefore, a nearly para-Kähler structure
cannot exist on all the Lie groups with the same Lie algebra as S3 � S3 by
Theorem 3.1.19. A nearly pseudo-Kähler structure with an indefinite metric cannot
exist either, since the induced metric is always definite as computed in the second
part of Lemma 2.3 in [26]. ut
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3.9.3 Real Reducible Holonomy

Nearly pseudo-Kähler manifolds admitting a J-invariant and Nr-parallel decompo-
sition of the tangent bundle TM are related to twistor spaces [108] (cf. [16, 98]
for Riemannian metrics) and Sects. 3.3 and 3.4 of this chapter. The next Proposition
considers the complementary situation, i.e. the case where TM decomposes into two
sub-bundles and J interchanges these sub-bundles and generalises a result of [99] to
pseudo-Riemannian metrics.

Proposition 3.9.11 Let .M; g; J/ be a complete, strict, simply connected nearly
pseudo-Kähler manifold. Suppose, that TM admits an orthogonal, Nr-parallel
decomposition TM D V ˚ V 0 with V 0 D JV ; then .M; g/ is a homogeneous space.

Proof For a vector field X D JV1 in V 0 D JV ; a vector field Y D JV2 in TM and
vector fields V3;V4 in V by the same argument as in Lemma 3.4.1 it is

NR. JV1; JV2;V3;V4/ D g .ŒrV3J;rV4J�JV1; JV2/ � g ..rJV1J/JV2; .rV3J/V4/

D g .ŒrV3J;rV4J�V1;V2/C g ..rV1J/V2; .rV3J/V4/ (3.87)

By the symmetries (3.24) and (3.25) of the curvature tensor NR the last equation
determines NR: By Proposition 3.1.7 the torsion T and rJ are Nr-parallel. In
particular, we have

NrU..rXJ/Y/ D .rXJ/ NrUY C .r NrUXJ/Y:

Deriving (3.87) this implies Nr NR D 0: Hence Nr is an Ambrose-Singer connection
and as M is simply connected and complete it follows, that .M; J; g/ is a homoge-
neous space (see [116]). ut

3.9.4 3-Symmetric Spaces

The idea of a three-symmetric space is to replace the symmetry of order two as in the
case of a symmetric space by a symmetry of order three. Nearly Kähler geometry
on such spaces was first studied in [66, 69].

Like symmetric spaces three-symmetric spaces have a homogenous model,
which we shortly resume: Let G be a connected Lie group and s an automorphism
of order 3 and let Gs

0 � H � Gs be a subgroup contained in the fix-point set Gs of
s: The differential s� decomposes

g ˝ C D h ˝ C ˚ mC ˚ m�
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into the eigenspaces of s� with eigenvalues 1 and 1
2
.�1˙p�3/:With the definition

m WD .mC ˚ m�/ \ g the decomposition

g D h ˚ m (3.88)

is reductive and G=H is a reductive homogenous space. The characteristic complex
structure is then defined by

s�jm D �1
2

Id C
p
3

2
J: (3.89)

The choice of an Ad.H/-invariant and s�-invariant (pseudo-)Euclidean scalar-
product B on m endows G=H with the structure of a (pseudo-)Riemannian three-
symmetric space, such that B is almost Hermitian with respect to J: The next
Theorem locally relates homogeneous spaces to three-symmetric spaces.

Theorem 3.9.12 An almost pseudo-Hermitian manifold .M; J; g/ is a locally three-
symmetric space if and only if it is a quasi-Kähler manifold and the torsion T and
the curvature tensor NR of the characteristic Hermitian connection Nr are parallel,
i.e. NrT D 0 and Nr NR D 0:

The proof of Theorem 3.9.12 is based on the following description of locally three-
symmetric spaces given in [66].

Theorem 3.9.13 Let .M; J; g/ be an almost pseudo-Hermitian manifold. Then there
exists a family of local cubic diffeomorphisms .sx/x2M such that J is the induced
complex structure and such that M is a three-symmetric space if and only if

(i) M is quasi-Kähler, i.e. one has .rXJ/Y C .rJXJ/JY D 0;

(ii) � D s� preserves r2J;
(iii) for X;Y;Z;T 2 �.TM/ one has

R.X;Y;Z;T/ D R. JX; JY;Z;T/C R. JX;Y; JZ;T/ (3.90)

C R. JX;Y;Z; JT/;

(iv) for X;Y;Z;T 2 �.TM/ one has

.rWR/.X;Y;Z;T/C .rWR/. JX; JY; JZ; JT/ D 0:

Proof of Theorem 3.9.12 We claim that the conditions (i)-(iv) of Theorem 3.9.13
are equivalent to the following system of equations:

�XY C �JXJY D 0; (3.91)

Nr� D 0; (3.92)

Nr NR D 0; (3.93)
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Let us recall the definition � WD 1
2
J.rJ/ which yields that the condition (3.91) is

equivalent to Theorem 3.9.13 part (i). From rXJ D �2J�X it follows

.r2
X;YJ/Z D 2J.2�X�Y Z �.rX�/YZ/ D 2J



2�X�Y Z � . NrX�/Y Z � ��X YZ C Œ�Y ; �X �Z

�
:

By Eq. (3.92) this expression only depends on � and J; which are both preserved
by �:

Conversely, we suppose that � preserves rJ and r2J: From Proposition 3.3 of
Gray [66] one obtains

Nr�.X;Y;Z;T/ D Nr�. JX; JY;Z;T/C Nr�. JX;Y; JZ;T/

C Nr�. JX;Y;Z; JT/ D 3 Nr�. JX; JY;Z;T/;

where the last equality follows from NrJ D 0 and Eq. (3.91). This implies replacing
X by JX and Y by JY

3 Nr�. JX; JY;Z;T/ D Nr�.X;Y;Z;T/ D 1

3
Nr�. JX; JY;Z;T/

and finally we obtain Nr� D 0:

Moreover, the condition (3.92) implies Theorem 3.9.13 part (iii). In fact, we
claim that Theorem 3.9.13 part (iii) can be re-written as R 2 L2; where L2 is one
of the irreducible components of the space of curvature tensors considered as a
GL.n;C/ representation [52]. More precisely, in our case we identify u. p; q/ with
Œ�1;1� (instead of u.n/) and u. p; q/? (rather than u.n/?) with ��2;0� and then apply
the results of [52] to obtain an analogous decomposition. In particular, it follows
in the quasi-Kähler case, that the complement of L2 only depends on Nr� and we
conclude that Eq. (3.92) implies Theorem 3.9.13 part (iii).

It remains to relate Theorem 3.9.13 part (iv) and Eq. (3.93). From r D Nr C � it
follows

NR.X;Y;Z;W/ D R.X;Y;Z;W/C g.Œ�X; �Y �Z;W/ � g.��XY��Y XZ;W/;

where we use the condition (3.92). Using a second time the condition (3.92) and
Nrg D 0 we get

Nr NR D NrR D rR � � � R (3.94)

with

� � R D R.��; �; �; �/C R.�; ��; �; �/C R.�; �; ��; �/C R.�; �; �; ��/:
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Now Eq. (3.90) implies R. JX; JY; JZ; JW/ D R.X;Y;Z;W/; see for instance
Corollary 3.4 of [66]. As � and J anti-commute, it follows from (3.90)

.� � R/. JX; JY; JZ; JW/ D �.� � R/.X;Y;Z;W/ (3.95)

and as Nr is Hermitian we have

NrR.X;Y;Z;W/ D NrR. JX; JY; JZ; JW/: (3.96)

Equation (3.94) and (3.96) yield

2. NrW NR/.X;Y;Z;T/ D . NrW NR/.X;Y;Z;T/C . NrW NR/. JX; JY; JZ; JT/

Eqs: (3.94);(3.95)D .rWR/.X;Y;Z;T/C .rWR/. JX; JY; JZ; JT/;

which shows the equivalence of Theorem 3.9.13 part (iv) and Eq. (3.93). ut
The following proposition relates the information coming from the Hermitian
structure to the data of the homogeneous space.

One may suppose G to be simply connected, since otherwise one considers its
universal cover � W QG ! G and the isomorphic homogeneous space QG= QH with
QH D ��1.H/:

Proposition 3.9.14 Let .M D G=H; J; g/ be a (simply connected) reductive homo-
geneous almost pseudo-Hermitian manifold, then M D G=H is three-symmetric
if and only if it is quasi-Kähler and the connection Nr coincides with the normal
connection rnor of the reductive homogeneous space G=H:

Proof Let .M D G=H; J; g/ be a reductive homogeneous space with adapted
reductive decomposition g D h ˚ m: The invariant almost complex structure J
induces a complex structure on m and an invariant decomposition

mC D m1;0 ˚ m0;1: (3.97)

The invariance of m and J implies

Œh;m1;0� � m1;0 and Œh;m0;1� � m0;1: (3.98)

The three-symmetry s is now obtained by the integration of the map �

�jh D Idjh; �jm1;0 D jIdjm1;0 ; �jm0;1 D j2Idjm0;1 ;

where j D � 1
2
Id C

p
3
2

i: The map � integrates (since G is supposed to be simply
connected) to s if and only if it is an automorphism of the Lie algebra g: By
Eq. (3.98) and the definition of � this is the case if and only if one has

Œm1;0;m1;0� � m0;1; Œm0;1;m0;1� � m1;0 and Œm1;0;m0;1� � h: (3.99)
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Recall, that the torsion of the normal connection (see [87, Chapter X]) is given by
the invariant tensor

Tnor.u; v/ D �Œu; v�m:

In terms of the torsion Tnor the integrability conditions (3.99) are

Tnor.u; v/ D �Œu; v�m0;1
; for u; v 2 m1;0;

Tnor.u; v/ D �Œu; v�m1;0
; for u; v 2 m0;1;

Tnor.u; v/ D 0; for u 2 m1;0 and v 2 m0;1:

In other words Tnor is a multiple of the Nijenhuis tensor. Contraction with the
metric yields a tensor g.Tnor.�; �/; �/ which is of type ˝3



m1;0

�� ˚ ˝3


m0;1

��
w.r.t.

the complex structure induced by m1;0 ˚ m0;1 and skew-symmetric in the first
two entries. These symmetries exclude contributions of the pseudo-Riemannian
version of class W3 and W4 in the Gray-Hervella list [68] and hence .M; J; g/ is
of type W1 ˚ W2; i.e. .M; J; g/ is a quasi-Kähler manifold. Moreover, we have
Tnor 2 ��2;0 ˝ �1;0� and we obtain rnor � rg 2 W1 ˚ W2 � T�M ˝ u?

p;q:

This means that rnor is the intrinsic connection which equals the characteristic
Hermitian connection. Summarizing (3.97) is the decomposition into eigenspaces
of an automorphism of order three if and only if .M D G=H; J; g/ is quasi-Kähler
and the normal connection coincides with the intrinsic connection. ut

As a consequence the torsion and the curvature of the connection Nr are given by

T.u; v/ D �Œu; v�m and NR.u; v/ D Œu; v�h with u; v 2 m: (3.100)

reductive, if it holds

B.ŒX;Y�m;Z/ D B.X; ŒY;Z�m/ for X;Y;Z 2 m:

The next result was already shown in [66] Proposition 5.6 for pseudo-Riemannian
metrics. It is a consequence of rnor D Nr for three-symmetric spaces.

Proposition 3.9.15 A three-symmetric space is a nearly pseudo-Kähler manifold if
and only if it is a naturally reductive homogeneous space.
In the sequel, we consider two homogeneous spaces G=H and G0=H0 which are T-
dual to each other in the sense of the construction given in Sect. 2.6.1 of Chap. 2 and
we are going to show that this construction is compatible with 3-symmetry.

As a preparation we recall the construction of the related complex structures. Let
us suppose, that g is a compact Lie algebra with a subalgebra h and that .M D
G=H; g; J/ is a Riemannian 3-symmetric space with a nearly Kähler structure of
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above discussed type. Moreover, denote by

g0 D gC ˚ ig�; m0 D mC ˚ im� and h0 D hC ˚ ih�

the associated decompositions of a fixed T-dual space M0 D G0=H0:
In this situation, there exists a natural almost complex structure J0 on M0 which

we shortly recall next, cf. Section 3.4 of [82]. Firstly, one decomposes gl.m/ into

gl.m/C WD fA 2 gl.m/ j A.mC/ � mC; A.m�/ � m�g ;
gl.m/� WD fB 2 gl.m/ j B.mC/ � m�; B.m�/ � mCg :

The Lie algebra gl.m/C ˚ igl.m/� � gl.m/C is isomorphic to gl.m0/ via the
extension of the following definition

A.iX/ WD iA.X/; A. Y/ WD A. Y/; .iB/.iX/ WD �B.X/; .iB/. Y/ WD iB. Y/;

where X 2 m� and Y 2 mC and A 2 gl.m/C and B 2 gl.m/�: Further denote by
j 2 gl.m/ the linear map associated to the invariant complex structure J on G=H:

Assume on the one hand, that one even has j 2 gl.m/C; then (as shown in
Proposition 3.5 of [82]) using the above identification of gl.m/C ˚ igl.m/� and
gl.m0/ the map j 2 gl.m/C � gl.m0/ induces an invariant almost complex structure
J0 on G0=H0; such that if g is Hermitian for J then J0 is pseudo-Hermitian for g0: If
on the other hand one has j 2 gl.m/�; then i j 2 gl.m/� � gl.m0/ is a para-complex
structure on G0=H0:

For the 3-symmetric case we recover the 3-symmetry using Eq. (3.89), i.e. for
j 2 gl.m/C one has

�jm D s�jm D �1
2

Id C
p
3

2
j 2 gl.m/C;

which induces as before an endomorphism of m0

�jm0 D �1
2

Id C
p
3

2
j 2 gl.m/C � gl.m0/;

i.e. after extending � by the identity on h0 this yields a local 3-symmetry for G0=H0
and assuming G0 to be simply connected one may integrates � to a 3-symmetry of
G0:

By construction it follows, that if .g;m; h; h�; �i/ is naturally reductive, the T-dual
.g0;m0; h0; h�; �i0/ is naturally reductive, too. Using Proposition 3.9.15 it follows,
that the T-dual of a nearly Kähler 3-symmetric space is nearly pseudo-Kähler.
Summarising our discussion we have shown.

Theorem 3.9.16 Let .G=H; J; g/ be a nearly Kähler 3-symmetric space (with
compact G) associated to .g;m; h; h�; �i/ with the above described nearly Kähler
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structure and G0=H0 be a T-dual of G=H with data .g0;m0; h0; h�; �i0/ such that
the map j associated to the invariant complex structure J lies in gl.m/C; then
.G0=H0; J0; g0/ is a nearly pseudo-Kähler 3-symmetric space.
A natural question is starting with some homogeneous nearly Kähler manifold G=H
as above to give a classification of all T-dual spaces. Even though there is no general
answer to this question the cases of interest for the sequel are discussed in [82]. Let
us recall, that by [25] the list of homogenous strict nearly Kähler six-manifolds is

S6 D G2=SU.3/;

CP3 D Sp.2/=.SU.2/� U.1//;

F.1; 2/ D SU.3/=.U.1/� U.1// and

S3 � S3 D .SU.2/� SU.2/� SU.2//=
.SU.2//:

For these spaces all possible T-duals (given in [82]) are the following pruefen

S2;4 D G�
2 =SU.1; 2/; cf. Chap. 4 or [82];

Z.S2;2/ D SOC.2; 3/=U.1; 1/; c.f. Example 3.1 of [82];

Z.S4;0=Z2/ D SOC.4; 1/=U.2/; c.f. Example 3.1 of [82];

Z.CP2;0/ D SU.2; 1/=.U.1/� U.1//; c.f. Example 3.2 of [82];

Z..SL.3;R/=GLC.2;R// D SLC.3;R/=R� � SO.2/; c.f. Example 3.2 of [82];

SL.2;R/ � SL.2;R/ D .SU.1; 1/� SU.1; 1/� SU.1; 1//=
.SU.1; 1//:

Let us recall, that the twistor spaces already appeared in Sects. 3.3 and 3.4 of the
present chapter. Moreover, one may wonders, if one obtains all nearly pseudo-
Kähler structures as T-duals of some homogeneous space G=H with a compact
Lie group G: The answer can be found in a recent preprint [11], where six-
dimensional homogeneous almost complex structures with semi-simple isotropy
have been classified. In this list an example of a left invariant nearly pseudo-Kähler
structure on a solvable Lie group is given (cf. Remark 3 of [11]), which does not
appear in the above list of T-dual spaces.

3.10 Lagrangian Submanifolds in Nearly Pseudo-Kähler
Manifolds

This section is based on results with Smoczyk and Schäfer [111] which are extended
to pseudo-Riemannian signature in Sects. 3.10.3 and 3.10.4.
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3.10.1 Definitions and Geometric Identities

For the rest of this section let us assume that L � M is a Lagrangian submanifold11

of a nearly pseudo-Kähler manifold .M2n; J; g/ in the sense of the next definition.

Definition 3.10.1 Let .M2n; J; g; !/ be a nearly pseudo-Kähler manifold. A sub-
manifold �W Ln ! M2n is called Lagrangian submanifold, provided that one has
!jTL D ��! D 0; the dimension n of L is half the dimension 2n of M and that ��g is
non-degenerate.
Since n D dim.L/ D 1

2
dim.M/ we have, that for a Lagrangian submanifold

g. JX;Y/ D 0 ; 8 X; Y 2 TL , J W TL ! T?L is an isomorphism:

We observe that the (symmetric) signature of the metric g restricted to L is . p; q/ if
the signature of g is .2p; 2q/: From !jTL D 0 we deduce d!jTL D 0. On the other
hand (3.1) implies

d!.X;Y;Z/ D 3g..rXJ/Y;Z/ :

From this and the symmetries of rJ the following Lemma easily follows (see also
[77]).

Lemma 3.10.2 Suppose L � M is a Lagrangian submanifold in a nearly Kähler
manifold .M; J; g/ with (possibly) indefinite metric. Then

.rXJ/Y 2 T?L ; 8 X; Y 2 TL ; (3.101)

.rXJ/Y 2 T?L ; 8 X; Y 2 T?L ; (3.102)

.rXJ/Y 2 TL ; if X 2 TL;Y 2 T?L or if X 2 T?L;Y 2 TL : (3.103)

Denote by II the second fundamental form of the Lagrangian immersion L � M2n

into a nearly Kähler manifold M:

Proposition 3.10.3 For a Lagrangian submanifold L � M2n in a nearly Kähler
manifold (with possibly indefinite metric) we have the following information.

(i) The second fundamental form is given by hII.X;Y/;Ui D h NrXY;Ui for X;Y 2
�.TL/ and U 2 �.T?L/:

(ii) The tensor C.X;Y;Z/ WD hII.X;Y/; JZi D !.II.X;Y/;Z/, 8 X;Y;Z 2 TL is
totally symmetric.

11In order to compute expressions like for example rXY one needs to extend the vector fields on L
to vector fields on M: It is common to use the same symbols for the extended vector fields, since
the induced objects do not depend on the choice of extension.
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Proof From Lemma 3.10.2 we compute for X;Y 2 �.TL/ and U 2 �.T?L/ the
second fundamental form II

hII.X;Y/;Ui D hrXY;Ui D h NrXY � 1

2
J.rXJ/Y;Ui D h NrXY;Ui :

This yields part (i). Next we prove (ii): First we observe for X;Y;Z 2 �.TL/

C.X;Y;Z/ D hII.X;Y/; JZi D h NrXY; JZi D �hY; NrX. JZ/i
D �hY; J NrXZi D h NrXZ; JYi D C.X;Z;Y/:

Since the second fundamental form is symmetric, it follows that C is totally
symmetric. ut

Next we generalise an identity of [51] to nearly Kähler manifolds of arbitrary
dimension and signature of the metric. This and the next lemma will be crucial to
prove that Lagrangian submanifolds in strict nearly (pseudo-)Kähler six-manifolds
and in twistor spaces Z4nC2 over quaternionic Kähler manifolds with their canonical
nearly Kähler structure are minimal. A six-dimensional version of the Lemma was
also proved in [71], see also Remark 3.10.7.

Lemma 3.10.4 The second fundamental form II of a Lagrangian immersion L �
M2n into a nearly (pseudo-)Kähler manifold and the tensor rJ satisfy the following
identity

hII.X; J.rYJ/Z/;Ui D hJ.rII.X;Y/J/Z;Ui C hJ.rYJ/II.X;Z/;Ui (3.104)

with X;Y 2 TL and U 2 T?L:

Proof The proof of this identity uses NrJ D 0; Nr.rJ/ D 0 and Lemma 3.10.2. With
X;Y;Z 2 �.TL/ and U 2 �.T?L/ we obtain

hII.X; J.rYJ/Z/;Ui D h NrX. J.rYJ/Z/;Ui NrJD0D hJ NrX.rYJ/Z/;Ui
Nr..rJ/D0D hJ

�
.r NrXYJ/Z C .rYJ/ NrXZ

�
;Ui

D hJŒ�.rZJ/ NrXY C .rYJ/ NrXZ�;Ui
D �h NrXY; .rZJ/JUi C h NrXZ; .rYJ/JUi
D �hII.X;Y/; .rZJ/JUi C hII.X;Z/; .rYJ/JUi
D �hJ.rZJ/II.X;Y/;Ui C hJ.rYJ/II.X;Z/;Ui
D hJ.rII.X;Y/J/Z;Ui C hJ.rYJ/II.X;Z/;Ui:

This is exactly the claim of the Lemma. ut
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Given the tensor C.X;Y;T.Z;V// we define the following traces

˛.X;Y/ WD
nX

iD1
�i C.ei;X;T.ei;Y// ;

ˇ.X;Y;Z/ WD
nX

iD1
�i C.T.ei;X/;Y;T.ei;Z// ;

where fe1; : : : ; eng is a local (pseudo-)orthonormal frame of TL and where we set
�i D g.ei; ei/:

Lemma 3.10.5 For a Lagrangian immersion in a nearly (pseudo-)Kähler manifold
and any X;Y;Z;V 2 TL holds:

C.X;Y;T.Z;V//C C.X;Z;T.V;Y//C C.X;V;T. Y;Z// D 0 ; (3.105)

˛.X;Y/ � ˛. Y;X/ D h�!H ; JT.X;Y/i ; (3.106)

ˇ.X;Y;Z/ D ˇ.Z;Y;X/ D ˇ. Y;X;Z/C ˛.T. Y;X/;Z/ ; (3.107)

˛.T.X;Y/;Z/C ˛.T. Y;Z/;X/C ˛.T.Z;X/;Y/ D 0 : (3.108)

Here
�!
H denotes the mean curvature vector of L.

Proof Let us first rewrite the identity in Lemma 3.10.4 in terms of the tensor C and
the torsion T.X;Y/ D �J.rXJ/Y of Nr: Let X;Y;Z;V 2 �.TL/ be arbitrary. Then
Lemma 3.10.4 gives

C.X;T.Z;Y/;V/ D hII.X; J.rYJ/Z/; JVi
D hJ.rII.X;Y/J/Z; JVi C hJ.rYJ/II.X;Z/; JVi
D hJ.rZJ/. JV/; II.X;Y/i � hJ.rYJ/. JV/; II.X;Z/i
D �hJ2.rZJ/V; II.X;Y/i C hJ2.rYJ/V; II.X;Z/i
D hJT.Z;V/; II.X;Y/i � hJT. Y;V/; II.X;Z/i
D C.X;Y;T.Z;V// � C.X;Z;T. Y;V// :

This is (3.105). Taking a trace gives

˛.X;Y/ D
nX

iD1
�i C.ei;X;T.ei;Y//

(3.105)D
nX

iD1
�i C.ei; ei;T.X;Y//C

nX
iD1

�i C.ei;Y;T.ei;X//

D h�!H ; JT.X;Y/i C ˛. Y;X/ ;
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which is (3.106). The first identity in (3.107) is clear since C is fully symmetric. If
we apply (3.105) to ˇ.X;Y;Z/, then we get

ˇ.X;Y;Z/ D
nX

iD1
�i C.T.ei;X/;Y;T.ei;Z//

D �
nX

iD1
�i C.T.X;Y/; ei;T.ei;Z// �

nX
iD1

�i C.T. Y; ei/;X;T.ei;Z//

D
nX

iD1
�i C.ei;T. Y;X/;T.ei;Z//C

nX
iD1

�i C.T.ei;Y/;X;T.ei;Z//

D ˛.T. Y;X/;Z/C ˇ. Y;X;Z/ :

This is the second identity in (3.107). In view of this we also get

˛.T.X;Y/;Z/C ˛.T. Y;Z/;X/C ˛.T.Z;X/;Y/

D ˇ. Y;X;Z/� ˇ.X;Y;Z/C ˇ.Z;Y;X/

�ˇ. Y;Z;X/C ˇ.X;Z;Y/ � ˇ.Z;X;Y/
D 0

and this is (3.108). ut

3.10.2 Lagrangian Submanifolds in Nearly Kähler
Six-Manifolds

By a well known theorem of Ejiri [51] Lagrangian submanifolds of S6 are minimal.
In this section we will see that this is a special case of a much more general
theorem which is a consequence of Lemma 3.10.4 and was shown independently
for Riemannian metrics in Theorem 7 of [71].

Theorem 3.10.6 Let L3 be a Lagrangian immersion in a strict nearly (pseudo-
)Kähler six-manifold M6. Then we have

˛ D 0 ; (3.109)
�!
H D 0 : (3.110)

In particular, any Lagrangian immersion in a strict nearly (pseudo-)Kähler six-
manifold is orientable and minimal.
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Proof Let fe1; e2; e3g be an orthonormal basis of TpL for a fixed point p 2 L. From
the skew-symmetry of hT.X;Y/;Zi we see that there exists a (nonzero) constant a
such that T.e1; e2/ D a�3e3. Then we also have T.e2; e3/ D a�1e1; T.e3; e1/ D
a�2e2. The symmetry of C implies

˛.e1; e1/ D �1C.e1; e1;T.e1; e1//C �2C.e2; e1;T.e2; e1//C �3C.e3; e1;T.e3; e1//

D 0 � a�2�3C.e2; e1; e3/C a�3�2C.e3; e1; e2/ D 0

and

˛.e1; e2/ D �1C.e1; e1;T.e1; e2//C �2C.e2; e1;T.e2; e2//C �3C.e3; e1;T.e3; e2//

D a�1�3C.e1; e1; e3/C 0 � a�3�1C.e3; e1; e1/ D 0 :

Similarly we prove that ˛.ei; ej/ D 0 for all i; j D 1; : : : ; 3. This shows ˛ D 0. But

then (3.106) also implies
�!
H D 0. The observation, that the frame fe1; e2; e3g defines

an orientation on L; finishes the proof. The fact that a is a constant was not used in
the proof. ut
Remark 3.10.7 The constant a in the formula T.e1; e2/ D ae3 from above is related
to the type constant ˛ of the nearly Kähler manifold M; cf. Sect. 3.1.1 of this chapter,
by the formula

a2 D ˛ :

A six-dimensional strict nearly Kähler manifold is of constant type and a nearly
Kähler manifold of constant type has dimension 6 [67]. The authors of [71] used the
Eq. (3.5) to obtain a six-dimensional version of Lemma 3.10.4 for arbitrary nearly
Kähler six-manifolds.

In the pseudo-Riemannian case we only have the relation a2 D j˛j : The sign
of the type constant depends on the signature .2p; 2q/ of g by sign. p � q/; see for
example [82], see also Sect. 3.1.1 of this chapter.
The connection induced on L by Nr is intrinsic in the following sense.

Proposition 3.10.8 Let L be a Lagrangian submanifold in a strict nearly (pseudo-
)Kähler six-manifold. Then the connection NrL on L induced by the connection Nr is
completely determined by the restriction of g to L:

Proof We observe that the torsion of NrL considered as a three-form is a constant
multiple of the volume form TL D c volLg : A metric connection D with prescribed
torsion TD is known to be unique. If the torsion is totally skew-symmetric we can
recover it from the formula

g.DXY;Z/ D g.rg
XY;Z/C 1

2
T.X;Y;Z/:

This finishes the proof, since TL D cvolLg is determined by g: ut
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3.10.3 The Splitting Theorem

The following example shows that Theorem 3.10.6 does not extend to eight
dimensions:

Example 3.10.9 Let L0 � M6
SNK be a (minimal) Lagrangian submanifold in a strict

nearly Kähler manifold M6
SNK and suppose � � † is a curve on a Riemann surface

†. Then the Lagrangian submanifold L WD ��L0 � M in the nearly Kähler manifold
M WD † � MSNK is minimal, if and only if � is a geodesic in †.
In this section we will see that this is basically the only counterexample to
Theorem 3.10.6 that occurs in dimension 8. Nearly Kähler manifolds .M; J; g/
split locally into a Kähler factor and a strict nearly Kähler factor and under the
assumption, that M is complete and simply connected this splitting is global [98], cf.
Theorem 3.2.1 of this chapter for the pseudo-Riemannian case. The natural question
answered in the following theorem is in which way Lagrangian submanifolds lie in
this decomposition.

These facts motivate the next Theorem.

Theorem 3.10.10 Let M be a nearly Kähler manifold and L be a Lagrangian
submanifold. Then M and L decompose locally into products M D MK � MSNK,
L D LK � LSNK, where MK is Kähler, MSNK is strict nearly Kähler and LK � MK,
LSNK � MSNK are both Lagrangian. The dimension of LK is given by

dim LK D 1

2
dim ker.r/

Moreover, if the splitting of M is global and L is simply connected, then L
decomposes globally as well.

Proof

i) We define

Kp WD fX 2 TpM W rX D 0g ; K?
p WD f Y 2 TpM W hX;Yi D 0 ;8 X 2 Kpg :

Because of Nrr D 0; Nrg D 0 this defines two orthogonal smooth distributions

DK WD
[
p2M

Kp ; DSNK WD
[
p2M

K?
p

on M.
ii) The splitting theorem of de Rham can be applied, see Sect. 3.2.1 of this chapter,

to the distributions DK and DSNK and the nearly Kähler manifold .M; J; g/ splits
(locally) into a Riemannian product

.M; J; g/ D .MK ; JK ; gK/ � .MSNK ; JSNK ; gSNK/ ;
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where TMK D DK , TMSNK D DSNK : Here .MK ; JK ; gK/ is Kähler and
.MSNK ; JSNK ; gSNK/ is strict nearly Kähler.

iii) Now let L � M D MK�MSNK be Lagrangian. We prove that r leaves tangent and
normal spaces of L invariant. To see this, we fix an adapted local orthonormal
frame field fe1; : : : ; e2ng of M such that e1; : : : ; en are tangent to L and enC1 D
Je1; : : : ; e2n D Jen are normal to L. Since for any three vectors X;Y;Z we have

h.rXJ/JZ; .rYJ/JZi D hJ.rXJ/Z; J.rYJ/Zi D h.rXJ/Z; .rY J/Zi ;

we obtain

hrX;Yi D
2nX

iD1
h.rXJ/ei; .rYJ/eii

D
nX

iD1
h.rXJ/ei; .rYJ/eii C

nX
iD1

h.rXJ/Jei; .rYJ/Jeii

D 2

nX
iD1

h.rXJ/ei; .rYJ/eii:

Now, if X 2 TL, Y 2 T?L, then by Lemma 3.10.2 we have

.rXJ/ei 2 T?L ; .rYJ/ei 2 TL ;

so that

h.rXJ/ei; .rYJ/eii D 0 ; 8 i D 1; : : : ; n :

Further it follows

hrX;Yi D 2

nX
iD1

h.rXJ/ei; .rYJ/eii D 0 :

Since this works for any X 2 TL;Y 2 T?L and since r is selfadjoint we
conclude

r.TL/ � TL ; r.T?L/ � T?L :

At a given point p 2 L we may now choose an orthonormal basis f f1; : : : ; fng of
TpL that consists of eigenvectors of rjTL considered as an endomorphism of TL.
Since Œr; J� D 0 and L is Lagrangian, the set f f1; : : : ; fn; Jf1; : : : ; Jfng then also
determines an orthonormal eigenbasis of r 2 End.TM/. In particular, since J
leaves the eigenspaces invariant, Kp D ker.r.p// and TpL intersect in a subspace
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KL
p of dimension 1

2
dim.Kp/ D 1

2
dim.MK/. For the same reason K?

p \ TpL

gives an 1
2

dim.MSNK/-dimensional subspace. The corresponding distributions,
denoted by DL

K and DL
SNK are orthogonal and both integrable, since in view of

DL
K D DK \ TL ; DL

SNK D DSNK \ TL

they are given by intersections of integrable distributions. We may now apply
again the splitting theorem of de Rham to the Lagrangian submanifold. This
completes the proof.

ut
Remark 3.10.11 A more detailed analysis of the proof of the last theorem shows,
that the result can be shown in the pseudo-Riemannian setting:

Let .M; J; g/ be a nearly pseudo-Kähler manifold. Suppose, that the distribution
K has constant dimension and admits an orthogonal complement, and the kernel of
rjL admits an orthogonal complement in TL, then M and L decompose locally into
products M D MK � MSNK , L D LK � LSNK , where MK is Kähler, MSNK is strict
nearly pseudo-Kähler and LK � MK , LSNK � MSNK are both Lagrangian. Moreover,
if the splitting of M is global and L is simply connected, then L decomposes globally
as well.

Corollary 3.10.12 If L � M is Lagrangian and p 2 L a fixed point, then to
each eigenvalue � of the operator r at p there exists a basis e1; : : : ; ek; f1; : : : ; fk
of eigenvectors of Eig.�/ such that e1; : : : ; ek 2 TpL, f1; : : : ; fk 2 T?

p L. Here, 2k
denotes the multiplicity of �.

Proposition 3.10.13 Let .M; J; g/ be a nearly Kähler manifold and L � M be a
Lagrangian submanifold. Then TL and T?L are invariant by the Ricci tensor. In
particular the spectrum of Ric is compatible with TL ˚ T?L:

Proof Let us recall (cf. [98]) that the Ricci-tensor satisfies hRic X;Yi D 0 if X and Y
are vector fields in eigenbundles Eig.�X/ and Eig.�Y/ of the tensor r with different
eigenvalue �X ¤ �Y : If X;Y belong to the same eigenvalue � then hRic X;Yi is
given by the following formula

hRic X;Yi D �

4
hX;Yi C 1

�

�X
iD1

�ihrEig.�i/X;Yi; (3.111)

where � is the number of different eigenvalues of r and rEig.�i/ is defined by

hrEig.�i/X;Yi D � trEig.�i/Œ.rXJ/ ı .rYJ/�:

Like in the proof of Theorem 3.10.10 we obtain using Corollary 3.10.12

rEig.�i/.TL/ � TL; rEig.�i/.T?L/ � T?L:
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Equation (3.111) implies that

Ric.TL/ � TL; Ric.T?L/ � T?L:

This further implies that the spectrum of Ric is compatible with the decomposition
TL ˚ T?L and finishes the proof. ut
Remark 3.10.14 The last proposition gives in the minimal case (only) a partial
information on the Ricci curvature of L � M: Recall the Gauss equation

hRL.V;W/X;Yi D hR.V;W/X;Yi C hII.V;X/; II.W;Y//i � hII.V;Y/; II.W;X/i

which implies using minimality

dimLX
iD1

hRL.ei;W/ei;Yi D
dimLX
iD1

hR.ei;W/ei;Yi �
dimLX
iD1

hII.ei;Y/; II.ei;W/i:

It is straight-forward to show, that the second term on the right hand-side vanishes
if and only if II is zero, i.e. L is a totally geodesic manifold. In that case
Proposition 3.10.13 yields the Ricci tensor of L.

Let us recall the situation in dimension 8 and 10 [67, 98].

Proposition 3.10.15

(i) Let M8 be a simply connected complete nearly Kähler manifold of dimension 8.
Then M8 is a Riemannian product M8 D †� M6

SNK of a Riemannian surface †
and a six-dimensional strict nearly Kähler manifold M6

SNK :

(ii) Let M10 be a simply connected complete nearly Kähler manifold of dimension
10. Then M10 is either the product M4

K � M6
SNK of a Kähler surface M4

K and
a six-dimensional strict nearly Kähler manifold M6

SNK or M is a twistor space
over a positive, eight dimensional quaternionic Kähler manifold.

Note, that any complete, simply connected eight dimensional positive quaternionic
Kähler manifold equals one of the following three spaces: HP

2;Gr2.C2/;G2=SO.4/:
In the next theorem, part (i) and (ii) collect the information on Lagrangian

submanifolds in nearly Kähler manifolds of dimension 8 and 10.

Theorem 3.10.16

(i) Let L be a Lagrangian submanifold in a simply connected nearly Kähler
manifold M8. Then M8 D † � M6

SNK, where † is a Riemann surface, M6
SNK

is strict nearly Kähler and L D � � L0 is a product of a (real) curve � � †

and a minimal Lagrangian submanifold L0 � M6
SNK :

(ii) Let L be a Lagrangian submanifold in a simply connected complete nearly
Kähler manifold M10, then either
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(a) M10 D M4
K � M6

SNK and the manifold L D S � L0 is a product
of a Lagrangian (real) surface S � M4

K and a minimal Lagrangian
submanifold L0 � M6

SNK or
(b) the manifold L is a Lagrangian submanifold in a twistor space over a

positive, eight dimensional quaternionic Kähler manifold.

(iii) Let M1, M2 be two nearly Kähler manifolds. Denote the operator r on Mi by ri,
i D 1; 2. If Spec.r1/ \ Spec.r2/ D ; and L � M1 � M2 is Lagrangian, then L
splits (locally) into L D L1 � L2, where Li � Mi, i D 1; 2 are Lagrangian. If L
is simply connected, then the decomposition is global.

Proof This is a combination of the results of Theorem 3.10.10, Corollary 3.10.12
and Proposition 3.10.15. ut
Remark 3.10.17 As in Remark 3.10.11 we may note, that using our results one can
generalise Theorem 3.10.16 to the case of indefinite metrics, where we omit part
(iii):

Theorem 3.10.18

(i) Let L be a Lagrangian submanifold in a simply connected nice nearly pseudo-
Kähler manifold M8. Then M8 D † � M6

SNK, where † is a Riemann surface,12

M6
SNK is strict nearly Kähler and L D ��L0 is a product of a (real) curve � � †

and a minimal Lagrangian submanifold L0 � M6
SNK :

(ii) Let L be a Lagrangian submanifold in a simply connected complete nice
decomposable nearly pseudo-Kähler manifold M10, such that the kernel13 of
rjTL admits an orthogonal complement, then either

(a) M10 D M4
K�M6

SNK and the manifold L D S�L0 is a product of a Lagrangian
(real) surface S � M4

K and a minimal Lagrangian submanifold L0 � M6
SNK

or
(b) the manifold L is a Lagrangian submanifold in a twistor space over

a negative, eight dimensional quaternionic Kähler manifold or a para-
quaternionic Kähler manifold.

Theorems 3.10.16 (3.10.16) and 3.10.18 (3.10.18), parts (b) motivate the discussion
of Lagrangian submanifolds in twistor spaces in the subsequent section. Indeed, the
results derived in the next section imply that Lagrangian submanifolds in twistor
spaces are, regardless their dimension, always minimal.

12Remark, that the restriction of g to † is always definite.
13Let us recall, that in the case (b) r has trivial kernel.
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3.10.4 Lagrangian Submanifolds in Twistor Spaces

An important class of examples for nearly pseudo-Kähler manifolds is given
by twistor spaces Z4nC2 over quaternionic Kähler or para-quaternionic Kähler
manifolds N4n; as we have seen in Sects. 3.3 and 3.4 of this chapter.

For the readers convenience, let us shortly recall that the twistor space is
the bundle of almost complex structures in the quaternionic bundle Q over the
(para-)quaternionic Kähler manifold N: It can be endowed with a Kähler structure
.Z; JZ; gZ/; such that the projection � W Z ! N is a Riemannian submersion
with totally geodesic fibres S2: Denote by H and V the horizontal and the vertical
distributions of the submersion �: Then the direct sum decomposition

TZ D H ˚ V (3.112)

is orthogonal and compatible with the complex structure JZ: Let us consider now a
second almost Hermitian structure . J; g/ on Z which is defined by

g WD

8̂
<̂
ˆ̂:

gZ.X;Y/; for X;Y 2 H;
1
2
gZ.V;W/; for V;W 2 V ;

gZ.V;X/ D 0; for V 2 V ;X 2 H

and

J WD
(

JZ on H;
�JZ on V :

Note, that in view of (3.112), the decomposition TZ D H ˚ V is also compatible
w.r.t. J and orthogonal w.r.t. g.

The manifold .Z; J; g/ is a strict nearly pseudo-Kähler manifold and the distri-
butions V and H are parallel w.r.t. the connection Nr: The projection � is also a
Riemannian submersion with totally geodesic fibres for the metric g:

Let us summarise some information which will be useful later in this section.

Lemma 3.10.19 In this situation we have the following information:

(a) The torsion T D �JrJ of the characteristic connection satisfies (see
Lemma 3.4.3)

T.X;Y/ 2 V ; for X;Y 2 H; (3.113)

T.X;V/ 2 H; for X 2 H;V 2 V ; (3.114)

T.U;V/ D 0; for U;V 2 V : (3.115)
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(b) The association (see Lemma 3.4.3)

H 3 X 7! T. Y;X/ 2 V (3.116)

is surjective for 0 ¤ Y 2 H and the map

ˆV W H 3 X 7! T.V;X/ (3.117)

with 0 ¤ V 2 V is invertible and squares to "k2IdH for some k 2 R; " 2 f˙1g;
cf. Lemma 3.4.9.

(c) The operator r has eigenvalues �H D 4k2, �V D n�1
2
"�H: If n > 1, then the

eigenbundle of �H is H and V is the eigenbundle of �V , cf. Corollary 3.4.17.

In the rest of this section we consider a nearly pseudo-Kähler manifold .M D
Z; J; g/ of twistor type and study Lagrangian submanifolds L � M:

Remark 3.10.20 As will be shown in the next theorem, for n > 1 we have

�H.TL/ D H \ TL ; �V.TL/ D V \ TL ;

where �H.TL/; �H.T?L/ and �V.TL/; �V .T?L/ are the orthogonal projections of
TL and T?L w.r.t. H ˚ V .

Lemma 3.10.21 Let L2nC1 � M4nC2 with n > 1 be a Lagrangian submanifold in a
twistor space as described above. Then the second fundamental form II satisfies

II.X;Y/ 2 �H.T?L/; for X;Y 2 �H.TL/; (3.118)

II.X;Y/ 2 �V .T?L/; for X;Y 2 �V .TL/; (3.119)

II.X;Y/ D 0; for X 2 �H.TL/;Y 2 �V.TL/: (3.120)

Proof The second fundamental form is given by C.X;Y;Z/ D h NrXY; JZi for
X;Y;Z 2 �.TL/: The lemma follows since the decomposition (3.112) is Nr-parallel,
orthogonal and J-invariant and as the tensor C is completely symmetric. ut
With these preparations we prove the next result.

Theorem 3.10.22 Let L2nC1 � M4nC2 be a Lagrangian submanifold in a nearly
pseudo-Kähler manifold of the above type. Then L is minimal. If n > 1, then the
tangent space of L splits into a one-dimensional vertical part and a 2n-dimensional
horizontal part. Moreover, the second fundamental form II of the vertical normal
direction vanishes completely if n > 1.

Proof

i) By Theorem 3.10.6 it suffices to consider the case n > 1.
ii) Let L � M be a Lagrangian submanifold. Since n > 1, the two eigenvalues

�H; �V of r are distinct and the eigenspace V of �V is two-dimensional. By
Corollary 3.10.12 this induces a one-dimensional vertical tangential distribution
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D on L in the Riemannian case. In the pseudo-Riemannian case this follows,
since the restriction of the metric to V is definite. In particular,D is not isotropic.
Then, by the Lagrangian condition, we get D WD �V.TL/.

iii) Denote by D? the orthogonal complement of D in TL: We claim, that the trace
of the second fundamental form II of L restricted to D? is zero.

Proof First we observe that by Lemma 3.10.21 we can restrict the second
fundamental form II to D? D �H.TL/: We fix U 2 D of unit length. Using
Lemmas 3.10.2 and 3.10.19 we observe, that ˆ.X/ WD 1

k J.rUJ/X defines an
(almost) (para-)complex structure on D? which is compatible with the metric.
With X 2 D? and ˆ2 D "Id we compute

II.X;X/ D "II.X; ˆ.ˆ.X/// D "
1

k
II.X; J.rUJ/ˆ.X//

D "
1

k
J
�
.rII.X;U/J/ˆ.X/C .rUJ/II.X; ˆ.X//

�

D "
1

k
J.rUJ/ II.X; ˆ.X// D "ˆII.X; ˆ.X// :

After polarising we obtain

II.ˆX; ˆY/ D "II.X;Y/ ; 8 X; Y 2 D? : (3.121)

In particular, taking a trace over (3.121) we get

trD
?

II D 0 ;

where we keep in mind, that it holds g.ˆ�; ˆ�/ D �"g.�; �/:
iv) We have

˛.X;Y/ D 0 ; 8 X; Y 2 D? :

Proof By (ii) we may choose a pseudo-orthonormal frame fe1; : : : ; e2nC1g of
TL such that e1; : : : ; e2n 2 D? and e2nC1 2 D. Since

˛.X;Y/ D
2nC1X
iD1

�i C.ei;X;T.ei;Y//

and the tensor C is fully symmetric we see that by Lemma 3.10.21 all terms
on the RHS vanish since either ei 2 D D �V.TL/, X 2 D? D �H.TL/ or
ei;X 2 D? and T.ei;Y/ 2 D (cf. Lemma 3.10.19).

v) By Lemma 3.10.21 and (iii) the mean curvature vector
�!
H satisfies J

�!
H 2 D :

From (3.106) and (iv) we get

hJ
�!
H ;T.X;Y/i D 0 ; 8 X; Y 2 D? : (3.122)
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Since J maps V to itself, we also have J
�!
H 2 D � V . Now we choose X 2 D?

and QY 2 H with

T.X; QY/ D J
�!
H :

This is possible since the map H 3 QY 7! T.X; QY/ 2 V is surjective by (3.116).
Let QY D Y C Y? be the orthogonal decomposition of QY into the tangent and
normal parts of QY . Note that Y;Y? are both horizontal. We claim

T.X;Y?/ D 0:

This follows, since T.X; �/ maps tangent to tangent and normal to normal
vectors and one has

T.X; QY/ D T.X;Y/C T.X;Y?/ D J
�!
H 2 TL :

Therefore there exist two tangent vectors X;Y 2 D? with

T.X;Y/ D J
�!
H :

This implies

j�!H j2 D hJ
�!
H ;T.X;Y/i .3.122/D 0;

which proves that the mean curvature vector vanishes, as the metric restricted
to V is definite (even in the pseudo-Riemannian case). From this, the fact that
D is one-dimensional and from Lemma 3.10.21 it follows that II.V; �/ D 0 for
any V 2 D.

ut
Corollary 3.10.23 Let L � M be a Lagrangian submanifold in a twistor space
M4nC2 as above with n > 1. Then the integral manifolds c of the distribution D are
geodesics (hence locally great circles) in the totally geodesic fibres S2:

Proof The last theorem implies that the geodesic curvature vanishes and that in
consequence an integral manifold c of D is totally geodesic in the fibres. ut
Remark 3.10.24

(i) It is well-known, that the twistor space of HPn is CP2nC1: Therefore the
above result applies to .CP2nC1; J; g/ endowed with its canonical nearly Kähler
structure.

(ii) Using Remark 3.10.14 (for Riemannian metrics) and Lemma 3.10.19 (c) we
observe that totally geodesic Lagrangian submanifolds in twistor spaces have
two different Ricci eigenvalues with multiplicities 2n and 1:
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3.10.5 Deformations of Lagrangian Submanifolds in Nearly
Kähler Manifolds

Our aim in this section is to study the space of deformations of a given Lagrangian
(and hence minimal Lagrangian) submanifold L in a strict six-dimensional nearly
(pseudo-)Kähler manifold M6. In an article by Moroianu et al. [96] the deformation
space of nearly Kähler structures on six-dimensional nearly Kähler manifolds has
been related to the space of coclosed eigenforms of the Hodge-Laplacian. As we
will show below, a similar statement holds for the deformation of Lagrangian
submanifolds in strict nearly (pseudo-)Kähler six-manifolds. To this end we assume
that

F W L � .��; �/ ! M

is a smooth variation of Lagrangian immersions Ft WD F.�; t/ W L ! M, t 2 .��; �/
into a nearly (pseudo-)Kähler manifold M. Let

V WD d

dt
Ft

denote the variation vector field. Since tangential deformations correspond to
diffeomorphisms acting on L, we may assume w.l.o.g. that V 2 �.T?L/ is a normal
vector field. The Cartan formula and F�

t ! D 0 for all t then imply that

0 D d.iV!/C iV d!

holds everywhere on L. By the nearly Kähler condition this is equivalent to

d.Vy!/C 3Vyr! D 0 (3.123)

on L. Let us define the variation 1-form � 2 �1.L/ by

� WD Vy! :

This Theorem has recently been used in [97]. In this paper the authors relate
generalised Killing spinors on spheres to Lagrangian graphs in the nearly Kähler
manifold S3 � S3:

Theorem 3.10.25 Let Ft W L ! M be a variation of Lagrangian immersions in a
six-dimensional nearly (pseudo-)Kähler manifold M. Then the variation 1-form �

is a coclosed eigenform of the Hodge-Laplacian, where the eigenvalue � satisfies
� D 9˛ with the type constant ˛ of M. If the metric is positive definite this space is
finite dimensional.
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In the case of Riemannian metrics a similar result was also shown in Theorem 7 of
[71]. For a more recent study of deformations of Lagrangian submanifolds we refer
to [91].

Proof For X;Y 2 TL and V 2 T?L we compute

.Vyr!/.X;Y/ D r!.V;X;Y/
D h.rXJ/Y;Vi
D hJ.rXJ/Y; JVi
D �hJV;T.X;Y/i :

Since T induces an orientation on the Lagrangian submanifold by the three-form

�.X;Y;Z/ WD hT.X;Y/;Zi ;

we obtain a naturally defined �-operator � W �p.L/ ! �3�p.L/ which for 1-forms
is given by

�� WD �pj˛j � ı T :

Here, ˛ is the type constant of M (cf. Remark 3.10.7) and � 2 f˙1g depends only
on the signature. This implies that equation (3.123) can be rewritten in the form

d� D 3�
p

j˛j �� : (3.124)

Consequently, if the signature of the metric g restricted to L is . p; q/; we obtain

sign. p � q/ ı� D �d�� D 0

and

sign. p � q/ ıd� D 3�
p

j˛j �d���
.�2DId/D 3�

p
j˛j �d�

(3.124)D 9j˛j � ��
.�2DId/D 9j˛j� :
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In total as the sign of ˛ is also sign. p � q/ we get


Hodge� D .ıd C dı/� D 9˛� :

This proves the theorem. Since one has Ric D 5˛g this is equivalent to


Hodge� D 3

10
scal � ;

where scal is the scalar curvature of M. ut
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