Chapter 3
Nearly Pseudo-Kihler and Nearly Para-Kéahler
Manifolds

3.1 Nearly Pseudo-Kihler and Nearly Para-Kéhler
Manifolds

3.1.1 General Properties

In this subsection we collect some information on almost e-Hermitian manifolds
with a special emphasis on the nearly e-Kihler case.

Definition 3.1.1 An almost e-Hermitian manifold (M?", g, J?, ®) is called nearly
e-Kéhler manifold, provided that its Levi-Civita connection V satisfies the nearly
g-Kahler condition

(VxJ)X =0, VX e TM.

A nearly e-Kihler manifold is called strict if VxJ® # 0 for all non-trivial vector
fields X.
A tensor field B € T'((TM*)®?> ® TM) on a pseudo-Riemannian manifold (M, g)
is called (totally) skew-symmetric if the tensor g(B(X, Y),Z) is a three-form. The
following characterisation of a nearly e-Kihler manifold is well-known in the
Riemannian context and we refer to Proposition 3.2 of [110] for the complete proof
in the pseudo-Riemannian setting.

Proposition 3.1.2 An almost e-Hermitian manifold (M*",g,J¢, w) satisfies the
nearly e-Kdhler condition if and only if dw is of real type (3,0) + (0, 3) and the
Nijenhuis tensor is totally skew-symmetric.

Remark 3.1.3 The notion of nearly e-Kéhler manifold corresponds to the gener-
alised Gray-Hervella class W in [86]. However, in the para-Hermitian case, there
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42 3 Nearly Pseudo-Kihler and Nearly Para-Kéhler Manifolds

are two subclasses, see [59]. Indeed, we already observed that

(2.36)

A=—-Vo e [Q*] T(AV* @ A*H*)

for a nearly para-Kihler manifold.

Definition 3.1.4 A connection V on an e-Hermitian manifold (M?", g,J¢, w) is
called e-Hermitian provided, that it satisfies Vg = 0 and V.J¢ = 0.

The Riemannian case of the next result is due to [57], the para-complex case is
shown in [78]. In fact, the sketched proof in [57] holds literally for the almost
pseudo-Hermitian case with indefinite signature as well. A direct and simultaneous
proof of all cases can be found in Proposition 3.4 of [110].

Theorem 3.1.5 An e-Hermitian manifold (M*", g,J¢,®) admits an e-Hermitian
connection with totally skew-symmetric torsion if and only if the Nijenhuis tensor
is totally skew-symmetric. If this is the case, the connection V and its torsion T are
uniquely defined by

§(9xY.2) = g(Va¥.2) + &(T(X,1).2),

g(T(X,Y).Z) = eg(N(X.Y),Z) — do(J°X, Y, I Z).

and we call V the characteristic -Hermitian connection (with skew-symmetric
torsion).

This connection can be seen as a natural generalisation of the Chern- or Bismut-
connection. Another name for the characteristic connection is canonical connection.

Remark 3.1.6 An almost Hermitian manifold is said to be of type G, if it admits a
Hermitian connection with skew-symmetric torsion. In terms of the Gray-Hervella
list [68], this means, that it is of type W, @& W5 @ Wi, i.e. the missing part is the
almost Kéhler component ;.

More generally, the proposition justifies to say that an almost e-Hermitian
manifold is of type G if it admits an e-Hermitian connection with skew-symmetric
torsion.

In particular, the proposition applies to nearly e-Kahler manifolds (M, g, J®, w).
In fact, comparing the identities (2.35) and (2.41), we see that the real three-form A
is of type (3, 0) + (0, 3). Since dw is the alternation of Vw, we have

do =3Ve = —3A4 € [Q*°], (3.1
where A is defined in (2.39). Furthermore, if we apply the nearly e-Kéhler condition
to the expression (2.37), the Nijenhuis tensor of a nearly e-Kéhler structure

simplifies to

N(X,Y) = 45 (VyJ9)Y. (3.2)
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We conclude that the Nijenhuis tensor is skew-symmetric since

s(N(X.Y),Z) = —4 AKX, Y,7°Z) 2V _4e)* AX. Y, 2). (3.3)

Explicitly the connection V is then given by
- 1
VxY = VxY + 25J€(VXJ€)Y, forX,Y e I'(TM). (3.4)

In this case, the skew-symmetric torsion 7' of the characteristic e-Hermitian
connection simplifies to

1
T(X.Y) = eJ*(VxJ)Y = | eN(X.Y)

due to the identities (3.1)—(3.3).

For a proof of the next result we may refer to Lemma 2.4 of [16] for nearly Kéhler
manifolds, Theorem 5.3 of [78] for nearly para-K#hler manifolds and Proposition
3.2 of [108] for the remaining case. As the attentive reader observes, the proof relies
on the curvature identity (3.20), even though we list it already in this section as one
of the very useful properties of the characteristic connection.

Proposition 3.1.7 The characteristic e-Hermitian connection NV of a nearly &-
Kéihler manifold (M*",J¢, g, w) satisfies

V(VJ) =0 and V(T)=0.

A direct consequence is the following Corollary.

Corollary 3.1.8 On a nearly e-Kdihler manifold (M*", J¢, g, w) the tensors VJ¢ and
N = 4¢T have constant length.

Remark 3.1.9 In dimension 6, the fact that VJ® has constant length is usually
expressed by the equivalent assertion that a nearly e-Kihler six-manifold is of
constant type, i. e. there is a constant &« € R such that

g((VxJ)Y, (VxJ)Y) = a {g(X. X)g(Y.Y) — g(X.Y)* + eg(J’X.Y)*}. (3.5

In fact, the constant is ¢ = i [ VJ¢||?. Furthermore, it is well-known in the
Riemannian case that strict nearly Kéhler six-manifolds are Einstein manifolds with
Einstein constant 5« [67]. The same is true in the para-Hermitian case [78] and in
the pseudo-Hermitian case [108] or Theorem 3.2.8 of this chapter. The sign of the
type constant depends on the signature (2p, 2¢) of g by sign(p — q), see for example
[82]. In particular, in the Riemannian case it follows o > 0 and as a consequence a
strict nearly Kéhler manifold cannot be Ricci-flat.
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The case ||VJ¢||> = 0 for a strict nearly e-Kihler six-manifold can only occur in the
para-complex world. We give different characterisations of such structures which
provide an obvious break in the analogy of nearly para-Kéhler and nearly pseudo-
Kéhler manifolds. To emphasise that we are only considering the nearly para-Kéhler
case we write 7 for J® withe = 1.

Proposition 3.1.10 For a six-dimensional strict nearly para-Kdhler manifold
(M®, g, T, w) the following properties are equivalent:

@ [Ve|* = |A]* = 0.

(ii) The three-form A = —Vw € [Q3%] is either in T (A3V*) or in T (A3H*).
(iii) The three-form A = —Vo € [Q3°] is not stable.
(iv) The metric g is Ricci-flat.

In consequence for a Ricci-flat nearly para-Kiahler manifold the 3-forms Dw(:, -, -)
and N(., -, -) are not stable in the sense of Hitchin [75, 76], cf. Sect. 2.1 of Chap.?2
for details on stable forms and hence the powerful methods of stable forms are not
available. The following observation is used later in this text to construct examples
of non-flat Ricci-flat nearly para-Kihler six-manifolds.

Corollary 3.1.11

(a) On a Ricci-flat nearly para-Kéihler six-manifold (M, t, g) the 3-forms Vw and
N have isotropic support.

(b) Let (M, t,g) be a nearly para-Kdihler manifold such that the Nijenhuis tensor
N has isotropic support, then one has Nx o Ny = 0.

Proof The identity (3.5) combined with « = 0 yields g((Vx1)Y, (Vx7)Y) = 0 and
further

g(t(Vx1)Y,t(Vx1)Y) = 0. (3.6)

This shows that the two 3-forms g((Vx1)Y,Z) and g(t(Vxt)Y, Z) have isotropic
support. Finally we obtain after polarisation of (3.6), that one has

g(NxNyZ, W) = —16g(z(Vy1)Z, 1 (VxT)W) =0

forall X,Y,Z, W € I'(TM). This yields the last statement. O

Remark 3.1.12 Let us consider R>" with its standard para-Hermitian structure
(Po,go) and isotropic basis (ej,...,em,f1,---,fm) Wwith dual isotropic basis
(e',....e" f1,....f™), compare Eq.(2.33). Then the m-forms ¢! A ... A ¢" and
fY A ... A f™ are invariant under SU(Py, g9), which follows from Eq. (2.34) and
have isotropic support in the above sense for m = 3.

As the (restricted) holonomy of a Ricci-flat para-Kihler six-manifold (M®, P, g)
lies in SU(Py, go), it follows that a Ricci-flat para-Kéhler six-manifold admits a
family of (non-vanishing) parallel 3-forms with isotropic support.
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Lemma 3.1.13 Let (M,t,g) be a nearly para-Kihler manifold such that the
Nijenhuis tensor N(X, Y, Z) has isotropic support, then it holds

(VxN)(Y,2) =0, (3.7)
(VxN)(Y,Z, W) = 0. (3.8)

In particular, these identities are satisfied for a Ricci-flat nearly para-Kdhler six-
manifold.

Proof We directly compute Eq. (3.7) using Theorem 3.1.5 and Corollary 3.1.11 (b)

(VxN)(Y.Z) = Vx(N(Y.Z)) = N(VxY.Z) = N(Y, VxZ)

= (@X — ;Nx) (N(Y,Z)) =N ((?X — ;Nx) Y, Z)
—N ( Y, (?X — éNx) Z) = (VxN)(Y,Z) = 0.

Combining Eq.(3.7) with Vg = 0 and N(X,Y,Z) = g(N(X,Y),Z) we obtain
Eq. (3.8). The last statement follows from Corollary 3.1.11 (a). O

Flat strict nearly para-Kdhler manifolds (M, g,J, w) are classified in work with
V. Cortés, see Sect.3.6 of this chapter. It turns out that these always satisfy
[VJ2||?> = 0. In [59], almost para-Hermitian structures on tangent bundles TN of
real three-dimensional manifolds N3 are discussed. It is shown that the existence of
nearly para-Kéhler manifolds satisfying the second condition of Proposition 3.1.10
is equivalent to the existence of a certain connection on N without constructing an
example. However, to our best knowledge, there was no reference for an example of
a Ricci-flat non-flat strict nearly para-Kéhler structure until the author’s paper [109]
discussed in Sect. 3.7 of this chapter.

3.1.2 Characterisations by Exterior Differential Systems
in Dimension 6

The following lemma explicitly relates the Nijenhuis tensor to the exterior differen-
tial. For ¢ = —1, it gives a characterisation of Bryant’s notion of a quasi-integrable
U(p, g)-structure, p + g = 3, in dimension 6 [24].

Let (M° g,J°,w) be a six-dimensional almost e-Hermitian manifold. If
{e1....,eq = Je3} is a local e-unitary frame, we define a local frame {E', E, E*}
of (TM'%)* by

E' = (¢ +i.eJ%) = (¢ +i.e™™)
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fori = 1,2,3 and call it a local e-unitary frame of (1, 0)-forms. The dual vector
fields of the (1, 0)-forms are

1 1
E; = eil,O = (ei + iagjsei) = (ei + i£56i+m)7
2 2
such that the C,-bilinearly extended metric in this kind of frame satisfies
- 1
g(E,',Ej) = 20’,’8,:,' and g(E,',Ej) =0.
Lemma 3.1.14 The Nijenhuis tensor of an almost e-Hermitian six-manifold

(MC, g,J¢,w) is totally skew-symmetric if and only if for every local e-unitary
frame of (1, 0)-forms, there exists a local C.-valued function A such that

(dEs(l))O,Z = Aoy E@s0) 3.9)

for all even permutations s of {1,2, 3}.

Proof First of all, the identities
N(V, W) = —4¢[V,W]'°® and N(V,W)=0

for any vector fields V = V', W = W0 in TM'? follow immediately from the
definition of N. Using the first identity, we compute in an arbitrary local e-unitary
frame

dE\(E;, Ex) = —E'([E}, Ex]) = —20i g([E}. Ex]. E))
o _ 1 _ _
= —20,8([E;, E{)'° E)) = zso'ig(N(Ejka)in)

for all possible indices 1 < i,j,k < 3. If the Nijenhuis tensor is totally skew-
symmetric, Eq. (3.9) follows by setting

1 _ _
A= egWN(ErEx). Ey). (3.10)

Conversely, the assumption (3.9) for every local e-unitary frame implies that the
Nijenhuis tensor is everywhere a three-form when considering the same computa-
tion and N(V, W) = 0. O
From the last Lemma we get the following Corollary.

Corollary 3.1.15 For an almost e-Hermitian six-manifold (M®,g,J¢, w) with
totally skew-symmetric Nijenhuis tensor, there exists a function f € C*®°(M) such
that one has

&X.,Y) =f(p)tr(Nx oNy), pe M, X, Y € T,M.
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In particular, if this function f does not vanish, i.e. if the almost complex structure
is quasi-integrable, the almost e-complex structure fixes the conformal class of g.

If there is an SU®( p, g)-reduction (cf. Sect. 2.4 of Chap. 2) with closed real part,
this characterisation can be reformulated globally in the following sense.

Proposition 3.1.16 Let (w, ¥ ) be an SU*(p, q)-structure on a six-manifold M
such that ¥ is closed. Then the Nijenhuis tensor is totally skew-symmetric if and

only if
Ay~ =vo Ao (3.11)

for a global real function v.

Proof Tt suffices to proof this locally. Let {£'} be an e-unitary frame of (1, 0)-forms
with o1 = 0, which is adapted to the SU?( p, ¢)-reduction such that ¥ = y+ +
iy~ =aFE 123 for a real constant a as in (2.48). The fundamental two-form is

1, & ;
w = —21£ZUkEkk
k=1
in such a frame. Furthermore, as w+ is closed, we have d¥ = i.dy~ = —dJ,
which implies that d¥ € A?2. Considering this, we compute the real 4-form
dy~ = ei, d¥ = gi,a (dE")*? AE® + (dE*)"? A EP' + (dE)** AE")

and compare this expression with
1 - - - - - -
AW = 28(0203 E* 4+ 5103 E" + 010y Elm)
1 - — —
_ _2803(01 EPB 4o, BB 4 gy E212),

Hence, by Lemma 3.1.14, the Nijenhuis tensor is totally skew-symmetric if and only
if dy~ = v w Aw holds true for a real function v. More precisely, the two functions
v and A are related by the formula

v = —203i.ak. (3.12)

O
An SU?(p, g)-structure (w, V) is called half-flat if

dy =0, dw’=0,
and nearly half-flat if

dy =vo A Nw
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for a real constant v. These notions are defined for the Riemannian signature in
[32] respectively [53] and extended to all signatures in our paper [46] presented in
Chap. 4 of this text.

Corollary 3.1.17 Let (w, ¥ ") be a half-flat SU? (p, q)-structure on a six-manifold
M. Then, the Nijenhuis tensor is totally skew-symmetric if and only if (w, V™) is
nearly half-flat.

Proof 1If (w,¥ ™) is nearly half-flat, Eq.(3.11) is satisfied by definition and the
Nijenhuis tensor is skew-symmetric by the previous proposition. In particular one
has dw? = 0. Conversely, if the Nijenhuis tensor is skew, we know that (3.11) holds
true for a real function v, since we have dyy* = 0. Differentiating this equation and
using dw? = 0, we obtain dv A w? = 0. The assertion follows as wedging by w? is
injective on one-forms. O

Remark 3.1.18 An interesting property of SU®( p, g)-structures which are both half-
flat and nearly half-flat in the sense of the corollary is the fact that, given that the
manifold and the SU?(p, g)-structure are analytic, the structure can be evolved to
both a parallel G,-structure and a nearly parallel G,-structure via the Hitchin flow.
For details, we refer to [76] and [114] for the compact Riemannian case and Chap. 4
of this text or our paper [46] for the non-compact case and indefinite signatures.

In [33], six-dimensional nilmanifolds N admitting an invariant half-flat SU(3)-
structure (w,¥ 1) such that (w,v¥ ™) is nearly half-flat are classified. As six
nilmanifolds admit such a structure, we conclude that these structures are not as
scarce as nearly Kéhler manifolds. It is also shown in the same article, that these
structures induce invariant G,-structures with torsion on N x S'.

We give another example of a (normalised) left-invariant SU(3)-structure on §° x
S* which satisfies dy ™ = 0, dyy~ = o A o such that dw neither vanishes nor
is of type (3,0) + (0,3). We choose a global frame of left-invariant vector fields
{e1,ez,e3.f1.f./2} on S* x §3 such that

del — 6‘23 d@z — 6‘31 d€3 — 6‘12 . dfl :f23 df2 — f31 df3 :f12
and set with x = 2 + /3

w = elfl +er2 +€3f3,

1
vyt = _2x2e123 + 2xe'?f? — 2xe3f? — 2xe' 1B + 2xePf!
+ 2xe*f 1 — 2xe’f1? + (4x — 8)f1%,
1
v = erm — 26 B 42217 — 26312 4 4123,

g=x(") +x()’ +x(@)? +4(f) +4() +4(f)
—2xel f! —2x e’ f? — 2xed 3.
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Finally, we come to the characterisation of six-dimensional nearly e-Kéhler
manifolds by an exterior differential system generalising the classical result of [103]
which holds for ¢ = —1 and Riemannian metrics.

Theorem 3.1.19 Let (M, g,J¢, w) be an almost e-Hermitian six-manifold. Then M
is a strict nearly e-Kdhler manifold with |VJ¢||> # 0 if and only if there is a
reduction W = ¥+ 4+ 1.9~ to SU(p, q) which satisfies

do =3y, (3.13)
Ay~ =2aw ANw, (3.14)

where o = 411||VJ€ |? is constant and non-zero.

Remark 3.1.20 Due to our sign convention w = g(.,J°.), the constant « is positive
in the Riemannian case and the second equation differs from that of other authors.
Furthermore, we will sometimes use the term nearly e-Kihler manifold of non-zero
type if | VJ?||? # 0.

Proof By Proposition 3.1.2, the manifold M is nearly e-Kihler if and only if dw is
of type (3, 0) + (0, 3) and the Nijenhuis tensor is totally skew-symmetric.

Therefore, when (g, J¢, ) is a strict nearly e-Kihler structure such that ||.A|> =
| VJ¢||? is constant (by Corollary 3.1.8) and not zero (by assumption), we can define
the reduction ¥ = ¥+ + iy~ by ¢y T = éda) = —Aand ¥y~ = J**¥ ™ such that
the first equation is satisfied. Since w is of type (1, 1) and therefore d(w A w) =
2dw N w = 0, this reduction is half-flat. Thus, Corollary 3.1.17 and the skew-
symmetry of N imply that there is a constant v € R such thatdy™ = v A w.

According to (2.48), we can choose an e-unitary local frame with o7 = 03, such
that

U=—A—iJ*A=aE?,

where a is constant and satisfies 4a = ||VJ¢||> = || T ||> = 4a’03 by (2.52). Now,
the functions defined in Lemma 3.1.14 and Proposition 3.1.16 evaluate as

(3.10) 1
2

(3.3)

A €g(N(E1,E2),E3) = —ZJ*A(El,Ez,E3) = —¢i.a,

3.12 .
p O —203i.a) = 203a% = 2a.

Conversely, if a given SU®(p, g)-structure satisfies the exterior system, the
real three-form T is obviously closed and the Nijenhuis tensor is totally skew-
symmetric by Corollary 3.1.17. Considering that dw = 3Vw is of type (3, 0)+(0, 3)
by the first equation, the structure is nearly e-Kihler. Since A = — 7 is stable, the
structure is strict nearly e-Kéhler and ||VJ?|| = || A|| # 0 by Proposition 3.1.10.
Now, the computation of the constants in the adapted e-unitary frame shows that in
fact |VJ¢|| = 4a. O



50 3 Nearly Pseudo-Kihler and Nearly Para-Kéhler Manifolds
3.1.3 Curvature Identities for Nearly e-Kdihler Manifolds

Most of these identities are here only used for the almost complex case. If we are
only considering the complex case we write J and in case, that we consider the
para-complex case we write T for the e-complex structure J®. The starting point of
a series of curvature identities are

R(W.X.Y.Z) — R(WW,X,JY,JZ) = g(VwD)X. (VyJ)Z), (3.15)

RW.X.W.Z) + R(W.JX,W.JZ) (3.16)
— R(W,JW,X,JZ) = 2g((Yw)X, (Vwd)Z),

R(W.X.Y.Z) = R(JW,JX,JY.JZ), (3.17)

which were already proven for pseudo-Riemannian metrics by Gray [67]. In the
para-complex case the analogue of the first identity, i.e. the relation

R(W.X.Y.Z) + RW.X,tY.1Z) = g((Vw1)X, (Vy1)Z), (3.18)

is shown in Proposition 5.2 of [78].
Let {e; l.zil be a local orthonormal frame field, then the Ricci- and the Ricci*-
tensor are given by

2n 2n
. . 1
g(RicX,Y) = ZQR(X, e.Y,e), gRic*X,Y)= 5 ZQR(X,JY, e;, Je;)

i=1 i=1
withe; = g(e;, ¢;) = g(Je;, Je;) and X, Y € TM. The frame {e;} > is called adapted

if it holds Je; = e;4, fori = 1, ..., n. Then it follows using an adapted frame from
Egs. (3.16) and (3.17) that

g(rX,Y) := g((Ric — Ric")X,Y) = i € g((VxJDe;, (VyJ)e;). (3.19)
i=1
Using the right hand-side we see
[J,r] =0.
For the second derivative of the complex structure one has the identity

28(Vi (DY, Z) = —oxy2g(Vw)X, (VyJ)JZ), (3.20)
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which was proven in [67] for Riemannian metrics and holds true in the pseudo-
Riemannian setting, cf. [82, Proposition 7.1]. This identity implies

2n
D &V2 (DY = —r(JY). (3.21)
i=1

From Proposition 3.1.7 and the relation (3.4) of the connections V and V one obtains
the following identities for the curvature tensor R of V and the curvature tensor R of
the Levi-Civita connection V

R(W.X.Y,Z) = ROW.X.Y,Z) — ; (VD)X (Vy)Z)
4, (VWY (Ved)2) — (V) Z, (V)] (322)
- i[3R(W, X,Y,Z) + R(W,X,JY, JZ)
+nyzR(W, X,JY, JZ)],

. 1
ROW.JW.Y.JZ) = [SROW.IW.Y.JZ)

—R(W,Y,W,Z) —R(W,JY,W,JZ)]. (3.23)
With the help of Eq. (3.22) it follows
RW.X,Y,Z) =R(Y,Z,W.,X) = —R(X,W,Y,Z) = —R(W,X,Z.,Y). (3.24)
Using VJ = 0 and Vg = 0 we obtain

RW.X,Y,Z) = R(W,X,JY,JZ) (3.25)
= R(JW,JX,Y,Z) = R(JW,JX,JY,JZ).

The general form of the first Bianchi identity (cf. Chapter III of [87]) for a
connection with torsion yields in the case of parallel torsion:

o RW.X.Y.2) = - o g(Vw)X. (Vi))2). (3.26)

In a similar way we get from the second Bianchi identity (cf. Chapter III of [87])
for a connection with parallel torsion or from the second Bianchi identity for V

— V%va(k)(w,x, Y,Z) = V%XR((VVJ)JW,X, Y,Z). (3.27)
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From deriving Eq. (3.22) and the second Bianchi identity of V one gets after a direct
computation

- 1
S WRW.X. Y. Z) = g(Vw))Z, o (Vx))(Vv])IW), (3.28)

which implies

@ Vy(R(W.X.Y.JY) = 0. (3.29)

Proposition 3.1.21 (Proposition 2.3 of [108]) The tensor r on a nearly pseudo-
Kdéihler manifold (M, J, g) is parallel with respect to the characteristic connection V.

Theorem 3.1.22 (Theorem 2.4 of [108]) Let (M, J, g) be a nearly pseudo-Kiihler
manifold and let W, X be vector fields on M then it holds

2n
> e€ig(reie)) [R(W. ei. X. e5) — SR(W. e;. JX. Jej)| = 0. (3.30)

ij=1

Let us remark, that the Riemannian case is done in [67] and the para-Kihler case in
[78].

3.2 Structure Results

As we have seen above, for a nearly pseudo-Kihler manifold Vo is a differen-
tial form of type (3,0) + (0,3). In consequence real two- or four-dimensional
nearly pseudo-Kihler manifolds are automatically pseudo-Kihler. Six dimensional
nearly pseudo-Kihler manifolds are either pseudo-Kihler manifolds or strict nearly
pseudo-Kihler manifolds. Therefore we start this section in real dimension 8.!

3.2.1 Kadihler Factors and the Structure in Dimension 8

The aim of this subsection is to split off the pseudo-Kéhler factor of a nearly pseudo-
Kaihler manifold. This will be done by means of the kernel of VJ and allows to
reduce the (real) dimension from 8 to 6.

For p € M we set

K, = ker(X € T,M — VxJ).

I'The reference for the section is the author’s paper [108].
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Theorem 3.2.1 Let (M,J,g) be a nearly pseudo-Kdhler manifold. Suppose, that
the distribution IC has constant dimension and admits an orthogonal complement,

(1) then M is locally a pseudo-Riemannian product M = K x M, of a pseudo-
Kdihler manifold K and a strict nearly pseudo-Kdhler manifold M .

(i) if M is complete and simply connected then it is a pseudo-Riemannian product
M = K x M, of a pseudo-Kdihler manifold K and a strict nearly pseudo-Kdhler
manifold M, .

Proof The distribution K is parallel for the characteristic connection V, since V.J is
V-parallel. By the formula (3.4) and the nearly Kihler condition it follows VyK =
VxK for sections K in K and X in 7M. This implies that K is parallel for the Levi-
Civita connection and in consequence its orthogonal complement (K)* is Levi-
Civita parallel. The proof of (i) finishes by the local version of the theorem of de
Rham and the proof of (ii) by the global version. O

Remark 3.2.2 There exist nearly pseudo-Kéhler manifolds (M,J,g) without
pseudo-Kidhler de Rham factor, such that I, # {0} admits no orthogonal
complement. In fact, we construct Levi-Civita flat nearly pseudo-Kihler manifolds
in our paper [41], which is subject of Sect. 3.6 of this chapter, such that the three-
form n,(X,Y,Z) = g,(J(VxJ)Y,Z), for p € M, has a support ¥, C T,M
which is a maximally isotropic subspace (Here we identified 7,M and T[’,"M via
the metric g.). Obviously, J(VxJ)Y and J(VyJ)V are elements of the support of
n for arbitrary X, Y, U,V € T,M. It then follows 0 = g(J(VxJ)Y,J(VyJ)V) =
g(J(VywunyJ)U,V) forall V e T,M. Hence it is £, C K,. Moreover for general
reasons we have shown before X, = ICUJ- which shows K, N ICUJ- # {0} for the
above examples. From these examples we learn, that the Theorem 3.2.1 does not
hold true, if there is no orthogonal complement.

Definition 3.2.3 A nearly pseudo-Kihler manifold (M, J, g) is called nice if the
three-form g((V.J®)-, -) has non-zero length in each pointp € M.

Theorem 3.2.4 Let (M3,J,g) be a complete simply connected eight-dimensional
nice nearly pseudo-Kdihler manifold. Then M = M| x M, where M| is a
two-dimensional Kdihler manifold and M, is a six-dimensional strict nearly pseudo-
Kdihler manifold.

Proof Since (M,J,g) is a nice nearly pseudo-Kihler manifold we can use
Lemma 2.3.6 of Chap.?2 to obtain an orthogonal splitting in the two-dimensional
distribution K and its orthogonal complement, which coincides with %,. Therefore
we are in the situation of Theorem 3.2.1 (ii). O

3.2.2 Einstein Condition Versus Reducible Holonomy

In this part we study reducible V-holonomy and discuss the consequences in small
dimensions.
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Theorem 3.2.5 Let (M, J, g) be a nearly pseudo-Kdhler manifold.

(1) Suppose that r has more than one eigenvalue, then the characteristic Hermitian
connection has reduced holonomy.

(ii) If the tensor field r has exactly one eigenvalue then M is a pseudo-Riemannian
Einstein manifold.

Proof

(i) Let u; fori = 1,...,1 be the eigenvalues of r. Then the decomposition in
the according eigenbundles Eig(u;) is V-parallel and hence its holonomy is
reducible.

(i) From the identity of Theorem 3.1.22 and r = uldgy we obtain

2n
0= Z € (R(W,e;, X,e;) —5R(W, e;,JX, Je;)) = g((Ric — 5Ric*)W, X),

i=1

where we used the Bianchi identity and an adapted frame to obtain the last
equality. This shows comparing with » = Ric — Ric* that it holds Ric = i .
O
Let us recall, that in the pseudo-Riemannian setting the decomposition into the
eigenbundles is not automatically ensured to be an orthogonal direct decomposition.
Therefore we introduce the following notion.

Definition 3.2.6 A nearly pseudo-Kihler manifold (M, J, g) is called decompos-
able if the above decomposition into the eigenbundles of the tensor r is orthogonal.

Lemma 3.2.7 Let (M, J, g) be a decomposable nearly pseudo-Kdihler manifold and
denote by u; fori = 1,...,1the eigenvalues of r and by E; = Eig(u;), i =1,...,1,
the corresponding eigenbundles.

(i) ForX € E;andY € E; with i # j one has Ric(X,Y) = 0.
(ii) ForX,Y € E;itis

1
i 1
Rietx, V) = g0 1)+ s grX.Y),

s=1

where the tensors r'>TM — TM, 1 < s <, are defined as
g(I'YX, Y) = —trEX ((Vx.]) o (Vy.])) .

Proof Let us first prove (i). We consider a basis of TM which gives a pseudo-
orthonormal basis for the E;,i = 1,...l. The Ricci curvature decomposes w.r.t.
the eigenbundles as

1

Ric(X.Y) =) > & R(X.er. Y. ).

s=1 e €E;
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Using R(X, e, Y, e) = 0 for s # j one gets by Eq. (3.22)
R(X,er, Y, er) = ig((VXJ)ek, (VyJ)ey), fore, € E;.
Further for s = j one has s # i and again it is
RX,er,Y,er) =R(Y,er, X, e) = ig((VXJ)ek, (VyJ)ey), fore, € E;.

In summary one obtains
Ric(X.Y) = Z Y aRX.eY.e) = Zq 8((VxD)ew, (VyDer) = g(rx Y) =0.
s=1ex€E;

This shows (i). Next we show part (ii). From the identity of Theorem 3.1.22 we
conclude

l
0= Z Z s €k (R(W, e, X, ex) — SR(W, ex, JX, Jey)) -

=1 ex€E;

As in part (i) we get for s # i with help of Eq. (3.22)
3
R(X, e, JY,Jer) = =3R(Y, e, X, er) = —4g((VXJ)ek, (VyJ)er), for e € Ej.
It follows, that
43 g (FX. V) + i | Y e (R(W.ex. X. ex) — SR(W. er. JX. Jey)) | =0

s#i e €EE;

and another time using Eq. (3.22)

pig((Ric — SRic*)X, ¥) + 4 Y (11, — pu)g(PX, ¥) = 0,
sF#i

which follows by

1
g((Ric = 5Ric*)X,Y) = Y Y & (R(X. e Y. ex) — SR(X. ex. JY . Jey)) .

s=1 ey €Es
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The identity (ii) follows now from Ric — Ric* = r and Zizl r* = r. In fact, it is

g((Ric — 5Ric*)X, ¥) = —4g(Ric X, Y) + 520X, ¥) = Y (i — u)g(r'X, ¥)

4
i o

and in consequence one obtains

1
Y wsg(PX,Y),

_ 4 4
4g(RicX.Y) = SgUX.Y) = " 3 (wi— u)g(rX.Y) = g(rX. Y) + i
bs=1

! sF#i
which finishes the proof. O

Theorem 3.2.8 A strict nearly pseudo-Kihler six-manifold (M°,J, g) of constant
type o is a pseudo-Riemannian Einstein manifold with Einstein constant 5Sc.

Proof In an adapted basis we obtain from the symmetries of V.J

3 3
g(rX.X) =2 €& g((VxDei (Vxl)e) = =2 € g((Vx))’ei er).

i=1 i=1

This is exactly minus the trace of the operator (VxJ)? which has a simple form in a
cyclic frame. It follows after polarising g(rX, Y) = 4ag(X, Y). From Theorem 3.2.5
we compute the Einstein constant S where « is the type constant of the strict nearly
pseudo-Kihler manifold M°®. O

Proposition 3.2.9 Let (M'°,J, g) be a nice nearly pseudo-Kdihler ten-manifold.
(i) Then the tensor r in a frame of the first type in Lemma 2.3.8 of Chap. 2 is given
by
rey = 4(a? + Bey,
re; = 4a’e;,  res = 4a’es,
rey = 4B%e,y, res = 4B%es,
r(Je;)) =Jr(e;)), i=1,...,5,
where a, B are constants.

(ii) For a frame of the second type in Lemma 2.3.8 of Chap. 2 the tensor r is given
by

el a’ + Breses 0 Beses el
r| e =4 0 062 0 ()

es ,326465 0 o+ ,326465 es
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reqs = 0,
res = 4 B*(2¢1€4 — 1)es,
r(Je;)) = Jr(e;)), i=1,...,5.
The eigenvalues are {0;4a?;4 B>(2e1e4 — 1);4(a® + 2B%€4€5)}, where the
eigenbundles are given as
Ker(r) = span{ey, Jes},
Eig(r, 4a®) = span{—e| + e3, e, —Je| + Jes, Jes},
Eig(r, 4 f?(2€1€4 — 1)) = span{es, Jes},
Eig(r, 4(a® + 2B%e4¢5))) = spanfe; + ez, Je; + Jes},
where o, B are constants. For B> # 0 the second case is not decomposable.
(iii) Suppose B = 0 in the cases (i) and (ii). Then it follows
Eig(r, 4a%) = span{e,, 5, e3, Je1, Jea, Jes},
Ker(r) = span{ey, es, Jeq, Jes}.

Proof In an adapted frame we obtain from the symmetries of V.J

5 5
girX,Y) =2 eg((Vxl)er, (Vrh)e) = =2 ) e g((Vr)(Vxd)es, €).

i=1 i=1

This is exactly minus the trace of the operator (VyJ)(VxJ). Using the form of
Lemma 2.3.8 of Chap.2 one can calculate r by hand or using computer algebra
systems to obtain the claimed results O

Theorem 3.2.10 Let (M'°,J, g) be a complete simply connected nice decompos-
able nearly pseudo-Kihler manifold of dimension 10. Then M' is of one of the
following types

(i) the tensor r has a kernel and M'° = K x M® is a product of a four-dimensional
pseudo-Kihler manifold K and a strict nearly pseudo-Kéhler six-manifold M°®.

(i) the tensor r has trivial kernel and r has eigenvalues 4(o + B2) with multiplicity
2, 4o, 482 with multiplicity 4 for some a, B # 0.

A nice nearly pseudo-Kdihler manifold (M'°, J, g) is decomposable if the dimension
of the kernel of r is not equal to two.

Proof Since we suppose, that (M'°, J, g) is a nice and decomposable nearly pseudo-
Kihler manifold, Proposition 3.2.9 implies that one has the two different cases:

(i) the distribution C, which is the tangent space of the Kéhler factor has dimension
4 and admits an orthogonal complement of dimension 6. This is part (iii) of
Proposition 3.2.9. Part (i) of the Theorem now follows from Theorem 3.2.1.
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(ii) the tensor r has trivial kernel and we are in the situation of Proposition 3.2.9
part (i) with , B # 0 and part (ii) follows.
O

Remark 3.2.11 Nearly pseudo-Kihler manifolds falling in the second case of the
last theorem are related to twistor spaces in Sect. 3.4.5 of this chapter.

3.3 Twistor Spaces over Quaternionic
and Para-Quaternionic Kihler Manifolds

In this section’> we consider pseudo-Riemannian submersions 7 : (M,g) —
(N, h) endowed with a complex structure J on M which is compatible with the
decomposition (2.53).

Lemma 3.3.1 (Lemma 5.1 of [108]) Let = : (M,g) — (N,h) be a pseudo-
Riemannian submersion endowed with a complex structure J on M which is
compatible with the decomposition (2.53). Then (M,g,J) is a pseudo-Kdihler
manifold if and only if the following equations® are satisfied

mu(Vx)Y) = mn (Vv))X) = 0, (3.31)
(VYDV = mp((Vx)V) = 0, (3.32)
Ax(JY) —JAxY =0, Ax(JV)—JAxV =0, (3.33)
Ty(JX) —JTyX =0, Ty(JV)—JTyV =0, (3.34)

where X, Y are vector fields in H and U,V are vector fields in V.
Further we define a second complex structure by

A JonH,
Fom on
—Jon V.

We observe that J = J. This construction was made in [98] for the Riemannian
setting and imitates the construction on twistor spaces, which was first done in [50].

Proposition 3.3.2 Suppose, that the foliation induced by the pseudo-Riemannian
submersion 1 is totally geodesic and that (M, J, g) is a pseudo-Kiihler manifold and
J is compatible with the decomposition (2.53), then the manifold (M, g = g 1 j) isa
nearly pseudo-Kdhler manifold. The distributions H and V are parallel with respect

2The reference still is the author’s paper [108].

3Please note, the small difference between the torsion T(X,Y) of V and the second fundamental
form Ty V, which is not dangerous, as later we are considering totally geodesic fibrations.
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to the characteristic Hermitian connection V of M, 3, J) In other words the nearly
pseudo-Kiihler manifold (M, g, J) has reducible V-holonomy.

Ifroof Let U, V be vector fields in VV and X, Y be vector fields in H : In the following
V is the Levi-Civita connection 9f 8. Singe the fibres are totally geodesic,i.e. T = 0,
we obtain from Eq. (2.54), that ViV = VYV + TyV = VYV+TyV = VyV, which
yields (Vy )V = —(VyJ)V = 0.

In the sequel we denote the O’Neill tensors of the pseudo-Riemannian foliations
induced by V on (M, g) and on (M, g) by A and A, respectively. From Lemma 2.5.2
of Chap. 2 it follows AxY = AxY and consequently the same Lemma yields VxY =
VxY.

Since (M, g) is Kéhler, Lemma 3.3.1 implies A o / = J o A and we compute

Vx(JY) — JVxY (3.35)
= [V (UN)] + my[Vx (V)] = T (3 (VxY) + mp(VyY))
= 71 [Vx(JY) — JVxY] + my[Vx (JY) + JVyY]

= (kDY) + Ax(JY) + JAcY

GOCEEI o (Vxd)Y) + 24x(JY) "2V 245 (JY) = 2JAxY.

(Vx))Y

With the identity AxV = 2AxV of Lemma 2.5.2 of Chap. 2 we get

(Vx)V = Vx(JV) — JVxV (3.36)
= —11y (Vx(IV)) = 3 (Vx (IV)) + Ty (VxV) — T3 (Vx V)
— —y (Vx)V) — AxJV — JAxV

COCLICI ), (V)V) = JAXV = —AxJV.

The vanishing of the second fundamental form 7', Eq.(2.61) and a second time

AxV = 2AxV show
(VX = mp(Vy(UX)) + mp(JVyX) + NH(@V(JX) —JVyX) (3.37)
GO T (IX) + I(TyX) + 72 (Vo D)X) + (JAXV AxV) = JAYV,

where we used A;xV = —JAxV which follows, since Ay is alternating (compare
Eq. (2.59)) and commutes with J. The next Lemma finishes the proof. |

Lemma 3.3.3 (Lemma 5.3 of [108])

1) Suppose, that (M, 7, 8) is a nearly pseudo-Kdhler manifold and Jis compatible
with the decomposition (2.53), then the following statements are equivalent:

(i) the splitting (2.53) is ?-parallel,
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(ii) the fundamental tensors Aand T satisfy:

TvX =0, JTyW=—-TvIW & JTyW = TyJW forJ =7, (3.38)
R 1n o s . 1 s
A= IV, Axy = my (J(VXJ)Y) . (3.39)

2) Ifit holds (@Vj)AW = 0 then VyW €V for V.W €V is equivalent to TyW = 0.
Moreover it is (VY J)W = 0.

We apply Proposition 3.3.2 to twistor spaces and obtain.

Corollary 3.3.4 The twistor space Z of a quaternionic Kdhler manifold of dimen-
sion 4k with negative scalar curvature admits a canonical nearly pseudo-Kdihler
structure of reducible holonomy contained in U(1) x U(2k).

Proof We remark, that in negative scalar curvature the twistor space of a quater-
nionic Kihler manifold is the total space of a pseudo-Riemannian submersion with
totally geodesic fibres. It admits a compatible pseudo-Kihler structure of signature
(2, 4k), cf. Besse [18, 14.86 b)]. The assumption of positive scalar curvature is
often made to obtain a positive definite metric on Z. Here we focus on pseudo-
Riemannian metrics and consequently on negative scalar curvature. O

Proposition 3.3.5 The twistor spaces Z of non-compact duals of Wolf spaces and
of Alekseevskian spaces admit a nearly pseudo-Kdhler structure.

Proof Non-compact duals of Wolf spaces are known [117] to be quaternionic
Kihler manifolds of negative scalar curvature. The same holds for Alekseevskian
spaces [3, 38]. ]

Studying the lists given in [3, 38, 117] we find examples of six-dimensional
nearly pseudo-Kéhler manifolds.

Corollary 3.3.6 The twistor spaces Z of
HP' = Sp(1, 1)/Sp(1)Sp(1) and SU(1,2)/S(U(1)U(2))

provide six-dimensional nearly pseudo-Kdhler manifolds.

Remark 3.3.7 The situation in negative scalar curvature is more flexible than in the
positive case. This is illustrated by the following results in this area: In the main
theorem of [89] it is shown that the moduli space of complete quaternionic Kéhler
metrics on R* is infinite dimensional. A construction of super-string theory, called
the c-map [54], yields continuous families of negatively curved quaternionic Kéhler
manifolds. Let us mention, that the c-map enjoys very recent interest [10, 73, 93]
in differential geometry. These results show that Corollary 3.3.4 is a good source of
examples.
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Another source of examples is given by twistor spaces over para-quaternionic
Kdhler manifolds. Since these manifolds are less classical than quaternionic Kéhler
manifolds, we recall some definitions (cf. [5] and references therein).

Definition 3.3.8 Let («1,k2,k3) = (—1,1,1) or some permutation thereof. An
almost para-quaternionic structure on a differentiable manifold M* is a rank 3
sub-bundle Q C End (TM), which is locally generated by three anti-commuting
endomorphism-fields Ji, J,,J3 = JiJ,. These satisfy Ji2 = ldd fori =1,...,3.
Such a triple is called standard local basis of Q. A linear torsion-free connection
preserving Q is called para-quaternionic connection. An almost para-quaternionic
structure is called a para-quaternionic structure if it admits a para-quaternionic
connection. An almost para-quaternionic Hermitian structure (M, Q,g) is a
pseudo-Riemannian manifold endowed with a para-quaternionic structure such that
Q consists of skew-symmetric endomorphisms. For n > 1 (M*,Q, g) is a para-
quaternionic Kéhler manifold if Q is preserved by the Levi-Civita connection of g.
In dimension 4 a para-quaternionic Kahler manifold M* is an anti-self-dual Einstein
manifold.

We use the same notions omitting the word para for the quaternionic case. The
condition that Q is preserved by the Levi-Civita connection is in a given standard
local basis {J;}3_, of Q equivalent to the equations

Vxdi = —0(X)Kd; + 6;(X)iady, for X € TM™, (3.40)

where i,j, k is a cyclic permutation of 1,2,3 and {6;}7_, are local one-forms. In
the context of para-quaternionic manifolds one can define twistor spaces for s =
1,0,—1

Z5:={A € Q|A* = sld, with A # 0}.

The case of interest in this text is Z = Z~!, since this twistor space is a complex
manifold, such that the conditions of Proposition 3.3.2 hold true (cf. [5]). Therefore
we obtain the following examples of nearly pseudo-Kéhler manifolds.

Corollary 3.3.9 The twistor space Z of a para-quaternionic Kdhler manifold with
non-zero scalar curvature of dimension 4k admits a canonical nearly pseudo-Kdihler
structure of reducible holonomy contained in U(k, k) x U(1).

Example 3.3.10 The para-quaternions H are the R-algebra generated by {1,1,j, k}
subject to the relations i> = —1, j> = k* = 1, ij = —ji = k. Like the quaternions,
the para-quaternions are a real Clifford algebra which in the convention of [88] is
H = Ch .1 = Clya = R(2). One defines the para-quaternionic projective space HP"
by the obvious equivalence relation on the para-quaternionic right-module H" ! of
(n+ 1)-tuples of para-quaternions. The manifold HP" is a para-quaternionic Kéhler
manifold [21] in analogue to the quaternionic projective space HP". This yields
examples of the type described in the last Corollary.
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3.4 Complex Reducible Nearly Pseudo-K:ihler Manifolds

Motivation In this section we study the case of a nearly pseudo-Kéhler manifold
(MZ”, J, g), such that the holonomy of the characteristic connection V is reducible,
in the sense that the tangent bundle 7M admits a splitting

IM=Ho®V

into two V-parallel sub-bundles 7£,), which are orthogonal and invariant with
respect to the almost complex structure J. We refer to this situation as complex
reducible. This is motivated by the examples on twistor spaces given in the last
section. In Sect. 3.9.4 we see, that real reducible nearly Kihler manifolds are locally
homogeneous.

3.4.1 General Properties

In this subsection we carefully check, generalising [99] to pseudo-Riemannian
foliations, the information which follows from the decomposition into the J-
invariant sub-bundles.

Lemma 3.4.1 (Lemma 6.1 of [108]) In the situation of this section and for a vector
field X in H, a vector field Y in TM and vector fields U,V in'V it is
RX.Y.U.V) = g ([VuJ. WJIX.Y) =g (Vx)Y.(Vu)V).  (3.41)

Corollary 3.4.2 For vector fields X,Y in H and V, W in V one has

(i) (Vx)(Vy)W = 0; (VyJ)(VxJ)Y = 0;
(ii) (VxJ)(VyJ)Z belongs to H for all Z € T'(H);
(iii) (VyJ)(VwJ)X belongs to H; and (VxJ)(VyJ)V belongsto V.

Proof

(i) follows from the fact, that I_Z(JX JY, VW) = R(X ,Y,V, W) and that the first
term of Eq. (3.41) has the same symmetry with respect to J. This yields on the
one hand

g (Vix)JY, (Vv)W) = g (Vx))Y, (VvJ)W)
and on the other hand it is

g (Vix)JY, (Vv )W) = —g (Vx))Y, (Vy)W).



3.4 Complex Reducible Nearly Pseudo-Kihler Manifolds 63

Consequently one has g (VxJ)Y, (VyJ)W) = 0. Exchanging # and V finishes

part (i).
(i) From (i) one gets the vanishing of

g(Vw)(Vr))Z,X) = g(Z, (VyJ)(Vy))X)
= —g(Z, (Vy))(Vx)V) = =g((Vx)(Vy))Z, V).

(iii) From (i) it follows 0 = R(X,U,V,W) = g([VvJ, VwJ]X, U). This yields
[VvJ, VwJ]X € H and by [VyJ, ViuJUX = —{VyJ, VyJ}X € H we get the

first part. The second part follows by replacing H and V.
O

3.4.2 Co-dimension Two

Motivated by the above section on twistor spaces we suppose from now on that the
real dimension of V is two.

Lemma 3.4.3 (Lemma 6.2 of [108]) Ler dimg (V) = 2.

(1) Then the restriction of the metric g is either of signature (2,0) or (0, 2).
(i) a) T(V,W) =0forallV,W € V.

b) T(X,U) €e HforallX e Hand U € V.

c) Indimension6itis T(X,Y) € V forall X,Y € H.

d) Span{my(T(X,Y))|X,Y e H} = V.

Corollary 3.4.4 Let dimg (V) = 2. Then the foliation V has totally geodesic fibres
and the O’Neill tensor is given by AxY = ;JTV(J(V)(J)Y) and AxV = éJ(VXJ)V.
Moreoveritis VVJ = 0.

Proof From Lemma 3.4.3 (ii) a) we obtain (VyJ)W = 0 with V,W € I'(V). By

Lemma 3.3.3 part 2) it follows TyW = 0 and VVYJ = 0, since the decomposition
H @ Vis V parallel. Part 1) of Lemma 3.3.3 finishes the proof. O

Proposition 3.4.5 Let (M, J, g) be a nearly pseudo-Kdihler manifold such that the
property of Lemma 3.4.3 (ii) c) is satisfied and such that V has dimension 2, then
(M, J=1, & = g») is a pseudo-Kiihler manifold.*

It is natural to suppose the property of Lemma 3.4.3 (ii) c), since this holds true in
the cases of rwistorial type which are studied in the next sections.

Proof By the last Corollary the data of the submersion is T =T = 0,
AxY = AxY = é]tv(](VX})Y) and AxV = 2AxV = J(ij)v Since A anti-
commutes with J it commutes with J. This yields the conditions (3.33) and (3.34) of

4Here we use - for the inverse construction of ~.
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Lemma 3.3.1 on the triple /Vl, T, J. Further it holds VYJ = 0. From the reasoning of
Eq. (3.35) we obtain w3 ((%Xj) Y) = my((VxJ)Y) which vanishes by the property
of Lemma 3.4.3 (ii) ¢). By an analogous argument we get from Eq.(3.36) the
identity 7v((VxJ)V) = —my((VxJ)V). This vanishes by Lemma 3.4.3 (ii) b).
From Eq.(3.37) we derive —my ((VxJ)V) £3 au((Vv))X) = nH((ﬁvj)X) +
273 (JAxV). The definition of AxV yields my ((ﬁvj)X) = 0. These are all the
identities needed to apply Lemma 3.3.1. O

Proposition 3.4.6 Let X, Y be vector fields in H and V1, V5, V3 be vector fields in
V. Suppose that it holds T(V,W) = 0 forall V,W €V then it is

R((VxJ)JY,V, V2, V3) = g(JY,[Vy,J, [Vy,J, Vi, J]]X). (3.42)

Moreover, one has @UI_Q(Vl, Vo, V3, Vy) = 0.
Proof For V|, V,, V3 € V and X € H the second Bianchi identity gives

_X)gVIVX(R)( Y, V], V2, V3) = X)qVIR((VXJ)JY’ Vl, Vz, V3).

As the decomposition H @V is V-parallel the terms on the left hand-side vanish due
to the symmetries (3.24) of the curvature tensor R. The right hand-side is determined
with the help of Lemma 3.4.1 and Corollary 3.4.2. If we apply V to the for-
mula (3.42) we obtain by V(VJ) = 0 the identity g (Vu/(R)(V1, V2, V3). (VxJ)Z) =
0 with Z = JY. This yields the proposition using Lemma 3.4.3 (ii) part d). O

3.4.3 Six-Dimensional Nearly Pseudo-Kdihler Manifolds

Before analysing the general case we first focus on dimension 6.

Lemma 3.4.7 (Lemma 6.7 of [108]) On a six-dimensional nearly pseudo-Kdhler
manifold (M®,J, g) the integral manifolds of the foliation V have Gaussian curva-
ture 4o and constant curvature k = 4a, where o is the type constant.

Let us recall that the sign of « is completely determined by the signature of the
metric g, cf. Remark 3.1.9.

Proposition 3.4.8 The manifold (M,J,g) is the total space of a pseudo-
Riemannian submersion = : (M,g) — (N,h) where (N,h) is an almost
pseudo-Hermitian manifold and the fibres are totally geodesic Hermitian symmetric
spaces. In particular, the fibres are simply connected.

Proof The foliation which is induced by V is totally geodesic and each leaf is by
Proposition 3.4.6 a locally Hermitian symmetric space of complex dimension 1.

It is shown in Lemma 3.4.7 that each leaf has constant curvature k. In the case
k > 0 the leaves are compact and we can apply a result of Kobayashi, cf. [18,
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11.26], to obtain that the leaves are simply connected. Since the leaves are also
simply connected it follows, that the leaf holonomy is trivial and that the foliation
comes from a (smooth) submersion (cf. p. 90 of [113]). In the case x < 0 we
observe, that (M, J, —g) is a nearly pseudo-Kihler manifold of constant type —c.
The same argument shows that the fibres are simply connected. O

Lemma 3.4.9 (Lemma 6.9 of [108]) Let (M®, g,J) be a strict nearly pseudo-
Kdbhler six-manifold of constant type a. For an arbitrary normalised® local vector
field V eV, ie ey = g(V,V) € {£1}, we consider the endomorphisms J, = i,
Lt H>X+— \/|oc|_l(VvJ)X € H and J5 = J1J>. Then the triple (]1,.72,]3)
defines an e-quaternionic triple on H with ki = —1 and kK, = k3 = sign(—oaey)
and it is

(V) Y] = —0c(x) k7Y + 60;(x) ki Y,

for a cyclic perm. of i,jk and with 0,(y) = sign(a)g(JV, ?XV), O,(y) =

—sign(a)/|a|g(V,Jy) and 0:(x) = sign(a) Vlelg(V, x). The sub-bundle of
endomorphisms spanned by (J1, J2, J3) does not depend on the choice of V.

Lemma 3.4.10 Let (M, g,J) be a strict nearly pseudo-Kihler six-manifold of
constant type o. Let s : U C N — M be a (local) section® of m on some open
set U. Define ¢ by

¢ = 5 0 7w Hyny = TuN 5 54 (T,N) C TyyM, forn € N

and set Jy|, := Ty 0 .7,-‘5(,,) o (rr*m)_l fori = 1,...,3, where J; are defined in
Lemma 3.4.9. Then (Jy, J2, J3) defines a local €-quaternionic basis preserved by the
Levi-Civita connection VN of N.

Proof We choose U such that the section s is a diffeomorphism onto W = s(U) and
a vector field V in ) defined on a subset containing W. As r is a pseudo-Riemannian
submersion we obtain from . o s« = Id that s is an isometry from U onto W.
Therefore it holds 54 (Vy Y) = 75TV [V,, x5+ Y] which yields V§Y = 74 (Vy,x5+Y)
and

(mx11) T (VYY) = (Vx4 Y). (3.43)

For convenience let us identify U and W or in other words consider s as the inclusion
W C M. Then the projection on s,TN iS ¢ = 5.7« = 7«|H. Moreover, we need
the (tensorial) relation’

VQ’(JT*Z) — et (VyZ) = 0 or equivalently VQ’Z - n*nH(quﬁ_lZ) =0,
3Constant non-zero length suffices.

%Local sections exist, since 7 is locally trivial [18, 9.3].
"Here Z is the horizontal lift of Z.
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which can be directly checked for basic vector fields. Using this identity we get for

i=1,...,3

VYY) = VR (@Td™'Y) = ¢V Tip™'Y) = ¢ (V{I) ™'Y + ¢ T VY (¢7'Y)
= ¢ (V)@Y +6Jig7 VRY = ¢ (V) ¢~'Y + IiVRY,

which reads (VAJ))Y = ¢ (V¥J;)¢~'Y. This finishes the proof, since the right

hand-side is completely determined by Lemma 3.4.9. Therefore we have checked

the condition (3.40), i.e. the manifold N is endowed with a parallel skew-symmetric
(para-)quaternionic structure, see also [18, 10.32 and 14.36]. O

3.4.4 General Dimension

In the last section we have seen that in dimension 6 the tensor Vy.J induces a (para-
)complex structure on . This motivates the following definition.

Definition 3.4.11 The foliation induced by TM = H @ V is called of twistorial
type if for all p € M there exists a V € V), such that the endomorphism

Vvt 1 Hp, = H,

is injective.

Obviously, if VyJ defines a (para-)complex structure, then the foliation is of
twistorial type.

Proposition 3.4.12

(a) If the metric induced on H is definite, then the foliation is of twistorial type.
(b) If the foliation is of twistorial type, then for all p € M and all 0 # U € V), the
endomorphism
VUJ . Hp — Hp
is injective.
(c) It holds with A := VyJ for some vector field V in V of constant length and for
vector fields X € H and y € TM
V,(A%)X = 0. (3.44)
Further it holds [A%, (VyJ)] = O forall U € V and
Vy(AHX =0 (3.45)

for vector fields U in V.
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Proof Part (a) follows from (VyJ)X € H forX € Hand V € V, cf. Lemma 3.4.3
(@i). For (b) we observe, that if VyJ is injective so is V,yJ = —JVyJ. As V is of
dimension 2 {V,JV} with V # 0 is an orthogonal basis. With a,b € R it follows
g((aVyJ + bV DX, (aVy] + bV J)X) = (a* + b*) g((VyJ)X, (VyJ)X), which
yields, that Vyypvd @ H, — H, is injective since a # 0 or b # 0. It remains to
prove part (c). We first observe, that, since V has constant length and since V is a
metric connection and preserves V, it follows @XV = a(y)JV for some one-form
. From V(VJ) = 0 we obtain

(V)X = (V, (VW)X = (Vg )X = a(0)(Vy))X = —a(()JAX
and we compute using {A,J} =0
V,(AHX = A(V,A)X + (V,A)AX = —a(y)[A(J(AX)) + JA’X] = 0.

The equation [A%, (VyJ)] = 0 is tensorial in U and holds true for U = V. Therefore
we only need to compute [A2, (V,yJ)] = —[A%, J(VyJ)] = —J[A2, (VyJ)] = 0,
where we used that A> commutes with J. This implies

- 1 1
Vo)X = V)X + (el A = = [(Vaud).AIX = 0
and proves part (c). O
In the following V is a local vector field of constant length ey = g(V, V) € {£1}.

We denote by 2 the curvature form of the connection induced by V on the
(complex) line bundle V, which is given by

RX,Y)V = Q(X,Y)JV, forX,Y € TM,V € V.

Proposition 3.4.13 [f the foliation is of twistorial type,
(i) then the endomorphism A := VyJy satisfies A% = keyldy for some real
constant k # 0 and

Q = -2Q2wY — ™),

where 0™ (X,Y) = g(X,JY) is the restriction of the fundamental two-form w
to H;
(i) for X, Y in Hitis (VxJ)Y € V.

The proof of this proposition is divided in several steps.
Lemma 3.4.14

() ForX,YinHandVinVitis RXX.Y,V.JV) = =2g((VyJ)?X,JY).
(i) Fora given X in H and V in V it follows R(X,V,V,JV) = 0.
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Proof

(i) Since H is @-parallel we obtain, that X(I)’—V I_Q(X Y, V,JV) = I_Q(X ,Y,V,JV). This

is the left hand-side of the first Bianchi identity (3.26) . The right hand-side
reads

=0 8((VxN)Y. (VwI)JV) = —g(Vv))X, (Vy))IV) — g(Vy))V. (VxJ)IV)

—28((VyJ)*X, JY).

(i) Fro_m the symmetries (3.24) of the curvature tensor R it_follows R(X ,V,V,JV)
= R(V,JV, X, V). This expression vanishes since H is V-parallel.

O

From the last lemma we derive the more explicit expression of the curvature form

Q(.’ .):
Q) =foY () + eval,-), (3.46)

where f is a smooth function, " is the restriction of the fundamental two-form
o =g(-J)toVand a(X,Y) = —2g(A’X, JY).

Lemma 3.4.15 (Lemma 6.15 of [108]) It holds with U € V and X,Y € H :

do¥ (X, U,JU) = 0, (3.47)
da(X,U,JU) = 0, (3.48)
do¥(U,X,Y) = —g(Vy)X.Y), (3.49)

da(U,X,Y) = 4g(A*(VyD)X.Y). (3.50)

Proof of the Proposition 3.4.13

(i) Let X,Y be vector fields in H and V be a local vector field in V of constant
length. Since 2 as a curvature form of a (Hermitian) line bundle is closed,
we obtain from Eq.(3.46) —eyda(-,-,-) = fdoV(,-,-) + df A ©V(-.-,").
Equations (3.47) and (3.48) imply dfj3; = 0. This implies [X, Y]f = 0 and using
that H is V-parallel we obtain (VxY)f = 0 = (VyX)f which yields finally
0=TX, () = —-[J(Vx))Y](f). By Lemma 3.4.3 (ii) d) the last equation
shows dfjy = 0. Since M is connected, it follows f = —« for a constant «.

Again using dQ2(V, X, Y) = 0 Egs. (3.49) and (3.50) yield for arbitrary X, Y

kg(Vy))X,Y) + 4eyg(A2(Vy)X,Y) = 0.
This implies (VyJ)(kldy + 4eyA?) = 0. It follows

A2 = —e, " Idyy,
4
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since the foliation is of twistorial type. If we set 4« = k in analogue to
dimension 6% one gets A? = —eyaldy.

(ii) Since €2 is closed, it follows from part (i) and doV(X,Y,Z) = 0forX,Y,Z e H
that it is do™ (X, Y,Z) = 0. Using do™ (X, Y,Z) = 3g((VxJ)Y, Z) yields part
(ii).

|

Proposition 3.4.16 Let (M*T2 g, J) be a strict nearly pseudo-Kéihler manifold of
twistorial type. Let s : U C N — M be a (local) section of w on some open set U.
Define ¢ by

¢ = 5w 0 u : Hyn) = TuN S 54(TuN) C TyyM. forn € N

and set Jjj, := 7% 0 .7,-“?(,1) o (rr*m)_l fori = 1,...,3, where J; are defined in
Lemma 3.4.9. Then (Jy, J2, J3) defines a local €-quaternionic basis preserved by the
Levi-Civita connection VN of N.

Proof The proof of Lemma 3.4.9 only uses A? = —eyyld and (VxJ)Y € V for
X,Y € H. Therefore we can generalise it by means of Proposition 3.4.13 to strict
nearly pseudo-Kéhler manifolds of twistorial type. O

Corollary 3.4.17

(1) The tensor r has exactly two eigenvalues. More precisely, it has the eigenvalue
k on H and the eigenvalue ey’ (n — 1) on 'V with k = 4a.
(ii)) The Ricci-tensor has exactly two eigenvalues. More precisely, it has the

eigenvalue ') (ey(n—1)+3) on H and the eigenvalue k (GV ("gl) + 1) onY.The

base manifold (N, h) is an Einstein manifold with Einstein constant ' ey(n—1).

Proof By definition we have

2n 2n
20X, Y) = Y €& g(Vahei, (Vyh)e) = = Y e g((Vr)(Vx)ei, )

i=1 i=1

for some pseudo-orthogonal basis with ey, ..., ex—» € H and ey,—1, e, € V. For
V e V with g(V, V) = ey we get

2n 2n—2
gV, V) = =Y e g(VWw) (Ve e) = — ) € g(Aei,e)

i=1 i=1
P 2n—2 P
= 6\/4 ; € glei,e) = evz(n— 1).

8Without risk of confusion we use the same latter for the constant « as for the two-form a(-, ).
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Let us now consider X € H and V as before and compute

2n—2
g(}’X,X) = ZEVg ((Vv.])X, (Vv.])X) + Z €; g((VXJ)El, (VXJ)ei)-

i=1
Since it is (VxJ)e; € V, we get

€ 8(Vxer. (VxD)ei) = €iev(g((VxD)ei V) + g((Vx)ei, JV)?)
and for the sum this gives

2n—2
gir"X, X) = ) € g((Vxh)ei (Vx))e))
i=1
2n—2
=€y Z & (8(VxNV.e)* + g(Vx))IV, e)?)

i=1
= 2ev g (W)X, (V)X) = g(X. ).

Summarizing it follows g(rX, X) = 4ey g (VyJ)X, (VyJ)X) = k. This shows part

1).
The statement (ii) follows from (i) using Lemma 3.2.7. Namely, for X, Y € H it
is

1
gRic().Y) = | g(X.V)+ey | (n=1) g(VX. V) +5(HX. 1) = (v (=) +3)g(X. V).
58(X.Y)
since it is using A2 = —ey * Idy
g(rVX,Y) = —try ((VxJ) o (VyJ)) = —2ey g((VxJ)(Vy)V, V)
= 2ev g(Vy )V, (Vx))V) = 2ey g((Vy )Y, (VyvJ)X)

K
= 2ey g(AY,AX) = 2g(X, Y).

Further, for U,V € Vitis

k(n—1)

gRic(U), V) =ev" " Tg(U. V) + ey k g(rU,v)
K ~ .- =

ev 5 (n—1)g(U.V)

2
(n=1

=K (ev(n; D + 1) g(U,V),
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where

2n—2
—try (V) o (V) = = Y € (Vo) (Vvd)er, e)

i=1

g(rv,v)

K K
—2(—1) ey = — .
(n )46\/ évz(n )

The last statement follows from O’Neill’s formula with the information, that the
O’Neill tensoris AxY = ;J(VXJ)Y, c.f. Lemma 3.3.3. |

3.4.5 The Twistor Structure

In this subsection we finally characterise the nearly pseudo-Kéhler structures, which
are related to the canonical nearly K&hler structure of twistor spaces.

Theorem 3.4.18 Suppose, that (M?",J,g) is a complex reducible nearly pseudo-
Kdhler manifold of twistorial type, then one has:

(i) The manifold (M,J = J, g = g») is a twistor space of a quaternionic pseudo-
Kdihler manifold, if it is eyk > 0.

(ii) The manifold (M,J = j,é = g) Iis a twistor space of a para-quaternionic
Kdihler manifold, if it is eyk < 0.

Proof Denote by 72 : Z — N the twistor space of the manifold N endowed
with the parallel skew-symmetric (para-)quaternionic structure constructed from the
foliation # : M — N of twistorial type, cf. Proposition 3.4.9 for dimension 6 and
Proposition 3.4.16 for general dimension. We observe that the restriction of J to H
yields a (smooth) map

¢ M= 2, m>dn, odyp o (dTmn) " = jrims

which by construction satisfies 7 o ¢ = 7 and as a consequence d7Z o dgp =
dr. Since 7w and w# are pseudo-Riemannian submersions, the last equation implies
that dg induces an isometry of the according horizontal distributions and maps the
vertical spaces into each other. Let us determine the differential of ¢ on V.

Claim: For V € V one has

de(V) = 2 dm o (VyJ) o (drjpy) ",
do(JV) = 2dm o (VyJ) o (dmjgy) ™' = =2 dm o J(VyJ) o (drpp) "
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To prove the claim we consider a (local) vector field V € V and a (local) integral
curve y of V on some interval I > 0 with y(0) = m. Let X be a vector field in
N. Denote by X the horizontal lift of X. The Lie transport of X along the vertical
curve y projects to X, i.e. it holds dm, (X) = X for all r € I and in consequence

(dny(t) ‘H)_l X = X. In other words d7 commutes with this Lie transport, which
implies

de(V)X = dr((Lv])X),

as one directly checks using basic vector fields. Therefore we need to determine the
Lie-derivative £ of J :

7 (Lv])X)

At (v, JX]) - J[V.X])
= 7" (VWy(JX) = VgV —JVyX + JVzV)

't ((VVJ)X — ;](VD}J)V + ;J (J(Vgd)) V) = 2(Vy)X.

This shows dg(V) = 2 dm o (VyJ) o (dm)~", which implies dp(JV) = 2dn o
(Vyvd)o(dm)™" = —2dm oJ(VyJ)o(dmz)~". Given alocal sections : N — M
and the associated adapted frame of the (para-)quaternionic structure it follows that
@ osis Jy, dp(V) is related to J, and de(JV) to —J3 which span the tangent space
of the fibre Fy(n = 52 in @(m). The complex structure of Z maps J, to J3. Hence
dy is complex linear for the opposite complex structure J on M. Further one sees in
this local frame that ¢ maps horizontal part into horizontal part. Therefore ¢ is an
isometry for the metric g = g», where the parameter in the canonical variation of
the metric g is ¢+ = 2. This means that (M, J, g = g») is isometrically biholomorph
to Z. O
Combining Theorems 3.2.10 and 3.4.18 we obtain the following result.

Theorem 3.4.19 Let (M'°,J,g) be a nice decomposable nearly pseudo-Kihler
manifold, then the universal cover of M is either the product of a pseudo-Kdhler
surface and a (strict) nearly pseudo-Kdihler manifold M® or a twistor space of an
eight-dimensional (para- )quaternionic Kdhler manifold endowed with its canonical
nearly pseudo-Kdhler structure.

3.5 A Class of Flat Pseudo-Riemannian Lie Groups

In this section we consider flat pseudo-Riemannian Lie groups which are closely
related to nearly Kéhler geometry (cf. Sect. 3.6). These geometric objects are also
of independent interest [13]. Let V = (R", (-, -)) be the standard pseudo-Euclidian
vector space of signature (k,l), n = k + [. Using the (pseudo-Euclidian) scalar
product we shall identify V = V* and A%V 2 so(V). These identifications provide
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the inclusion A3V C V* ® so(V). Using it we consider a three-vector n € A3V as
an so(V)-valued one-form. Further we denote by nx € so(V) the evaluation of this
one-form on a vector X € V. Let us recall, that the support of n € A3V is defined by

¥, =span{nxY | X, Y e V} C V. (3.51)
Theorem 3.5.1 Each

neCV):={neA’v | X, (totally) isotropic}y = UA3L
Lcv

defines a 2-step nilpotent simply transitive subgroup L£(n) C Isom(V), where the
union runs over all maximal isotropic subspaces. The subgroups L(n), L(/) C
Isom(V) associated to n, ' € C(V) are conjugated if and only if f = g - n for some
element of g € O(V).

Proof Using Lemma 2.3.2 of Chap. 2 any three-vector n € A3V satisfies n € A3Z,,.

This implies the equation C(V) = | J A3L. Let an element n € C(V) be given. By
LCV
Lemma 2.3.4 of Chap. 2 its support %, is isotropic if and only if the endomorphisms

nx € so(V) satisfy ny o ny = 0 for all X, Y € V. The 2-step nilpotent group

cormfon ()= (43 )

acts simply transitively on V = V x {1} C V x R by isometries:

“(0)-6)

Let us consider next n, ' € C(V), g € O(V). The computation

—1 -1
gL(mg™" = { (IdJr%”X‘g ng) ‘ Xe v} = { (Id+g%’“Yg f)‘ Y € v}

shows that g£(n)g~" = L() if and only if ny = (g-n)x = gne-1xg ' for all
XeV. O
Let £ C Isom(V) be a simply transitive group. Pulling back the scalar product on
V by the orbit map £ > g > g0 € V yields a left-invariant flat pseudo-Riemannian
metric 4 on L. A pair (£, h) consisting of a Lie group £ and a flat left-invariant
pseudo-Riemannian metric / on L is called a flat pseudo-Riemannian Lie group.
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Theorem 3.5.2

(1) The class of flat pseudo-Riemannian Lie groups (L£(n),h) defined in Theo-
rem 3.5.1 exhausts all simply connected flat pseudo-Riemannian Lie groups
with bi-invariant metric.

(i) A Lie group with bi-invariant metric is flat if and only if it is 2-step nilpotent.

Proof

(i) The group L(n) associated to a three-vector n € C(V) is diffeomorphic to R"” by
the exponential map. We have to show that the flat pseudo-Riemannian metric
h on L(n) is bi-invariant. The Lie algebra of £(7) is identified with the vector
space V endowed with the Lie bracket

[X.Y] :=nxY —qyX = 2nxY, X, Y€ V.

The left-invariant metric 2 on £(n) corresponds to the scalar product (-, -) on
V. Since n € A3V, the endomorphisms ny = ;adx are skew-symmetric. This
shows that 4 is bi-invariant.

Conversely, let (V, [+, -]) be the Lie algebra of a pseudo-Riemannian Lie group
of dimension n with bi-invariant metric 4. We can assume that the bi-invariant
metric corresponds to the standard scalar product (-, -) of signature (k,[) on V.
Let us denote by nx € so(V), X € V, the skew-symmetric endomorphism of
V which corresponds to the Levi-Civita covariant derivative Dy acting on left-
invariant vector fields. From the bi-invariance and the Koszul formula we obtain
that nxy = ;adx and, hence, R(X,Y) = —iad[xﬁy] for the curvature. The last
formula shows that % is flat if and only if the Lie group is 2-step nilpotent. This
proves (ii). To finish the proof of (i) we have to show that, under this assumption,
n is completely skew-symmetric and has isotropic support. The complete skew-
symmetry follows from ny = éadx and the bi-invariance. Similarly, using the
bi-invariance, we have

4(77XYs 7'}2W) = ([Xs Y]s [Zs W]) = _(Yv [X’ [Zs W]]) = 0,

since the Lie algebra is 2-step nilpotent. This shows that X, is isotropic.
0

Corollary 3.5.3 With the above notations, let L C V be a maximally isotropic
subspace. The correspondence n — L(n) defines a bijection between the points of
the orbit space A3L/GL(L) and isomorphism classes of pairs (L, h) consisting of a
simply connected Lie group L endowed with a flat bi-invariant pseudo-Riemannian
metric h of signature (k, [).

Corollary 3.5.4 Any simply connected Lie group L with a flat bi-invariant metric h
of signature (k, ) contains a normal subgroup of dimension > max(k, [) > é dimV
which acts by translations on the pseudo-Riemannian manifold (L, h) = R*!.
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Proof Let a := ker(X — nx) C V be the kernel of n. Then a = E,IJ- is co-isotropic
and defines an Abelian ideal a C I := Lie£L =~ V =~ R*/ The corresponding
normal subgroup A C £ = L(n) is precisely the subgroup of translations. So we
have shown that dimA > max(k, [) > ; dimV. O

Remarks 3.5.5

1) The number dim X, is an isomorphism invariant of the groups £ = L(n), which
is independent of the metric. We will denote it by s(L). Let L3 C Ly C --- C L
be a filtration, where dimL; = j runs from 3 to dim L. The invariant dim X,
defines a decomposition of A*L/GL(L) as a union

dim L
{0} U | A} Li/GL(Ly).

Jj=3

where AiegRj C AR is the open subset of 3-vectors with j-dimensional
support. The points of the stratum A}, L;j/GL(L;) = A}, R//GL(j) correspond
to isomorphism classes of pairs (£, h) with s(L) = j.

Since in the above classification X, is isotropic, it is clear that a flat (or 2-step
nilpotent) bi-invariant metric on a Lie group is indefinite, unless = 0 and the
group is Abelian. It follows from Milnor’s classification of Lie groups with a flat
left-invariant Riemannian metric [95] that a 2-step nilpotent Lie group with a flat

left-invariant Riemannian metric is necessarily Abelian.

2

~

Since a nilpotent Lie group with rational structure constants has a (co-compact)
lattice [94], we obtain.

Corollary 3.5.6 The groups (L(n), h) admit lattices T C L(n), provided that n has
rational coefficients with respect to some basis. M = M(n,T") := T' \ L(n) is a flat
compact homogeneous pseudo-Riemannian manifold. The connected component
of the identity in the isometry group of M is the image of the natural group
homomorphism 1 from L(n) into the isometry group of M.

Proof First we remark that the bi-invariant metric # induces an L(n)-invariant
metric on the homogeneous space M = I"\ L(1). Let G be the connected component
of the identity in the isometry group of (£(n), h) = R*!. The connected component
of the identity in the isometry group of M is the image of the centraliser Zg(I") of
I" in G under the natural homomorphism Zg(I") — Isom(M). Now the statement
about the isometry group follows from the fact that the centraliser of the left-action
of I' C L(n) on L(n) is precisely the right-action of £(n) on L(n), since I' C L(7n)
is Zariski-dense, see Theorem 2.1 of [101] . O
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3.6 Classification Results for Flat Nearly ¢-Kéhler Manifolds

3.6.1 Classification Results for Flat Nearly Pseudo-Kihler
Manifolds

In this section we denote by C* the complex vector space (C", Joun), n = k + I,
endowed with the standard J.,,-invariant pseudo-Euclidean scalar product g.,, of
signature (2k, 21).

Let (M, g, J) be a flat nearly pseudo-Kihler manifold. Then there exists for each
point p € M an open set U, C M containing the point p, a connected open set Uy of
C*! containing the origin 0 € C* and an isometry

@ 2 (Up. 8)=Wo. ean)
such that at the point p we have:
Dy = Joan .
In other words, we can suppose, that locally M is a connected open subset of C**
containing the origin 0 and that g = g.4, and Jo = Jegp-

Proposition 3.6.1 Let (M, g,J) be a flat nearly pseudo-Kdihler manifold. Then

1) nxony =0forallX.,Y,
2) Vnp=Vn=0.

Proof From the curvature identity (3.15) we have for X, Y, Z, W € TM

0=R(W.X.Y,Z) — R(W.X.JY.JZ) = g((VxJ)Y, (V2)W) = —g((V2J)(VxJ)Y, W)
= —g(J(Vz)I(Vx))Y, W) = —4g(nz nx¥, W).

This shows nx o ny = 0 for all X,Y € TM and finishes the proof of part 1). The
second part follows from 1) and Vi = 0. In fact, one has

(Vxn)y = (@Xn)y + nnxY + [nx,ny] =0, for X, Y € T™M,

which shows part 2). O
From Theorem 3.1.5 and Proposition 3.6.1 we obtain.

Corollary 3.6.2 Let M C C*! be an open neighborhood of the origin endowed with
a nearly pseudo-Kdihler structure (g,J) such that g = gean and Jo = Jean. Then the
(1, 2)-tensor

1
= JVJ
1=
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defines a constant three-form on M C CH' = R%*?! defined by
U(X’ Y, Z) = g(nXYv Z)

satisfying

(i) nxny =0, VX, Y eTM,

(”) {an Jcan} =0, VX e TM.
Conversely, we have the next Lemma.

Lemma 3.6.3 (Lemma 5 of [41]) Let n be a constant three-form on an open
connected neighbourhood M C C*! of 0 satisfying (i) and (ii) of Corollary 3.6.2.
Then there exists a unique almost complex structure J on M such that

Cl) Jo = Jean,
b) (nx.J} =0, VXeTM,
¢) DJ = —2Jn,

where D stands for the Levi-Civita connection of the pseudo-Euclidian vector space
C*. With V := D — 1 and assuming b), the last equation is equivalent to

¢’) VJ =0.

More precisely, the almost complex structure is given by the formula

2n
J =exp (zzxi 7731') Jean

i=1

2n
9 (Id +2) o na,-) Tean: (3.52)

i=1

where x are linear coordinates of C* = R%*2? = R?" and 9; = 3?(,-.

Theorem 3.6.4 Let ) be a constant three-form on a connected open set U C Ck!
containing 0 which satisfies (i) and (ii) of Corollary 3.6.2. Then there exists a unique
almost complex structure given by Eq. (3.52) on U such that

a) Jo = Jeans
b) M(U,n) := (U, g = gcan,J) is a flat nearly pseudo-Kdihler manifold.

Any flat nearly pseudo-Kdhler manifold is locally isomorphic to a flat nearly
pseudo-Kdihler manifold of the form M(U, n).

Now we discuss the general form of solutions of (i) and (ii) of Corollary 3.6.2. In
the following we shall freely identify the real vector space V := Ck! = R%*2 = R?"
with its dual V* by means of the pseudo-Euclidian scalar product g = g.an-

Let us recall, that the support of € A3V is defined by

¥, =span{nxY | X, Y e V} C V.



78 3 Nearly Pseudo-Kihler and Nearly Para-Kéhler Manifolds

Proposition 3.6.5 A three-form n € A3V* = A3V satisfies (i) of Corollary 3.6.2 if
and only if there exists an isotropic subspace L C V such that n € A’L C A3V. If
n satisfies (i) and (ii) of Corollary 3.6.2 then there exists a J.q,-invariant isotropic
subspace L C 'V with n € A3L.

Proof The proposition follows from Lemmata 2.3.2 and 2.3.4 of Chap. 2 by taking
L=2%, O

Remark 3.6.6 From the Proposition 3.6.5 we conclude that there are no strict flat
nearly pseudo-Kéhler manifolds of dimension less than 8. We shall see later that the
dimension cannot be smaller than 12, see Corollary 3.6.8.

In the following we set A=W := [A3'W + A%*W], where W is a complex vector
space.

Theorem 3.6.7 A three-form n € A3V* = A3V satisfies (i) and (ii) of Corol-
lary 3.6.2 if and only if there exists an isotropic J q,-invariant subspace L C V such
thatn € AL C A3L C A3V. (The smallest such subspace L is ,.)

Proof By Proposition 3.6.5, the conditions (i) and (ii) of Corollary 3.6.2 imply the
existence of an isotropic J.q,-invariant subspace L C V such that n € A3L. By
Lemma 2.3.3 of Chap.2 the condition (ii) is equivalent to € A™V. Therefore
n € A*LN A~V = A™L. The converse statement follows from the same argument.

O

Corollary 3.6.8 There are no strict flat nearly pseudo-Kdhler manifolds of dimen-
sion less than 12.

Proof By Theorems 3.6.4 and 3.6.7 any flat nearly pseudo-Kihler manifold M is
locally of the form M (U, n), where n € A~ L for an isotropic J,,,-invariant subspace
L C Vand U C V is an open subset. M (U, n) is strict if and only if n # 0, which is
possible only for dim¢ L > 3, i.e. for dimM > 12. O

Theorem 3.6.9 Any strict flat nearly pseudo-Kdhler manifold is locally a pseudo-
Riemannian product M = My x M(U,n) of a flat pseudo-Kdhler factor My of
maximal dimension and a strict flat nearly pseudo-Kdihler manifold M(U,n) of
(real) signature (2m,2m), 4m = dimM(U,n) > 12. The J 4 -invariant isotropic
support £, has complex dimension m.

Proof By Theorems 3.6.4 and 3.6.7, M is locally isomorphic to an open subset of
a manifold of the form M(V, 1), where n € A3V has a J4,-invariant and isotropic
support L = X,. We choose a J.,-invariant isotropic subspace L' C V such that
V' := L + L' is nondegenerate and L N L' = 0 and put Vo = (L + L')*. Then
ne AWV C A3V and M(V,n) = M(Vy,0) x M(V', ). Notice that M(Vy, 0) is
simply the flat pseudo-Kihler manifold Vj and that M(V’, ) is strict and of split
signature (2m, 2m), where m = dim¢ L > 3. O

Corollary 3.6.10 Let (M, g,J) be a flat nearly Kihler manifold with a (positive or
negative) definite metric gthenn = 0,V = Dand DJ = 0, i.e. (M, g,J) is a Kiihler
manifold.
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For the rest of this section we consider the case V =~ C™" and denote a maximal
J.an-invariant isotropic subspace by L. We will say that a complex three-form ¢ €
A3(C™)* has maximal support if span{(Z, W,-)|Z, W € C"} = (C™)*.

Corollary 3.6.11 Any non-zero complex three-form ¢ € A*°L = A3(C™)* defines
a complete flat simply connected strict nearly pseudo-Kdihler manifold M(n) :=
M(V.n), n =1+ ¢ e AL C A3V, of split signature. M(n) has no pseudo-Kdihler
de Rham factor if and only if ¢ has maximal support.

Conversely, any complete flat simply connected nearly pseudo-Kdhler manifold
without pseudo-Kdhler de Rham factor is of this form.

Proof This follows from the previous results observing that the support of 7 is
maximally isotropic if and only if { has maximal support. O

Corollary 3.6.12 The map ¢ +— M(¢ + £) induces a bijective correspondence
between GL,,(C)-orbits on the open subset Afeg((Cm)* C A3(C™)* of three-forms
¢ with maximal support and isomorphism classes of complete flat simply connected
nearly pseudo-Kdihler manifolds M(¢ + ¢) of real dimension 4m > 12 and without

pseudo-Kdhler de Rham factor.
Example 3.6.13

1) The case m < 5.

For m = 3,4,5 the group GL,(C) acts transitively on Afeg((C’")* =
A3(C™)* \ {0}. Therefore there exists precisely one complete flat simply
connected strict nearly pseudo-Kihler manifold of dimension 12, 16 and 20
respectively.

2) The case m = 6.

GLs(C) has precisely one open orbit in Ai’eg((C6)*. This orbit consists of

the stable three-forms A;’mh C%* in the sense of Hitchin [75], cf. Sect.2.1
in Chap.2. We may recall, that a three-form ¢ on C° is stable if and only
if ¢ = ef nes Aef + ef Aet Aef for some basis (e, er,...,e) of C°.
A3(CO* \ A3, (C®* is precisely the zero-set of the unique homogeneous
quartic SL¢(C)-invariant and we have the following strict inclusions:

Ay (CO)* C AL (CH* € AX(CH*\ {0}

An example of an instable regular form is

* * * * * * * * *
egNey Ney+e Ney Nes +e, Ney Neg.

3.6.2 Classification of Flat Nearly Para-Kdihler Manifolds

In this subsection we consider (C", t.4,) endowed with the standard t..,-anti-
invariant pseudo-Euclidian scalar product g, of signature (n, n).
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Let (M, g, 7) be a flat nearly para-Kéhler manifold. Then there exists for each
point p € M an open set U, C M containing the point p, a connected open set Uy
of C" containing the origin 0 € C" and an isometry ® : (U,.g)—(Uo, &can). sSuch
thatin p € M we have @41, = 7.4, P«. In other words, we can suppose, that locally
M is a connected open subset of C" containing the origin O and that g = g.,, and
T0o = Tean-

Proposition 3.6.14 Let (M, g, t) be a flat nearly para-Kdhler manifold. Then

1) nxony =0forallX,Y € TM,

Summarising Theorem 3.1.5 and Proposition 3.6.14 we obtain the next Corollary.

Corollary 3.6.15 Let M C C" be an open neighbourhood of the origin endowed
with a nearly para-Kdhler structure (g, ) such that g = gean and 1ty = Tean. The
(1, 2)-tensor

L'p
= — _TDT
=7

defines a constant three-form on M C C" = R"" given by n(X,Y,Z) = g(nxY, Z)
and satisfying

(i) n€C(V),ieqxny =0, VX,YeTM,
(”) {an fcan} =0, VXeTM.

The rest of this subsection is devoted to the local classification result. In Sect. 3.6.2
we study the structure of the subset of C(V) given by the condition (ii) in more detail
and give global classification results. The converse statement of Corollary 3.6.15 is
given in the next lemma.

Lemma 3.6.16 (Lemma 2.10 of [43]) Let n be a constant three-form on an
open connected neighbourhood M C C" of the origin 0 satisfying (i) and (ii) of
Corollary 3.6.15. Then there exists a unique para-complex structure T on M such
that

Cl) To = Tcans

b) {nx,t} =0, VXeTM,

c) Dt = —21n,

where D is the Levi-Civita connection of the pseudo-Euclidian vector space C".
Let V := D — n and assume b) then c) is equivalent to

c) Vr=0.

Furthermore, this para-complex structure t is skew-symmetric with respect t0 gcan.
In fact, one shows, that the para-complex structure t is given by the following
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formula

2n 2n
T = exp (Zin 778,-) Tean 9 (Id +2 in 7’)8;) Teans (3.53)

i=1 i=1

where x' are linear coordinates of C" = R™" = R*" and 9; = aif‘

Theorem 3.6.17 Let n be a constant three-form on a connected open set U C C"
containing the origin 0 which satisfies (i) and (ii) of Corollary 3.6.15. Then there
exists a unique almost para-complex structure

2n
T =exp (2 X ;73,.) Tean (3.54)

i=1

on U such that a) t9 = Tean, and b) M(U, 1) := (U, g = gean, T) is a flat nearly
para-Kahler manifold. Any flat nearly para-Kdihler manifold is locally isomorphic
to a flat nearly para-Kdhler manifold of the form M(U, n).

The Variety C, (V)

Now we discuss the solution of (i) and (ii) of Corollary 3.6.15. In the following
we shall freely identify the real vector space V := C" = R™" = R?" with its
dual V* by means of the pseudo-Euclidian scalar product ¢ = g.4;. The geometric
interpretation is given in terms of an affine variety C, (V) C A’V.

Proposition 3.6.18 A three-form n € A3V* =~ A3V satisfies (i) of Corol-
lary 3.6.15, i.e. nxy ony = 0,X,Y € V, if and only if there exists an isotropic
subspace L C 'V such that n € AL C A3V. If n satisfies (i) and (ii) of
Corollary 3.6.15 then there exists a Tqn-invariant isotropic subspace L C 'V with
ne AL

Proof The proposition follows from Lemmata 2.3.2 and 2.3.4 of Chap. 2 by taking
L=13%, O
A three-form 7 on a para-complex vector space (W, 7.,,) decomposes with respect
to the grading induced by the decomposition W!* & W%! into n = n* + 5. In the
remainder of this subsection we set for convenience n* € ATW := A2 W+ A2W
and ™ € A=W 1= AW + AO3W.

Theorem 3.6.19 A three-form n € A3V* =~ A3V satisfies (i) and (ii) of
Corollary 3.6.15 if and only if there exists an isotropic T.q.,-invariant subspace L
such that n € AL = A3°L + A®3L C AL C A3V (The smallest such subspace
Lis %,.).

Proof By Proposition 3.6.18, the conditions (i) and (ii) of Corollary 3.6.15 imply
the existence of an isotropic 7.4,-invariant subspace L C V such that n € A3L.
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By Lemma 2.3.3 of Chap. 2 the condition (ii) is equivalent to n € A~ V. Therefore
n € ASLN A~V = A~L. The converse statement follows from the same argument.
|

Corollary 3.6.20

(i) The conical affine variety
C.(V) := {n| n satisfies (i) and (ii)} C A’V
has the following description

C.(v)=|JA L= JWALT + AL,
LCV LCV

where the union is over all t-invariant maximal isotropic subspaces.

(ii) IfdimV < 12 then it holds C.(V) = A3Vt U A3V™.

(iii) Any flat nearly para-Kéiihler manifold M is locally of the form M(U,n), for
some 1 € C.(V) and some open subset U C V.

(iv) There are no strict flat nearly para-Kdhler manifolds of dimension less than 6.

Proof

(i) follows from Theorem 3.6.19.
(i) Let L C V be a t-invariant isotropic subspace. If dimV < 12, thendimL < 6
and, hence, either dim Lt < 3 or dim L~ < 3. In the first case we have

ATL=ANLT + AL~ = AL c A’v™,

in the second case itis AL = ALT + AL~ = ALt Cc A3VT.

(iii) is a consequence of (i), Theorems 3.6.17 and 3.6.19.

(iv) By (iii) the strict flat nearly para-Kihler manifold M is locally of the form
M(U, n), which is strict if and only if 5 # 0. This is only possible for dim L >
3,i.e.fordimM > 6.

O

Example 3.6.21 We have the following example which shows that part (ii) of
Corollary 3.6.20 fails in dimension > 12:
Consider (V,1) = (C",is) = R® @ i.RS, for ¢ = 1, with a basis given by

(ef, e, eg',el_, ..., €g), such that eijE form a basis of V* with g(el.+, ej_) = §j.
Then the form 7 := e]” A ef Aef +e; Aes Aeg lies in the variety C (V).

Theorem 3.6.22 Any strict flat nearly para-Kdhler manifold is locally a pseudo-
Riemannian product M = My x M(U, n) of a flat para-Kiihler factor My of maximal
dimension and a flat nearly para-Kdhler manifold M(U, n), n € C.(V), of signature
(m,m), 2m = dimM(U, n) > 6 such that %, has dimension m.
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Proof By Theorems 3.6.17 and 3.6.19, M is locally isomorphic to an open subset of
a manifold of the form M(V, 1), where n € A3V has a t.4,-invariant and isotropic
support L = X,. We choose a 7 q,-invariant isotropic subspace L' C V such that
V' := L + L' is nondegenerate and L N L' = 0 and put Vo = (L + L')*. Then
n e AWV c A3V and M(V,n) = M(Vy,0) x M(V', ). Notice that M(Vy, 0) is
simply the flat para-Kihler manifold Vy and that M(V’, n) is strict of split signature
(m, m), where m = dimL > 3. O

Corollary 3.6.23 Any simply connected nearly para-Kihler manifold with a
(geodesically) complete flat metric is a pseudo-Riemannian product M = MyxM(n)
of a flat para-Kdhler factor My = R of maximal dimension and a flat nearly para-
Kdhler manifold M(n) := M(V,n), n € C.(V), of signature (m, m) such that X,
has dimensionm = 0,3,4, .. ..

Next we wish to describe the moduli space of (complete simply connected)
flat nearly para-Kihler manifolds M of dimension 2n up to isomorphism. Without
restriction of generality we will assume that M = M(7) has no para-Kéhler de Rham
factor, which means that n € C,(V) has maximal support X, i.e. dim X, = n. We
denote by C;¥(V) C C.(V) the open subset consisting of elements with maximal
support. The group

G := Aut(V, gcan, Tean) = GL(1, R)

acts on C,(V) and preserves C; (V). Two nearly para-Kihler manifolds M () and
M(n') are isomorphic if and only if 7 and 1’ are related by an element of the group G.

For n € C;(V) we denote by p, g the dimensions of the eigenspaces of 7 on X,
for the eigenvalues 1, —1, respectively. We call the pair (p, g) € Ny x Ny the type
of n. We will also say that the corresponding flat nearly para-Kahler manifold M(n)
has type (p, ). We denote by C2(V) the subset of C, (V) consisting of elements of
type (p. q). Notice that p + ¢ < n with equality if and only if n € C;*(V). We have
the following decomposition

cewy= | ),
(p.g)ell

where IT := {(p,q)|p,q € No \ {1,2},p + g = n}. The group G = GL(n, R) acts
on the subsets Cv?(V) and we are interested in the orbit space CY'?(V)/G.

Fix a r-invariant maximally isotropic subspace L C V of type (p, q) and put
AL = AL N CH#(V) C CPU(V). The stabiliser G, = GL(LY) x GL(L™) =

GL(p,R) x GL(g,R) of L = L™ + L™ in G acts on A, L.
Theorem 3.6.24 There is a natural one-to-one correspondence between complete
simply connected flat nearly para-Kdhler manifolds of type (p,q), p + q = n, and
the points of the following orbit space:

Cr(V)/G = A, L/G, C ATL/G, = A’LTJGL(L") x A*L™ /GL(L").

reg
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Proof Consider two complete simply connected flat nearly para-Kihler manifolds
M, M'. By the previous results we can assume that M = M(n), M’ = M(n') are
associated with n, " € CZ'?(V). It is clear that M and M’ are isomorphic if 7 and 1’
are related by an element of G. To prove the converse we assume that ¢ : M — M’
is an isomorphism of nearly para-Kéhler manifolds. By the results of Sect.3.5 n
defines a simply transitive group of isometries. This group preserves also the para-
complex structure t, which is V-parallel and hence left-invariant. This shows that
M and M’ admit a transitive group of automorphisms. Therefore, we can assume
that ¢ maps the origin in M = V to the origin in M’ = V. Now ¢ is an isometry of
pseudo-Euclidian vector spaces preserving the origin. Thus ¢ is an element of O(V)
preserving also the para-complex structure t and hence ¢ € G.

The identification of orbit spaces can be easily checked using Lemma 2.3.2 and
the fact that any t-invariant isotropic subspace £ = X1 + X~ can be mapped onto
L by an element of G. O

3.7 Conical Ricci-Flat Nearly Para-Kihler Manifolds

Definition 3.7.1 A conical semi-Riemannian manifold (M,g,&) is a semi-
Riemannian manifold (M, g) endowed with a vector field £ such that

VE =1d, (3.55)

where V is the Levi-Civita connection of g. It is called regular, if the function
k := g(&, €) has no zeros.

A conical nearly para-Kidhler manifold (M, t,g,§) is a nearly para-Kéhler
manifold (M, t, g) such that (M, g, &) is conical and a conical para-Kéhler manifold
(M, P, g,£) is a para-Kéhler manifold (M, P, g) such that (M, g, £) is conical.

For a proof of the following Proposition we refer to Proposition 6 of [39].

Proposition 3.7.2 Let (M, g, &) be a regular conical semi-Riemannian manifold.
Then the level sets M. := {k = c},c € R, are smooth hypersurfaces perpendicular
to & or empty. If M. # @, then g induces a semi-Riemannian metric g. on M.

Theorem 3.7.3 Let (M, t,g, &) be a Ricci-flat conical (strict) nearly para-Kdhler
manifold and define an endomorphism field P by

1
P= (Id + 41\@) ot (3.56)

(i) If N(X,Y,Z) has isotropic support, then (M, P, g) is a para-Kdihler manifold.
(ii) If the real dimension of M is 6, then (M, P, g) is a para-Kdhler manifold.
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We remark that the tuple (g, &) remains the same and in consequence (M, g, §)
is conical and Ricci-flat. Hence (M, t,g, &) is a Ricci-flat conical para-Kihler
manifold.

Proof It suffices to show (i), since by Corollary 3.1.11 the Nijenhuis tensor
N(X.,Y,Z) has isotropic support in dimension 6. Using {N¢, t} = 0, where N; was
defined as the endomorphism field given by N¢ Y = N(§,Y), we compute

5 1 2 1 1 s
P = Id+4N§ oT = Id+4N§ o Id—4N§ oT

1
=Id—  NgeoN:=1d.
16 £ O Ng

Moreover, the condition
g(PX,Y) = —g(X,PY)
follows, since N¢ o 7 is skew-symmetric. In fact, we have
g(NetX, Y) = g(N(§,1X). Y) = 4g(z(Ve1)X, ) = —4g((Ve)X, Y),

which is skew-symmetric in X, Y. Hence (M, P, g) defines an almost para-Hermitian
structure. To show that it is para-Kéhler we determine

1 1
(VXp)Y = VX ((Id + 4Ng) o ‘L’) Y = (Vx‘l,')Y =+ 4VX(N§ [¢] ‘L')Y
1
= (Vx1)Y + A [(VxNg)TY + Ne(Vx1)Y]
1 1
= (Vx1)Y + 4NVXg(tY) = (Vx1)Y — 4rNXY =0.

In this computation we used that N(:, -, -) has isotropic support and that N(X,Y) is
V-parallel (by Lemma 3.1.13). Namely, it is

(VxNo)W = Vx(N(E. W) — N(§. VxW) = (VxN)(§. W) + N(Vx§. W) = Ny, W.

The statement that N(X, Y, Z) is V-parallel is also shown in Lemma 3.1.13 and it
does not vanish if (M, 7, g) is strict nearly para-Kéhler. O

Remark 3.7.4 As the attentive reader observes, the ansatz P = (Id + iNg) ot yields
an almost para-complex structure, if N is of type (3,0) + (0, 3) and has isotropic
support. This structure is para-Kéahler if and only if it holds Nv,¢Y = 4t(Vx1)Y,
i.e. NxY = Ny,¢Y. If M is strict nearly para-Kihler, this implies Vx§é = X. This
means £ needs to be conical.
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Theorem 3.7.5 Let (M, P,g,§) be a Ricci-flat conical para-Kihler manifold of
(real) dimension 2m carrying a (non-vanishing) parallel 3-form ¢(X,Y,Z) of type
(3,0) + (0, 3) with isotropic support and define an endomorphism field T by

1
T = (Id — 4@5) oP. (3.57)

Then (M, t, g) is a (strict) nearly para-Kdhler manifold.
As the pair (g, £) is not changed, (M, g, £) is conical and Ricci-flat. In consequence
(M, 7,g,§) is a (strict) Ricci-flat conical nearly para-Kéhler manifold.

Proof Here the endomorphism field ¢y is given by gxY := g~ o (X, Y,-).? Since
(X, Y,Z) has type (3, 0) + (0, 3) one has {¢¢, P} = 0 (this follows from Eq. (2.35))
and we compute as before

2 = Id—l on—Id—l o oPr=1d
= e = 6% 0¥ = Id.

The last step follows, since ¢(X,Y,Z) has isotropic support (cf. the proof of
Corollary 3.1.11 (b)). By the type condition it is ¢(&, PX,Y) = @(P£,X,Y) =
—@(P§,Y,X) which means that ¢z o P is skew-symmetric. From this it follows
g(X.Y) = —g(X, tY). It is left to check the nearly para-Kihler condition

(Vx1)Y = Vi ((Id— i(pg) OP) Y = (VxP)Y — ivx(% o P)Y

1 1 1
=4 [(Vx@) o PY + ¢:(VxP)Y | = —4<vas(PY) = 4P(<ﬂxY),

which is skew-symmetric, since ¢(X, Y, Z) is a 3-form. Hence (M, 7, g) is a nearly
para-Kahler manifold. If ¢(X, Y, Z) is non-vanishing, then (M, t, g) is strict nearly
para-Kéhler. O

Remark 3.7.6 One may choose A¢(-,-,),0 # A € R, in place of ¢(-,-,-).
Geometrically this corresponds to rescaling the conical vector field £ by the factor A.

Remark 3.7.7 Let us make an observation concerning Theorems 3.7.3 and 3.7.5.
The Ansatz for v only gives a para-complex structure, if it is @¢ o ¢z = 0.
This implies, that (X, Y, Z) has isotropic support and a para-Hermitian metric
has automatically split signature. Therefore we only can have these examples for
indefinite metrics (compare also Remark 3.7.11 for more comments).

In the following, we suppose that £ is space-like, i.e. itis g(§, §) > 0. We can always
achieve this by replacing the metric g by —g. Since g have the same Levi-Civita
connection, this operation is compatible with the nearly para-Kéhler condition (3.1)

“Here g ! is the inverse of the map g : TM — T*M, X > g(X, ).
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and the conical condition (3.55). One observes that one always can assume M; =
{g(&,&) = 1} # 0 after rescaling g by a positive constant without violating neither
the nearly para-Kéhler nor the conical condition.

Proposition 3.7.8 Let (M, P, g, §) be a regular conical para-Kdhler manifold with
M, # 9, then My with the induced metric g and the Reeb vector field T = P&y, is
a para-Sasaki manifold.

The manifold M is Ricci-flat if and only if M is an Einstein manifold with scalar
curvature 2m(2m + 1).

Proof The conical vector field £ is regular and Proposition 3.7.2 implies that
(M1, g1) is a semi-Riemannian manifold. Denote by V! the Levi-Civita connection
of g;. By construction T is time-like, i.e. g;(7,7) = —1 and tangential (see
Proposition 3.7.2). Moreover, T is a Killing vector field, since one has for vector
fields X, Y on M,

Lrg1(X.Y) = gi(VyT.Y) + g1(X, V4 T) = g(VxPE.Y) + g(X, VyP§)
= g(PVxE,Y) 4+ g(X, PVyé) = g(PX,Y) + g(X,PY) = 0.

Additionally T is geodesic, since for X € TM it is
£1(ViT.X) = g(VrT,X) = g(VrPE, X) = g(PT.X) = 0.
Since T is a Killing vector field ® := V!'T is skew-symmetric and we have
OX = VT = (VxT)" = (PX)"" = PX — g(&, PX)E = PX + g1(T, X)&,

where -“" is the projection on TM;. This means ®T = 0 and ®X = PX for X € TM,
perpendicular to 7. It follows

P*(X) = POX + g((T, DPX)E = POX = X + g1(T. X)T.
We compute (V4 ®)Y forY =T
(Vy®)T = Vy(®T) — ®(V4T) = —*(X) = —X — g1(T, X)T
and for Y perpendicular to T

(V@)Y = V(DY) — O(V4Y)

—
*
=

= P(VyY) — g(£. PVyY)E — ®(VyY) — g1(X. V)T

X1
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For (x) we used

Vy(®Y) = Vy(PY) = (Vx(PY)) = (PVxY)™ = (P(VxY)“ )" + g(VxY,£)T
= (P(VyY))" — g( Y, Vx)T = P(VyY) — g(£, PVyY)E — g1(X, )T

and () follows from
P(VxY) — g(§, PVxY)E — ®(VyY) = g1(PE, VyY)§ — (T, Vy¥)§ = 0.
Summarizing it holds
(Vi @)V = —g1(U, V)T + g1(V, T)U.

Hence we have checked all the conditions of Definition 2.6.1 and conclude that M,
is a para-Sasaki manifold. In consequence the cone M is a para-Kéhler manifold,
which is Einstein if and only if (M, g;) is Einstein and the scalar curvature of g,
equals 2m(2m + 1) (cf. Remark 2.6.2 (i) and (ii)). O

Theorem 3.7.9 Let (N°, &.T) be a para-Sasaki Einstein manifold of dimension 5
and denote by (M® = N, g,P &) the associated conical Ricci-flat para-Kdhler
manifold on the cone M = N over N, then the cone M can be endowed with the
structure of a conical Ricci-flat strict nearly para-Kdhler six-manifold (M, t,g, §).
Moreover, M is flat if and only if N has constant curvature.

Proof By Remark 2.6.2 (ii) the cone N is a conical Ricci-flat para-Kihler six-
manifold (ﬁ 8, P, £) and hence admits a non-vanishing parallel three-form ¢ with
isotropic support. From Theorem 3.7.5 we obtain a strict nearly para-Kéhler
structure 7 on N such that (N 7,8, £) is a conical Ricci- -flat nearly para-Kihler six-
manifold. The last statement follows from the fact that N is flat if and only if N has
constant curvature. O
In the following we call a nearly para-Kihler manifold M, which is the space-like
metric cone M = N over some semi-Riemannian manifold N a nearly para-Kahler
cone. Summarising we have shown the following result.

Theorem 3.7.10 There is a one to one correspondence between Ricci-flat strict
nearly para-Kdhler cones with isotropic Nijenhuis tensor and space-like cones over
para-Sasaki Einstein manifolds endowed with a parallel 3-form having isotropic
SUpport.

Remarks 3.7.11
(a) An analogous Ansatz can be made in almost complex geometry.

(1) Inthis setting one still needs a form with isotropic support. Since non-trivial
three-forms with isotropic support do not exist for Riemannian metrics,
the Ansatz does only give something new, i.e. non-Kihler examples,
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for pseudo-Riemannian metrics and real dimension dimM > 12, cf.
Theorem 3.6.7 and Corollary 3.6.8.

(i) Further one would get a cone over a Sasaki Einstein manifold with
indefinite metric. Such manifolds can for instance be obtained as T-duals
of homogeneous Sasaki manifolds of real dimension at least 11. These
manifolds are only classified in dimensions < 7 and the classification is
possibly extended to dimension 9 and 11 using [19] (see Section 11.1.1 of
[20]).

Details shall be postponed to future work.

(b) When we are not insisting on irreducible examples, one has the following
construction in the almost pseudo-Hermitian world: Denote by (M™, gy, Jyr)
and (N", gy, Jy) two nearly Kéhler Einstein-manifolds with the same Einstein
constant, then the pseudo-Riemannian product (M x N, gy @ (—gn),Ju © JIn)
is a nearly pseudo-Kihler manifold with vanishing Ricci curvature.

3.8 Evolution of Hypo Structures to Nearly Pseudo-Kéhler
Six-Manifolds

3.8.1 Linear Algebra of Five-Dimensional Reductions
of SU(1, 2)-Structures

In this short section we prepare the linear algebra of dimensional reductions.

Lemma 3.8.1 Let V be a six-dimensional real vector space and (w, p) € A2V* x
A3V* a compatible normalised pair of stable forms. Denote by h = hw.p) the
induced metric, let N € V be a unit vector with h(N,N) = —e € {£1} and denote
by W = N* the orthogonal complement of R-N. Then the quadruple (1, w1, >, @3)
defined by

n=pBNiww), w =aoly, o= NJJ;,O, w3 = —N_p (3.58)

with o, B € {£1} defines an SU*(p, q)-structure withp + q =2 on W.
Moreover, one has

w=aw +BnAn,
p=—eBnAw,—nAws,

Jop=—eBnAnws+nnan,
where n € V* is the dual of N and

NAwy = —ef pwandn A w3 = —5,31;/0\W'



90 3 Nearly Pseudo-Kihler and Nearly Para-Kéhler Manifolds

Proof As above (see Egs.(2.7) and (2.20) of Chap.2) we may choose a basis
{e1,...,eq} of V, such that the stable forms w, p and J;‘ p are given in the normal
forms

w=—e? — M 4 %,

o= 6135 _ (6146 +eZ36 + 8245)

with A(p) = —4v®2 for v = €!23%¢ > 0. Furthermore, it holds J,e; = —e;y1,
Joeiy1 = e fori e {1,3,5} and
* 246 235 | 145 | 136
Jop=eT—(e7+eT +e).

1) In the case ¢ = 1 we can suppose N = e; and obtain

n=—BA aw =—e*1eP wy= - wy=—e 4 ¥
One easily sees
2_ 2 _ 2 _ 3456 2 _ 23456
W] =—w; =—wy =2 "andn Aw; =2Pe #0
and wj Awy =0forl <j<k=<3.
Moreover, one gets
w=a0w +BnAn,
p=—BnAw,—nAwsand

Jop=—BnAws+nAo,
where n is the dual of N. Further, one has
NAw =—Bpwandn Awy =—BJ;pw.
2) For ¢ = —1 we can choose N = es5 and get

6 12 34 14 23
n=pe,

oW =—e"—e, w=—e —e, w3=—el3+824.

One easily sees
2_ 2 25,1234 2 _ 12346
o] =w; =wy =2 "T"andnAw; =2fe #0

and wj Awy =0forl <j<k=<3.
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Moreover, one gets

w=aw +pBnAn,
p=PBnAw —nAwsand

Jop=BnAws+nAw,
where n is the dual of N. Finally, one has

nAw =B pwandnAw;=BJ;pw.

3.8.2 Evolution of Hypo Structures

A five-manifold N° carries an SU°(p, g)-structure with p + ¢ = 2 provided,
that its frame bundle admits a reduction to SU®(p, g). For the group SU(2) it is
shown in [36], that such a structure is determined by a quadruple of differential
forms (w1, wy, w3, n). We shortly derive the analogous statement for our setting. Let
f:N°> — M°® be an oriented hypersurface in a six-manifold M® endowed with an
SU(1, 2)-structure given by a triple (w, ¥ ™, ¥ ™) of compatible stable forms (cf.
Sect.2.1).

This SU(1, 2)-structure induces an SU?( p, g)-structure with p +¢ = 2 on N° via
the definitions

or=af*w, b =vy, btwos=viyT, n=pv.o, (3.59)
where o, 8, bT, b~ € {&1} are real constants and v denotes the unit normal vector
field of N° of length ¢ = —g(v, v).

In case, that the holonomy of M6 is contained in SU (1, 2) or in other words the
SU(1, 2)-structure is integrable, which is equivalent to the equations

do =0, dyt =0 and dy~ =0 (3.60)

we obtain a hypo structure on N in the sense of the next Definition.

Definition 3.8.2 An SU®(p, g)-structure with p + ¢ = 2 determined by
(n, w1, Wy, w3) is called hypo provided, that it satisfies

do; =0, dinAwy;) =0 and d(nAws)=0.

For the Riemannian case the next lemma is shown in [36].



92 3 Nearly Pseudo-Kihler and Nearly Para-Kéhler Manifolds

Lemma 3.8.3 Let f:N° — M°® be an oriented hypersurface in a six-manifold
M® endowed with an integrable SU(1,2)-structure, then the induced SU*(p, q)-
structure, given by (3.59) and with p + q = 2, on N° is a hypo-structure.

Proof From af*®w = w; one has dw, = a¢d(f*w) = af*(dw) = 0. Moreover,
with help of the Lemma 3.8.1 one has

bt f*yt = —efnanwyand b f*y~ = —efn A ws,
which implies using (3.60)

—efd(nAw3) =b"d(f*Y7) =b"frdy~ =0
=bTd(f*yT) = b Ayt = —efd(n A wn).

This shows, that the induced SU?( p, g)-structure is a hypo structure on N°. O
Starting with an SU?(p, g)-structure with p + ¢ = 2 on N° determined by
(n, w1, Wy, w3) we define a two-form

o =aw; +efdtAn (3.61)
and three-forms ¥* on N° x R by

w+ :a+7]/\a)2+b+dt/\w3, YT =a nAw;+ b dt Aws, (3.62)
where ¢ is the coordinate on R and «, 3, at bt e {£1} are non-zero real constants.
Note, that the a* are determined from «, B and bt by Lemma 3.8.1. Then a partial
converse of the result of the last Lemma is given in the next Proposition.

Proposition 3.8.4 One can lift a hypo SU*(p, q)-structure with p + q = 2 to an
integrable SU(1, 2)-structure on N X R if it belongs to a one-parameter family
of SU*(p, q)-structures (1(t), w;(t), w2 (2), ws3(t)), where t is the coordinate on R,
satisfying the Conti-Salamon type evolution equations

0w = efad’n, (3.63)
(N Aws3) =a b dw,, (3.64)
0(nAwy) =at bt dws. (3.65)

Proof In this proof we write d° and d® for the exterior differentials on N> and M% =
N x R. With (3.61) it follows, that

0 =d» = ad’w; + (ad,w; — B d’n) A dt.
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This is equivalent to d°w; = 0 and d,0; = eBad’n, i.e. Eq.(3.63). From the
definition of ¥ one gets, that

0=d" =atd*(wr An) +dt A (atd(wr An) —bTdws)

is equivalent to d°(wy A ) = 0 and d,(w2 A 1) = ath' dws, i.e. Eq.(3.65). For
¥~ as given in (3.62) we obtain, that

0=d =a d’(ws An)+dt A (ad(ws An) —b d°w)

itself is equivalent to d° (w3 A 1) = 0 and Eq. (3.64). O

Examples of this type are given by the pseudo-Riemannian cousins of Sasaki-
Einstein manifolds, namely para-Sasaki-Einstein and Lorentzian-Sasaki-Einstein
manifolds. These can be characterised by the fact, that the space-like/time-like cone
is a Ricci-flat Kihler-Einstein manifold or equivalently this cone has an integrable
SU(1, 2)-structure. Here one considers the special solution of the above evolution
equations on N> x R given by

o = Paw, + tefdt A 1, (3.66)
VT =at Py Aw, +2bTdr A ws, (3.67)
VT =a £y Aws+E2bd Aw,. (3.68)

The integrability conditions read

0 = dw = d(Paw; + tefdt A ) = tdt A Qaw, — £Bdn),

0=dyt =danAw, +PbTdr A w3)
=PdtABaTn Awy —bTdPw3) + Patd(n A o),

0=dy~ =d(a nAws+ b dt Aw)
=PdiAGBa nAws—b dwy) + Pad’(n A w3).

This is equivalent to the para-Sasaki-Einstein or Lorentz-Sasaki-Einstein equations
dn =2eaBw), dwr,=3b"a wsAn, dws=23bTaTw, An. (3.69)

Obviously, Eq. (3.69) imply the hypo equations.
The next result has been discovered in the Riemannian case in [53].

Proposition 3.8.5 Let f: N° — M® be a totally geodesic oriented hypersurface in a
nearly pseudo-Kdihler manifold M® with unit normal vector field v, then the induced
SU*(p, q)-structure with p + q = 2 and ¢ = —g(v, v) satisfies the hypo equations.
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Proof From the first nearly Kéhler equation one has
do; = ad(f*w) = af*do = 3af*y+ = 3(aa)n A ws. (3.70)
Moreover, we compute
B dn = dvow) = (L,w) —vide = (L,w) —3vyt = (L,0) — 3b ws,

where _ﬁ\, is the Lie-derivatiye. Since N° is totally geodesic, it is (£L,0) = V,w.
Using Vo = 0 we get with V =V + ;T

Vio(X,Y)

Vyo(X,Y) + ; [w(T(v,X),Y) +oX, T(1,Y))]

o(T(v,X),Y) = bTwsy (X, Y),

as with w(-, ) = g(-,J-) itis

o(T(,X).Y) = —g(J(V,)X.JY) = g(X. (V,.)Y) = y T (0. X, ¥) = bT w3(X. ¥),
which shows

dn = —2Bb" ws.

Finally, we compute with help of dyy~ = —2w A w, i.e. the second nearly Kéhler
equation

b dwy, =dvay™) =Ly —vady™ =V, ¥~ + 2vi(w A w)

- 1
=V,y — ne ZUk(ek_ﬂV) A(exa¥y™) + 2va(w A w)
k

1 3
& — Qo)+ 20 Aw) = va(@Ae) = 3@ Ao,

where {ey, ..., es = v} is some adapted basis and where in (*) we used

6
ZG/((E/(JW_) AN (ekJI//_) =2w A w,

k=1

which holds for a nearly pseudo-Kéhler six-manifold. O
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Theorem 3.8.6 Any totally geodesic hypersurface N° of a nearly pseudo-Kihler
six-manifold M® carries a hypo structure given by the quadruplet (7}, @1, @2, @3) =
(n, —ews, w,, w1), and in consequence the Conti-Salamon type evolution equations
can be solved on N x R.

Proof By the last Lemma we obtain a hypo SU®(p, g)-structure (7}, @1, @2, @3),
which is a solution of the first and the third para-Sasaki-Einstein or Lorentz-Sasaki-
Einstein equations (3.69). Using b = —1 and a™ = —pB (by Lemma 3.8.1) and
setting « = —1 yields

dii = dnp = —2(Bb™) w3 = 2B w3 = 2 e(Bat) 1,
diy = doy "L 3(@at) p A wy = —3(aB) i1 A @ = 3(bTaT)ij A,

since again by Lemma 3.8.1,'% it is b*at = B = —a~b~. The remaining para-
Sasaki-Einstein or Lorentz-Sasaki-Einstein equation

diy = dwr = 3(b~aB)n A w1 = 3@B)ii A @3 = 3(b~a")ij A @

holds true using b~ = 1 (by Lemma 3.8.1). O

3.8.3 Evolution of Nearly Hypo Structures

In this subsection we generalise results of [53] to construct examples of nearly
pseudo-Kihler manifolds via the nearly hypo evolution equations.

Definition 3.8.7 An SU®(p, g)-structure with p + ¢ = 2 determined by
(n, w1, w2, w3) is called nearly hypo provided, that it satisfies the conditions

dw| = 3oca+n A w7, dn A w3) = —2a" o) A w. (3.71)

Proposition 3.8.8 An SU?®(p, q)-structure (n, wy, w,, w3) with p + g = 2 can be
lifted to a nearly pseudo-Kdhler structure (w(t), v (t), v~ (2)) on N° x R defined
in (3.61) and (3.62) if and only if it is a nearly hypo structure which generates
a l-parameter family of SU?(p, q)-structures (n(t), wi(2)) satisfying the following
nearly hypo evolution equations

0w = 3bTaws + efady,
0(nAw3) =a b dw, —4ea” afw; A1, (3.72)
+b+

o(nAwp) =a dws.

100bserve, that there is a relative factor & between dual and the metric dual of v.
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Remark 3.8.9 Setting B = 1 and with b~ = 1 = —bT and btat = —b~a™ =
B =1 (by Lemma 3.8.1) we get
d/(xwy) = =3 w3 + edn,
0/(n A w3) = —dw, + 4en A (@wy), (3.73)
8,(r) N a)z) = dws.

For (7], &1, @, @3) = (—1, 2wy, w2, w3), this yields

8,(7)1 =-3 (Z)3 — Edf},
(N A @3) = diy — 4eij A @y, (3.74)
8,(77 A @n) = —dws.
Hence the exterior differential system on the modified data (7, @1, @,, @3) looks
formally the same as the system found in the Riemannian case [53].
Proof From the definitions of w;,w, and n we get, that the first nearly Kéhler
equation is equivalent to
dw = d(aw, + eBdt A 1) = adw, + dt A (€d,w1 — eBdn)
=3yt =3atn A ws + 3bTdl A ws,
ie. dw, = 3aa™n A w, and d,0; = 3bTa w3 + eBa dn. For the second nearly
Kihler equation we have
dy~ =d@ nAws+b ditAwy) =a d(nAws) +dt A (@ 0,(n Aws) — b dw)
= —2(aw; + efdt A 77)2 = 2w Aw| —4eafdt ANwy A,
which is equivalent to
dinAw3) = —=2a w; Aw; and 0,(n Aw3) =a b dwy, —4dea afw; A .
These are the first two evolution equations and the nearly hypo equations. The third
equation is needed to show, that the nearly hypo property is conserved along the

evolution. Firstly, one has

0, (dw, —3aa™n A wy) = d(d,w1) —3aatd,(n A w,)
=dBbTaw; + efadn) — 3aat d,(n A w2)

=3btadws —3aat,(n A w),
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which vanishes by the third evolution equation 9,(n A @) = a*b* dw;. For the
other nearly hypo equation we compute
o [d(n A w3) + 2a” wy A w1] = d[0;(n A w3)] + 2a” 9,(w1 A w1)
=d[a b dw; — dea” afw; A 1]
+4a 0,(w1) N w
= —dea afd(w; A1)
+4a"w, A BbTa w3 + efadn)

—dea” af(d(w; A n) —w; Adn)
= —dea affdw; An =0,
where we used, that by the already proven first hypo equation dw; is (along the flow)

a multiple of n A w,. Hence the nearly hypo condition is preserved along a solution
of the system (3.72). O

Proposition 3.8.10 Any SU*®(p, q)-structure with p + q = 2 satisfying the para-
or pseudo-Sasaki equations (3.69) defines a nearly hypo structure (7}, @1, @, ®3) =
(. w3, @2, w1).

Proof From (3.69) one has after setting @ = b™ = —1 (by Lemma 3.8.1)

ddy = dws = 3bTat wy A =3aati A

and

d(;}ACZB) = d(nAa)l) =dnrw, = 280[,3 wINAwW] = —20lﬂ w3 A3 ; —2a” 0\ NGy,
where we used w; A w; = —e& w3 A ws. This yields the claim, since one has a= =
—B = af (by Lemma 3.8.1). O

Proposition 3.8.11 Let f: N> — MS be an immersion of an oriented 5-manifold
into a 6-dimensional nearly pseudo-Kiihler manifold, then the induced SU*(p, q)-
structure (1], 01, 02, @3) = (1, 1, W2, W3) with p+q = 2 is a nearly hypo structure.

Proof Let us first observe, that one has
atnrwy =f*YyTanda nAws =f*Y~,
which implies

do) = dw; = ad(f*w) = af * (dw)

=3af*yt =3aat nAwr =3aat A G,
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a~d(ij A@3) = a~d(n A w3) = frdy~
= —2f*(a) AN a)) = 2w Aw; = 201 AN dDy.

This proves the nearly hypo equations. O

Theorem 3.8.12 Let (Ns,n,w?,a)g,a)g) be an e-Sasaki-Einstein SU®(p, q)-
structure, then

w1 = f2 (few) + flo). (3.75)
oy = flw), (3.76)
w3 = —f7 (flo) + &fee) , 3.77)
n=fn' (3.78)
with
£(0) = sin (1) = sinh(¢), forte Rande =1, wnd 1, R* fore =1,
sin(¢), fort e [0,n]and e = —1 (0, 7) fore = —1

is a solution of the nearly hypo evolution equations and yields a nearly pseudo-
Kiihler structure on N x I, Metrik angeben, anpassen with metric g = dt* +f€2gN
with conical singularities in {0} and {0, 7} respectively.

Proof Recall, that we have to solve (where we omit the -) the following system
3;601 = -3 w3 — Edn,
(N A w3) = dwy — den A wy, (3.79)

9:(n A wy) = —dws.
As Ansatz we consider the following family of SU?( p, ¢)-structures withp + g = 2
w1 = f* (fo £f'03).
wy = Ufza)g,
w3 = —f? (f’a)? + sfwg)) ,

n=ofn’,
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where we set f(f) = sin,(f), which yields f/ = ¢f and f'* — ef> = 1. First we
compute ¢ = 1

dor = 3£f 0l £ (2 +£4") of
D3 (Pfof = ef ) + 20l
= 3wt sfdno = —3w; oedn L —3 w3 —edn,
where in (*) we used
AU +ef* =FQf +ef) =2+ 1) +of* =3ef +2f

and dn° = 28a)§), since N° is an e-Sasaki manifold. Hence we need to fix 0 = F1.
Next we calculate

0 (nAw) =0 (1’ Awd) =3 1" Aw)
and using do) = 0 and do) = 3atb 0’ A @) yields
—btatdws = btat & (P (f'o) £ ef0l)) = bTat 2f do) =37 1° A ),

which shows 9; (n A wy) = —bTatdws = —dws. It remains to determine the
evolution of n A w3

3 (nAw3) = 0, (Lef*n° Al + 1 Aw))
= o (41’ A of + B () + 1)1’ A o))
Y 4eo (1" Awf + £ 0° A l) + 300" A o]
=denAw +ob a frdo) P e Ay — of?dw?

=den Aw —dw,,
where in (x) we used
327 4 eft = 32ef + 1) 4 oft = deft + 32
This yields
0N Aw3) =—denAw +dw,

and finishes the proof of the Theorem. O
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3.9 Results in the Homogeneous Case

3.9.1 Consequences for Automorphism Groups

An automorphism of an SU®(p, g)-structure on a six-manifold M is an automor-
phism of principal fibre bundles or equivalently, a diffeomorphism of M preserving
all tensors defining the SU?(p, ¢)-structure. By our discussion on stable forms in
Sect. 2.1 of Chap. 2, an SU®( p, g)-structure is characterised by a pair of compatible
stable forms (w, p) € Q2M x Q3M. Since the construction of the remaining tensors
J, ¥~ and g is invariant, a diffeomorphism preserving the two stable forms is already
an automorphism of the SU®( p, ¢)-structure and in particular an isometry.

This easy observation has the following consequences when combined with the
exterior systems of the previous section and the naturality of the exterior derivative.

Proposition 3.9.1 Let (w, ) be an SU*(p, q)-structure on a six-manifold M.

(i) If the exterior differential equation
do=py*

is satisfied for a constant i # 0, then a diffeomorphism ® of M preserving w
is an automorphism of the SU®(p, q)-structure and in particular an isometry.
(ii) If the exterior differential equation

dy" =voAw

is satisfied for a constant v # 0, then a diffeomorphism ® of M preserving

(a) the real volume form and T,
(b) or the real volume form and ¥,
(c) or the e-complex volume form ¥ = T + iy,

is an automorphism of the SU®(p, q)-structure and in particular an isometry.

We like to emphasise that both parts of the Proposition apply to strict nearly
e-Kihler structures of non-zero type. The same holds true for the following
Proposition.

Proposition 3.9.2 Let (M, g,J¢, ) be an almost e-Hermitian six-manifold with
totally skew-symmetric Nijenhuis tensor and ® be a diffeomorphism of M pre-
serving the almost e-complex structure J°. Suppose, that the structure J° is
quasi-integrable,

(i) then ® is a conformal map.

(ii) and additionally, assume, that one has dw? = 0, then ® is a homothety on
connected components of M. If moreover, ® preserves the volume, then it is an
isometry.
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Proof As ® preserves the e-complex structure, it also preserves the Nijenhuis
tensor. From Corollary 3.1.15 it follows g(X, Y) = ftr(Nx o Ny) for some function
fonM. This yieldsinp e M

go(p) (PxX, D1Y) = f(P(p))tr(No,x © No,v)
= f(@(p) tr (P*N)x o (P*N)y) = f(®(p))f (p) gp(X.Y),

i.e. the conformal factor is ¢ := f- ®*f. Further let us assume, that one has dw? = 0.
From above we know ®*(w A w) = ¢*(w A w), which yields

0 =d(c*w A ) =d(?) Aw® + Adew? = d(c?) Ao’

Using, that the map n € A'T*M® — n A w? € AST*M® is an isomorphism, we
obtain d(c?) = 0 and hence the function c is constant on connected components
of M. Recall, that the metric volume is a multiple of 3. This implies, that one has
c=1. O

Corollary 3.9.3 Let (M, J?, g, w) be a nearly e-Kiihler six-manifold with | VJ¢||> #
0, then a diffeomorphism ® of M preserving J¢ is an automorphism of the SU®(p, q)-
structure and in particular an isometry.

Proof The second nearly e-Kihler equation implies dw?> = 0. Hence we obtain
from Proposition 3.9.2, that one has ®*(w) = cw, for some constant ¢ (on each
connected component) and by the first nearly pseudo-Kéihler equation

d(o*
(@%w) = cda) =cyt.
3 3

**(y*) =
As J? is preserved, this yields ®*(1~) = ¢y~ and another time using the second
nearly pseudo-Kédhler equation

cdy™ = O*(dy ™) = vd*(w?) = vlw?,

forces c = 1. O

Conversely, it is known for complete Riemannian nearly Kihler manifolds,
that orientation-preserving isometries are automorphism of the almost Hermitian
structure except for the round sphere S°, see for instance [26, Proposition 4.1].
However, this is not true if the metric is incomplete. In [53, Theorem 3.6], a nearly
Kihler structure is constructed on the incomplete sine-cone over a Sasaki-Einstein
five-manifold (V 5, n, w1, w2, w3). In fact, the Reeb vector field dual to the one-form
n is a Killing vector field which does not preserve w, and ws. Thus, by the formulae
given in [53], its lift to the nearly Kéhler six-manifold is a Killing field for the sine-
cone metric which does neither preserve ¥ nor @ nor J.
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3.9.2 Left-Invariant Nearly e-Kihler Structures
on SL(2,R) x SL(2,R)

The following lemma is the key to proving the forthcoming structure result, since
it considerably reduces the number of algebraic equations on the nearly e-Kihler
candidates.

Lemma 3.9.4 (Lemma 4.1 of [110]) Denote by (R'2, (-,-)) the vector space R
endowed with its standard Minkowskian scalar-product and denote by SOy(1, 2) the
connected component of the identity of its group of isometries. Consider the action
of SOy(1,2) x SO¢(1, 2) on the space of real 3 x 3 matrices Mat(3, R) given by

® : SO(1,2) x Mat(3, R) x SOy(1,2) — Mat(3, R)
(A, C,B) > A'CB.

Then any invertible element C € Mat(3, R) lies in the orbit of an element of the
form

axy 08z
08z or axy
00y 00y

witha, B,v,x,y,z € Rand afy # 0.

Finally, we prove our main result of this subsection which is the following
theorem. By a homothety, we define the rescaling of the metric by a real number
which we do not demand to be positive since we are working with all possible
signatures.

Theorem 3.9.5 Let G be a Lie group with Lie algebra s1(2,R). Up to homothety,
there is a unique left-invariant nearly e-Kdhler structure with |[VJ¢||> # 0 on G x
G. This is the nearly pseudo-Kdhler structure of signature (4,2) constructed as 3-
symmetric space in Sect. 3.9.4. In particular, there is no left-invariant nearly para-
Kdihler structure.

Remark 3.9.6 The proof also shows that there is a left-invariant nearly e-Kéhler
structure of non-zero type on G x H with Lie(G) = Lie(H) = sI2,R)if G # H
which is unique up to homothety and exchanging the orientation.

Proof More precisely, we will prove uniqueness up to equivalence of left-invariant

almost e-Hermitian structures and homothety. We will consider the algebraic
exterior system

do =3y, (3.80)

dy” =2wAw (3.81)
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on the Lie algebra s[(2, R) & s[(2, R). By Theorem 3.1.19, solutions of this system
are in one-to-one correspondence to left-invariant nearly e-Kihler structure on G x
G with ||VJ¢||> = 4. This normalisation can always be achieved by applying a
homothety. Furthermore, two solutions which are isomorphic under an inner Lie
algebra automorphism from

Inn(s((2, R) & s[(2, R)) = SOy(1,2) x SOy(1,2)

are equivalent under the corresponding Lie group isomorphism. Since both factors
are equal, we can also lift the outer Lie algebra automorphism exchanging the two
summands to the group level. In summary, it suffices to show the existence of a
solution of the algebraic exterior system (3.80), (3.81) on the Lie algebra which is
unique up to inner Lie algebra automorphisms and exchanging the summands.

A further significant simplification is the observation that all tensors defining a
nearly e-Kihler structure of non-zero type can be constructed out of the fundamental
two-form « with the help of the first nearly Kéhler equation (3.80) and the
stable form formalism described in Sect.2.4 of Chap.2. We break the main part
of the proof into three lemmas, step by step simplifying » under Lie algebra
automorphisms in a fixed Lie bracket.

We call {e1, e2, e3} a standard basis of so(1,2) if the Lie bracket satisfies

de' = —e?, de* =¢¥, de’ =e"

In this basis, an inner automorphism in SOg(1, 2) acts by usual matrix multiplication
onso(l,2).

Lemma 3.9.7 Let g = § = so(1,2) and let w be a non-degenerate two-form in
A@@h)" =Ag" @ (a®h) & A"
Then we have
do*=0 & weg®h. (3.82)

Proof By inspecting the standard basis, we observe that all two-forms on so(1, 2)
are closed whereas no non-trivial 1-form is closed. Thus, when separately taking
the exterior derivative of the components of w? in A* = (Ag* ® b*) ® (A’g* ®
A%h*) @ (g* ® A3h*), the equivalence is easily deduced. O

Lemma3.9.8 Let g = b = s0(1,2) and let {e', e, e} be a basis of g* and

{e*, e, €% a basis of b* such that the Lie brackets are given by

de' = —623, de* = 631, de® = 1e'? and de* = —e56, de’ = e64, de® = ®

(3.83)
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for some t© € {X1}. Then, every non-degenerate two-form w on g ® b satisfying
dw? = 0 can be written

w=ae*+peP +ye® +xe® +yel® 4% (3.84)

for o, B,y € R—{0} and x,y,z € R modulo an automorphism in SOy(1,2) x
SOy(1,2).

Proof We choose standard bases {e', ¢?, ¢’} for g and {e*, ¢°, ¢°} for b. Using the
previous lemma and the assumption do? = 0, we may write @ = Y, c;e’0+?)
for an invertible matrix C = (c;) € Mat(3,R). When a pair (A, B) € SOy(1,2) x
SOy(1, 2) acts on the two-form w, the matrix C is transformed to A’CB. Applying
Lemma 3.9.4, we can achieve by an inner automorphism that C is in one of the
normal forms given in that lemma. However, an exchange of the base vectors e; and
e, corresponds exactly to exchanging the first and the second row of C. Therefore,
we can always write @ in the claimed normal form by adding the sign t in the Lie
bracket of the first summand g. O

Lemma 3.9.9 (Lemma 4.6 of [110]) Let {e',....e%} be a basis of so0(1,2) x
s50(1,2) such that

de' = —e¥, d* =6, de® =e? and deé* = —¢°, d&® =™, de® = e®.

(3.85)

Then the only SU®(p, q)-structure (w, Y1) modulo inner automorphisms and
modulo exchanging the summands, which solves the two nearly g-Kdihler equa-
tions (3.80) and (3.81), is determined by

w = \1/83 (e + ¥ + ). (3.86)
In fact, the uniqueness, existence and non-existence statements claimed in the
theorem follow directly from this lemma and formula obtained for the quartic
invariant which implies A (;da)) < 0.

As explained in Sect. 3.9.4, we know that there is a left-invariant nearly pseudo-
Kihler structure of indefinite signature on all the groups in question. After applying
a homothety, we can achieve ||[VJ?||?> = 4 and this structure has to coincide with
the unique structure we just constructed. Therefore, the indefinite metric has to be
of signature (4,2) by our sign conventions.

We summarise the data of the unique nearly pseudo-Kihler structure in the
basis (3.85) and can easily double-check the signature of the metric explicitly:

1
w = 18\/3 (El4+ @25+ @36)

w-‘r — 514\/3 (@126— @135+ 6‘156— 6‘234+ 6‘246— 6‘345)
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T _514(2 B o126 135 _ 16 _ 234 246 | 35 | g 456

1 2 2 1
Je)=—_~3e— V3ey, Jey) = Vel + _3ey

3 3 3 3

1 2 2 1
J(ez)=—3\/3€2+3\/3€5, -](95):—3\/36‘24-3\/365

1 2 2 1
‘,(63):_3‘/393""3\/3967 1(96)2—3\/3634-3\/366

= o (= @ = @+ @~
—(®)?— e et — P’ — €0,

0
Observing that in [25] very similar arguments have been applied to the Lie group
3 x 83, we find the following non-existence result.

Proposition 3.9.10 On the Lie groups G x H with Lie(G) = Lie(H) = so0(3),
there is neither a left-invariant nearly para-Kdhler structure of non-zero type nor a
left-invariant nearly pseudo-Kdhler structure with an indefinite metric.

Proof The unicity of the left-invariant nearly Kihler structure S* x $* is proved
in [25, Section 3], with a strategy analogous to the proof of Theorem 3.9.5. In the
following, we will refer to the English version [26]. There, it is shown in the proof
of Proposition 2.5, that for any solution of the exterior system

do =3yt
ayt = —2pw?

there is a basis of the Lie algebra of S* x S* and a real constant o such that

de! =eB, de?=¢, ded=e'? and de* =%, de® =e%, de® = e*,

w = (e + ¥ + ).

In this basis, a direct computation or formula (18) in [26] show that the quartic
invariant that we denote by A is

A=—__«a
27

with respect to the volume form ¢!?343¢, Therefore, a nearly para-Kihler structure
cannot exist on all the Lie groups with the same Lie algebra as S® x S® by
Theorem 3.1.19. A nearly pseudo-Kihler structure with an indefinite metric cannot
exist either, since the induced metric is always definite as computed in the second
part of Lemma 2.3 in [26]. ]
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3.9.3 Real Reducible Holonomy

Nearly pseudo-Kihler manifolds admitting a J-invariant and V-parallel decompo-
sition of the tangent bundle TM are related to twistor spaces [108] (cf. [16, 98]
for Riemannian metrics) and Sects. 3.3 and 3.4 of this chapter. The next Proposition
considers the complementary situation, i.e. the case where TM decomposes into two
sub-bundles and J interchanges these sub-bundles and generalises a result of [99] to
pseudo-Riemannian metrics.

Proposition 3.9.11 Let (M, g,J) be a complete, strict, simply connected nearly
pseudo-Kdihler manifold. Suppose, that TM admits an orthogonal, V-parallel
decomposition TM =V & V' with V' = JV, then (M, g) is a homogeneous space.

Proof For a vector field X = JV; in V' = JV, a vector field Y = JV; in TM and
vector fields V3, V4 in V by the same argument as in Lemma 3.4.1 it is

R(JV],JVZ, V3, V4) =g ([VV3J, VV4J]JV1,JV2) — 8 ((VJVIJ)Jvz, (VV3J)V4)
= g ([Vv,J, Vv, JIV1, V2) + g (Vv )) V2, (Vv J)Va) (3.87)

By the symmetries (3.24) and (3.25) of the curvature tensor R the last equation
determines R. By Proposition 3.1.7 the torsion 7 and VJ are V-parallel. In
particular, we have

Vu(Vx)Y) = (Vx))VyY + (Vg x)Y.

Deriving (3.87) this implies VR = 0. Hence V is an Ambrose-Singer connection
and as M is simply connected and complete it follows, that (M, J, g) is a homoge-
neous space (see [116]). O

3.9.4 3-Symmetric Spaces

The idea of a three-symmetric space is to replace the symmetry of order two as in the
case of a symmetric space by a symmetry of order three. Nearly Kihler geometry
on such spaces was first studied in [66, 69].

Like symmetric spaces three-symmetric spaces have a homogenous model,
which we shortly resume: Let G be a connected Lie group and s an automorphism
of order 3 and let Gj C H C G* be a subgroup contained in the fix-point set G* of
s. The differential s, decomposes

gC=heComtem”
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into the eigenspaces of s, with eigenvalues 1 and é(—l + +/—3). With the definition
m:= (m* @ m~) N g the decomposition

g=bom (3.88)

is reductive and G/H is a reductive homogenous space. The characteristic complex
structure is then defined by

1Id \/3J 3.89
Skjm = D) + 5 (3.89)
The choice of an Ad(H)-invariant and s.-invariant (pseudo-)Euclidean scalar-
product B on m endows G/H with the structure of a (pseudo-)Riemannian three-
symmetric space, such that B is almost Hermitian with respect to J. The next
Theorem locally relates homogeneous spaces to three-symmetric spaces.

Theorem 3.9.12 An almost pseudo-Hermitian manifold (M, J, g) is a locally three-
symmetric space if and only if it is a quasi-Kdhler manifold and the torsion T and
the curvature tensor R of the characteristic Hermitian connection NV are parallel,
i.e. VT = 0 and VR = 0.

The proof of Theorem 3.9.12 is based on the following description of locally three-
symmetric spaces given in [66].

Theorem 3.9.13 Let (M, J, g) be an almost pseudo-Hermitian manifold. Then there
exists a family of local cubic diffeomorphisms (sx)xem such that J is the induced
complex structure and such that M is a three-symmetric space if and only if

(i) M is quasi-Kiihler, i.e. one has (VxJ)Y + (V,xJ)JY = 0,
(i) o = s preserves V2J,
(iii) forX,Y,Z,T € I'(TM) one has
R(X.Y,Z.T) = R(JX,JY,Z,T) + R(JX.Y,JZ,T) (3.90)
+ R(JX,Y,Z,JT),

@iv) forX,Y,Z, T € T'(TM) one has
(VwR)X,Y,Z,T) + (VwR)(JX,JY,JZ,JT) = 0.

Proof of Theorem 3.9.12 We claim that the conditions (i)-(iv) of Theorem 3.9.13
are equivalent to the following system of equations:

nxY + nxJY =0, (3.91)

Vi =0, (3.92)
VR=0, (3.93)
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Let us recall the definition n := ;J (VJ) which yields that the condition (3.91) is
equivalent to Theorem 3.9.13 part (i). From VxJ = —2Jny it follows

(Viy)Z = 20 2nxnyZ— (Vxn)yZ) = 2J (2nxnyZ — (VxmyZ — ey Z + [y, nx)Z) .

By Eq. (3.92) this expression only depends on 7 and J, which are both preserved
by o.

Conversely, we suppose that o preserves V.J and V2J. From Proposition 3.3 of
Gray [66] one obtains

Vn(X,Y,Z,T) = Vn(JX,JY.Z.T) + Vn(JX,Y,JZ,T)
+Vn(JX,Y,Z,JT) = 3Vn(JX,JY,Z,T),

where the last equality follows from VJ = 0 and Eq. (3.91). This implies replacing
XbyJX and Y by JY

_ _ 1-
3Vn(X.IY.2.T) = V(XY Z.T) = ,Vn(JX.JY.Z.T)

and finally we obtain Vi = 0.

Moreover, the condition (3.92) implies Theorem 3.9.13 part (iii). In fact, we
claim that Theorem 3.9.13 part (iii) can be re-written as R € L,, where £, is one
of the irreducible components of the space of curvature tensors considered as a
GL(n, C) representation [52]. More precisely, in our case we identify u(p, g) with
[AL1] (instead of u(n)) and u(p, g)* (rather than u(n)*) with [A>°] and then apply
the results of [52] to obtain an analogous decomposition. In particular, it follows
in the quasi-Kihler case, that the complement of £, only depends on V7 and we
conclude that Eq. (3.92) implies Theorem 3.9.13 part (iii).

It remains to relate Theorem 3.9.13 part (iv) and Eq. (3.93). From V = V + p it
follows

R(X’ Yv Z? W) = R(X’ Yv Z? W) + g([an nY]Zv W) - g(nan—nyXZv W)7

where we use the condition (3.92). Using a second time the condition (3.92) and

Vg = 0 we get
VR=VR=VR—1-R (3.94)
with

n-R=R(mn,--)+R(,n,)+R(,-,n,)+ R(,-, -, ).
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Now Eq.(3.90) implies R(JX,JY,JZ,JW) = R(X,Y,Z,W), see for instance
Corollary 3.4 of [66]. As n and J anti-commute, it follows from (3.90)

(n-RY(IX,JY,JZ,JW) = —(n-R)X,Y,Z, W) (3.95)
and as V is Hermitian we have
VR(X.Y,Z,W) = VR(JX,JY,JZ,JW). (3.96)
Equation (3.94) and (3.96) yield

2(VwR)(X.,Y,Z,T) = (VwR)(X,Y,Z,T) + (VwR)(JX,JY,JZ,JT)

Fas OO (g RV (X, Y. Z. T) + (VyR)(JX, Y. JZ, JT),

which shows the equivalence of Theorem 3.9.13 part (iv) and Eq. (3.93). O
The following proposition relates the information coming from the Hermitian
structure to the data of the homogeneous space.

One may suppose G to be simply connected, since otherwise one considers its
universal cover 7 : G — G and the isomorphic homogeneous space G/H with
H = n""(H).

Proposition 3.9.14 Let (M = G/H, J,g) be a (simply connected) reductive homo-
geneous almost pseudo-Hermitian manifold, then M = G/H is three-symmetric
if and only if it is quasi-Kéihler and the connection N coincides with the normal
connection V" of the reductive homogeneous space G/H.

Proof Let (M = G/H,J,g) be a reductive homogeneous space with adapted
reductive decomposition g = h @ m. The invariant almost complex structure J
induces a complex structure on m and an invariant decomposition
mt =m0 g m®!. (3.97)
The invariance of m and J implies
[h, m"] € m!?and [h, m*] ¢ m*!. (3.98)

The three-symmetry s is now obtained by the integration of the map o

ol = Idy, Ojm10 = jld|y10, 0o =j21d|m0.1,

where j = —éld + ‘43 i. The map o integrates (since G is supposed to be simply
connected) to s if and only if it is an automorphism of the Lie algebra g. By
Eq. (3.98) and the definition of o this is the case if and only if one has

[m!0 m! ¢ m® [m®' m® ¢ m"0 and [m!°, m®!] c b. (3.99)
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Recall, that the torsion of the normal connection (see [87, Chapter X]) is given by
the invariant tensor

" (u,v) = —[u, v]™

In terms of the torsion 7" the integrability conditions (3.99) are

" (u,v) = —|u, v]“‘o"l, for u,v € m'?,
" (u,v) = —|u, v]“‘l"o, for u,v € m!,
T (u,v) = 0, foru € m'"* and v € m®!

In other words 77" is a multiple of the Nijenhuis tensor. Contraction with the
metric yields a tensor g(7"' (-, -), -) which is of type ®? (ml’o)* P (mo*l)* w.r.t.
the complex structure induced by m!® @ m®! and skew-symmetric in the first
two entries. These symmetries exclude contributions of the pseudo-Riemannian
version of class W3 and W in the Gray-Hervella list [68] and hence (M, J, g) is
of type Wi @ W, ie. (M,J,g) is a quasi-Kihler manifold. Moreover, we have
™ € [A*° @ A'°] and we obtain V' — V& € Wy @ W, C T*M ® u,.
This means that V" is the intrinsic connection which equals the characterlstlc
Hermitian connection. Summarizing (3.97) is the decomposition into eigenspaces
of an automorphism of order three if and only if (M = G/H,J, g) is quasi-Kihler
and the normal connection coincides with the intrinsic connection. O
As a consequence the torsion and the curvature of the connection V are given by

T(u,v) = —[u, v]™ and R(u, v) = [u, v]" with u, v € m. (3.100)
reductive, if it holds
B(X.Y]™.Z) = B(X.[Y.Z]") forX,Y,Z € m.

The next result was already shown in [66] Proposition 5.6 for pseudo-Riemannian
metrics. It is a consequence of V" = V for three-symmetric spaces.

Proposition 3.9.15 A three-symmetric space is a nearly pseudo-Kdhler manifold if
and only if it is a naturally reductive homogeneous space.
In the sequel, we consider two homogeneous spaces G/H and G’ /H’ which are T-
dual to each other in the sense of the construction given in Sect. 2.6.1 of Chap. 2 and
we are going to show that this construction is compatible with 3-symmetry.

As a preparation we recall the construction of the related complex structures. Let
us suppose, that g is a compact Lie algebra with a subalgebra § and that (M =
G/H,g,J) is a Riemannian 3-symmetric space with a nearly Kihler structure of
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above discussed type. Moreover, denote by
g =g+ ®ig-, M\ =my @im_andh’ = by S ibh-

the associated decompositions of a fixed T-dual space M’ = G'/H'.
In this situation, there exists a natural almost complex structure J' on M’ which
we shortly recall next, cf. Section 3.4 of [82]. Firstly, one decomposes gl(m) into

gl(m)4 :={A € gl(m) [A(m4) C my, A(m_) C m_},
gl(m)— :={B € gl(m) | B(m4+) Cm_, B(m_) C my}.

The Lie algebra gl(m)4 @ igl(m)— C gl(m)® is isomorphic to gl(m’) via the
extension of the following definition

A(iX) == iA(X), A(Y) := A(Y), (iB)(iX) := —B(X), (iB)(Y) := iB(Y),

where X € m_and Y € m4 and A € gl(m)+ and B € gl(m)_. Further denote by
J € gl(m) the linear map associated to the invariant complex structure J on G/H.

Assume on the one hand, that one even has j € gl(m)L, then (as shown in
Proposition 3.5 of [82]) using the above identification of gl(m)4+ @ igl(m)— and
gl(m’) the map j € gl(m)+ C gl(m’) induces an invariant almost complex structure
J' on G’/H’, such that if g is Hermitian for J then J' is pseudo-Hermitian for g’. If
on the other hand one has j € gl(m)_, then ij € gl(m)_ C gl(w’) is a para-complex
structure on G'/H'.

For the 3-symmetric case we recover the 3-symmetry using Eq. (3.89), i.e. for
j € gl(m)4+ one has

1 3
Olm = Sxjm = — ld +  j € gl(m)+.

2

which induces as before an endomorphism of m’

1 V3,
Oy = —21d+ ,J€ gl(m)4 C gl(m),

i.e. after extending o by the identity on b’ this yields a local 3-symmetry for G’/ H’
and assuming G’ to be simply connected one may integrates ¢ to a 3-symmetry of
G.

By construction it follows, that if (g, m, b, (-, -)) is naturally reductive, the T-dual
(¢,m', b, (-,-)) is naturally reductive, too. Using Proposition 3.9.15 it follows,
that the T-dual of a nearly Kihler 3-symmetric space is nearly pseudo-Kéhler.
Summarising our discussion we have shown.

Theorem 3.9.16 Let (G/H,J,g) be a nearly Kdhler 3-symmetric space (with
compact G) associated to (g, m, 0, (-,-)) with the above described nearly Kdihler
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structure and G'/H' be a T-dual of G/H with data (g',w', Y, {(-,-)) such that
the map j associated to the invariant complex structure J lies in gl(m)y, then
(G'/H', T, g') is a nearly pseudo-Kiihler 3-symmetric space.

A natural question is starting with some homogeneous nearly Kéhler manifold G/H
as above to give a classification of all T-dual spaces. Even though there is no general
answer to this question the cases of interest for the sequel are discussed in [82]. Let
us recall, that by [25] the list of homogenous strict nearly Kihler six-manifolds is

5 = G,/SU(3).
CP’ = $p(2)/(SU(2) x U(1)),
F(1,2) = SU3)/(U(1) x U(1)) and
$3x 8% = (SUQ2) x SU(2) x SU(2))/ A(SU(2)).

For these spaces all possible T-duals (given in [82]) are the following pruefen

§%* = G3/SU(1,2), cf. Chap. 4 or [82],
Z(8>?) = 501 (2,3)/U(1, 1), c.f. Example 3.1 of [82],
Z(§*)7,) = SOT(4,1)/U(2), c.f. Example 3.1 of [82],
Z(CP*%) = SU(2,1)/(UQ) x U(1)), c.f. Example 3.2 of [82],
Z((SL(3,R)/GL*(2,R)) = SLT(3,R)/R* - SO(2), c.f. Example 3.2 of [82],
SL(2,R) x SL(2,R) = (SU(1,1) x SU(1,1) x SU(1,1))/A(SU(1, 1)).

Let us recall, that the twistor spaces already appeared in Sects. 3.3 and 3.4 of the
present chapter. Moreover, one may wonders, if one obtains all nearly pseudo-
Kihler structures as T-duals of some homogeneous space G/H with a compact
Lie group G. The answer can be found in a recent preprint [11], where six-
dimensional homogeneous almost complex structures with semi-simple isotropy
have been classified. In this list an example of a left invariant nearly pseudo-Kéhler
structure on a solvable Lie group is given (cf. Remark 3 of [11]), which does not
appear in the above list of T-dual spaces.

3.10 Lagrangian Submanifolds in Nearly Pseudo-Ki:hler
Manifolds

This section is based on results with Smoczyk and Schifer [111] which are extended
to pseudo-Riemannian signature in Sects. 3.10.3 and 3.10.4.
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3.10.1 Definitions and Geometric Identities

For the rest of this section let us assume that L C M is a Lagrangian submanifold!
of a nearly pseudo-Kihler manifold (M?", J, g) in the sense of the next definition.

Definition 3.10.1 Let (M?",J, g, w) be a nearly pseudo-Kihler manifold. A sub-
manifold ¢: " — M?" is called Lagrangian submanifold, provided that one has
W, = t*w = 0, the dimension n of L is half the dimension 2n of M and that (*g is
non-degenerate.

Since n = dim(L) = é dim(M) we have, that for a Lagrangian submanifold

g(JX,Y)=0, VX, YeTL <& J:TL — T+L is an isomorphism.

We observe that the (symmetric) signature of the metric g restricted to L is (p, g) if
the signature of g is (2p, 2q). From wj;; = 0 we deduce dwjr;, = 0. On the other
hand (3.1) implies

do(X,Y,Z) =3g((Vx))Y,Z).

From this and the symmetries of VJ the following Lemma easily follows (see also
[77)).
Lemma 3.10.2 Suppose L C M is a Lagrangian submanifold in a nearly Kdihler
manifold (M, J, g) with (possibly) indefinite metric. Then

(Vx)Y e T*L, VX, YeTL, (3.101)

(Vx)Y e T*L, VX, YeT L, (3.102)

(Vx)Y €TL, if X€TL,Y € T*L orif X € T*L,Y € TL. (3.103)
Denote by /I the second fundamental form of the Lagrangian immersion L C M*"
into a nearly Kihler manifold M.

Proposition 3.10.3 For a Lagrangian submanifold L C M in a nearly Kdihler
manifold (with possibly indefinite metric) we have the following information.

(i) The second fundamental form is given by (II(X,Y), U) = (VxY,U) for X, Y €
I'(TL) and U € T(T+L).

(ii) The tensor C(X,Y,Z) := (lI(X,Y),JZ) = w(I(X,Y),Z), VX,Y,Z € TL is
totally symmetric.

n order to compute expressions like for example VY one needs to extend the vector fields on L
to vector fields on M. It is common to use the same symbols for the extended vector fields, since
the induced objects do not depend on the choice of extension.
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Proof From Lemma 3.10.2 we compute for X,Y € T'(TL) and U € T'(T+L) the
second fundamental form /7

_ 1 _
(II(X,Y),U) = (VxY,U) = (VxY — 2J(VXJ)Y, U) = (VxY,U).
This yields part (i). Next we prove (ii): First we observe for X, Y, Z € I'(TL)

C(X,Y,Z) = (I[(X,Y),JZ) = (VxY,JZ) = —(Y, Vx(JZ))
= —(Y,JVxZ) = (VxZ,JY) = C(X.Z,Y).
Since the second fundamental form is symmetric, it follows that C is totally
symmetric. O
Next we generalise an identity of [51] to nearly Kéhler manifolds of arbitrary
dimension and signature of the metric. This and the next lemma will be crucial to
prove that Lagrangian submanifolds in strict nearly (pseudo-)Kihler six-manifolds
and in twistor spaces Z*'*2 over quaternionic Kihler manifolds with their canonical

nearly Kéhler structure are minimal. A six-dimensional version of the Lemma was
also proved in [71], see also Remark 3.10.7.

Lemma 3.10.4 The second fundamental form Il of a Lagrangian immersion L C
M?*" into a nearly (pseudo-)Kdihler manifold and the tensor VJ satisfy the following
identity

(X, J(VyNZ),U) = J(VaxnDZ, U) + (J(VyDHII(X,Z2),U)  (3.104)

withX,Y € TLand U € T1L.

Proof The proof of this identity uses VJ = 0, V(VJ) = 0 and Lemma 3.10.2. With
X,Y,Z € T(TL) and U € T'(T+L) we obtain

UK IVD2U) = (Tx(IV)2). ) = 0902, U)

V= (Vo )Z + (VD) 95Z] . U)

= (J[-(VZ))VxY + (VyJ)VxZ], U)

VxY, (V2)JU) + (VxZ, (VyJ)JU)
U(X,Y), (Vz)JU) + (II(X, Z), (VyJ)JU)
=  —(J(VZDIX.Y), U) + (J(Vy))(X,Z),U)
= (JVuxnNZ,U) + (J(Vy)I(X,2), U).

—
=

This is exactly the claim of the Lemma. O
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Given the tensor C(X, Y, T(Z, V)) we define the following traces

a(X,Y) =) 0 Cler, X, T(e;,Y))

i=1
B(X.Y.Z) =Y 0iC(T(e;. X).Y.T(e1. 2)) .
i=1

where {ej,...,e,} is a local (pseudo-)orthonormal frame of 7L and where we set
o; = glei, e).

Lemma 3.10.5 For a Lagrangian immersion in a nearly (pseudo-)Kdhler manifold
andany X,Y,Z,V € TL holds:

C(X,Y,T(Z,V)) + C(X,Z,T(V,Y)) + C(X,V,T(Y,Z)) =0, (3.105)

a(X,Y) —a(Y,X) = (H,JT(X,Y)), (3.106)
B(X.Y.Z) = B(Z,Y,X) = B(Y.X,Z) + «(T(Y,X),Z) , (3.107)
«(T(X,Y),Z) + «(T(Y,Z),X) + «(T(Z,X),Y) = 0. (3.108)

Here T—I) denotes the mean curvature vector of L.
Proof Let us first rewrite the identity in Lemma 3.10.4 in terms of the tensor C and
the torsion 7(X,Y) = —J(VxJ)Y of V. Let X, Y,Z,V € I'(TL) be arbitrary. Then
Lemma 3.10.4 gives
CX,T(Z,Y),V) ={lIX,J(Vy])Z),JV)
= IV DZIV) + (Vv (X. Z). JV)
= (J(V2)(JV), II(X,Y)) — (J(Vy])(JV), (X, Z))
= —(JA(VZ)V. (X, Y)) + (JX(VyJ)V, I[(X, Z))
= ({JT(Z,V),IUX,Y))— (JT(Y,V),lI(X,Z))
=CX, Y, T(Z,V)-CX,Z,T(Y,V)).

This is (3.105). Taking a trace gives
a(X,Y) = Y 0:Clei, X, T(e;,Y))
i=1

(3-1:05) Z 0 C(eiv €, T(Xs Y)) + Z Oi C(eiv Y, T(eis X))

i=1 i=1

= (HITX.Y)) +a(V.X).
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which is (3.106). The first identity in (3.107) is clear since C is fully symmetric. If
we apply (3.105) to (X, Y, Z), then we get

B(X.Y.Z) = 0iC(T(ei.X). Y. T(ei. Z))

i=1

==Y 0. C(T(X.Y), e, T(ei, 2)) = ) 0i C(T(Y, &), X, T(e;, Z))

i=1 i=1

=Y 0;Cei. T(Y.X). T(e;. 2)) + Y _ 0i C(T(e;. ¥). X. T(e;. Z))

i=1 i=1

=a(T(Y,X),2)+ B(Y.X,2).
This is the second identity in (3.107). In view of this we also get

a(TX,Y),Z2) +a(T(Y,2),X) + a(T(Z,X),Y)

=B(Y,X.2)-BX.Y,2)+ B(Z,Y,X)
-B(Y.Z,X)+ B(X,Z,Y) - B(Z.X,Y)

=0

and this is (3.108). ]

3.10.2 Lagrangian Submanifolds in Nearly Kdhler
Six-Manifolds

By a well known theorem of Ejiri [51] Lagrangian submanifolds of S¢ are minimal.
In this section we will see that this is a special case of a much more general
theorem which is a consequence of Lemma 3.10.4 and was shown independently
for Riemannian metrics in Theorem 7 of [71].

Theorem 3.10.6 Let L* be a Lagrangian immersion in a strict nearly (pseudo-
)Kdihler six-manifold M. Then we have

=0, (3.109)
=0.

Tl e

(3.110)

In particular, any Lagrangian immersion in a strict nearly (pseudo-)Kdhler six-
manifold is orientable and minimal.
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Proof Let {e1, e, e3} be an orthonormal basis of T,,L for a fixed point p € L. From
the skew-symmetry of (T(X,Y),Z) we see that there exists a (nonzero) constant a
such that T'(e;, e2) = aoszes. Then we also have T'(ey, e3) = aojeq, T(es, e)) =
aose;. The symmetry of C implies

aler,er) = 01C(er,e1,T(er, e1)) + 02C(ez, e1,T(ez, e1)) + 03C(e3, e1, T(es, e1))

= 0—a0y03C(e2, €1, €3) + ao302C(e3,e1,e2) =0
and

aler,er) = 01C(er, e1, T(e1, e2)) + 02C(ez, €1, T(e2, €2)) + 03C(e3, €1, T(e3, €2))

= a0103C(ey,e1,e3) + 0 — 00301C(€3,€1,€1) =0.

Similarly we prove that «(e;,¢j)) = 0 forall i,j = 1,...,3. This shows « = 0. But

then (3.106) also implies Ti) = 0. The observation, that the frame {e|, e;, e3} defines
an orientation on L, finishes the proof. The fact that a is a constant was not used in
the proof. O

Remark 3.10.7 The constant a in the formula T(e;, e;) = ae; from above is related
to the type constant « of the nearly Kihler manifold M, cf. Sect. 3.1.1 of this chapter,
by the formula

a =o.

A six-dimensional strict nearly Kéhler manifold is of constant type and a nearly
Kéhler manifold of constant type has dimension 6 [67]. The authors of [71] used the
Eq. (3.5) to obtain a six-dimensional version of Lemma 3.10.4 for arbitrary nearly
Kihler six-manifolds.

In the pseudo-Riemannian case we only have the relation a> = |«|. The sign
of the type constant depends on the signature (2p, 2q) of g by sign(p — q), see for
example [82], see also Sect. 3.1.1 of this chapter.

The connection induced on L by V is intrinsic in the following sense.

Proposition 3.10.8 Let L be a Lagrangian submanifold in a strict nearly (pseudo-
)Kdihler six-manifold. Then the connection VL on L induced by the connection V is
completely determined by the restriction of g to L.

Proof We observe that the torsion of VL considered as a three-form is a constant
multiple of the volume form Tt = ¢ Volé. A metric connection D with prescribed

torsion TP is known to be unique. If the torsion is totally skew-symmetric we can
recover it from the formula

1
g(DxY,Z) = g(ViY,Z) + 2T(X, Y,Z).

This finishes the proof, since 7" = cvolé is determined by g. O
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3.10.3 The Splitting Theorem

The following example shows that Theorem 3.10.6 does not extend to eight
dimensions:

Example 3.10.9 Let L' C MgNK be a (minimal) Lagrangian submanifold in a strict
nearly Kdhler manifold MgNK and suppose y C X is a curve on a Riemann surface
3. Then the Lagrangian submanifold L := y xL' C M in the nearly Kéhler manifold
M := ¥ X Mgyk is minimal, if and only if y is a geodesic in X.

In this section we will see that this is basically the only counterexample to
Theorem 3.10.6 that occurs in dimension 8. Nearly Kéhler manifolds (M, J, g)
split locally into a Ké&hler factor and a strict nearly Kihler factor and under the
assumption, that M is complete and simply connected this splitting is global [98], cf.
Theorem 3.2.1 of this chapter for the pseudo-Riemannian case. The natural question
answered in the following theorem is in which way Lagrangian submanifolds lie in
this decomposition.

These facts motivate the next Theorem.

Theorem 3.10.10 Let M be a nearly Kdihler manifold and L be a Lagrangian
submanifold. Then M and L decompose locally into products M = Mg X Msng,
L = Lg X Lgyk, where Mg is Kdhler, Mgnk is strict nearly Kdhler and Ly C Mk,
Lsyk C Mgyk are both Lagrangian. The dimension of Lk is given by

1
dimLg = 5 dimker(r)

Moreover, if the splitting of M is global and L is simply connected, then L
decomposes globally as well.
Proof

i) We define
K, ={XeT,M:rX =0}, KpL ={YeT,M:(X,Y)=0,VXeK,}.
Because of V¥ = 0, ?g = 0 this defines two orthogonal smooth distributions

Dk = UKp, Dsnk = LJKI,l

PEM PEM

on M.

ii) The splitting theorem of de Rham can be applied, see Sect. 3.2.1 of this chapter,
to the distributions Zx and Zsyk and the nearly Kéhler manifold (M, J, g) splits
(locally) into a Riemannian product

M. J,g) = (Mk,Jk.gk) X (Msnk, Jsnk, &sNK) »
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iii)

where TMx = %k, TMsygk = Dsnk. Here (Mg, Jk, gx) is Kéhler and
(MSNK7 JSNK7 gSNK) is strict nearly Kihler.

Now let L C M = Mg xMgnk be Lagrangian. We prove that r leaves tangent and
normal spaces of L invariant. To see this, we fix an adapted local orthonormal
frame field {ey, ..., ez} of M such thatey,...,e, are tangent to L and e, =
Jei, ..., ey, = Je, are normal to L. Since for any three vectors X, Y, Z we have

(VxI)Z. (VyI)IZ) = (J(Vx)Z.J(Vyd)Z) = (V) Z. (Vy])Z)

we obtain

2n

(rX.Y) = > (Ve (Vy)e;)
i=1

= > ((VxDei, (Ve + Y ((Vxd)ei, (Vrd)Je)
i=1

i=1

=2 ((Vx))ei. (VyJ)er).
i=1

Now,if X € TL, Y € T*L, then by Lemma 3.10.2 we have
(VxJ)e; € T*L, (VyJ)e; € TL,
so that
((VxDei, (VyD)e)) =0, Vi=1,...,n.

Further it follows

(rX.Y) =2 (Vxd)ei, (VyJ)er) = 0.

i=1

Since this works for any X € TL,Y € TtL and since r is selfadjoint we
conclude

HTL) C TL, r(T1L) Cc T*L.

At a given point p € L we may now choose an orthonormal basis {fi, ..., f,} of
T, L that consists of eigenvectors of rj; considered as an endomorphism of 7L.
Since [r,J] = 0 and L is Lagrangian, the set {fi,...,f.. Jfi,...,Jf»} then also
determines an orthonormal eigenbasis of » € End(TM). In particular, since J
leaves the eigenspaces invariant, K, = ker(r(p)) and T,,L intersect in a subspace



120 3 Nearly Pseudo-Kihler and Nearly Para-Kéhler Manifolds

K[f of dimension ;dim(Kp) = édim(MK). For the same reason K[f- N T,L
gives an ; dim(Mgyk )-dimensional subspace. The corresponding distributions,
denoted by Z% and Z% are orthogonal and both integrable, since in view of

Dt =Pk NTL, Dig = Psng NTL

they are given by intersections of integrable distributions. We may now apply
again the splitting theorem of de Rham to the Lagrangian submanifold. This
completes the proof.

O

Remark 3.10.11 A more detailed analysis of the proof of the last theorem shows,
that the result can be shown in the pseudo-Riemannian setting:

Let (M, J, g) be a nearly pseudo-Kéhler manifold. Suppose, that the distribution
IC has constant dimension and admits an orthogonal complement, and the kernel of
7, admits an orthogonal complement in 7L, then M and L decompose locally into
products M = Mg x Mgyg, L = Lg X Lgyg, where Mg is Kéhler, Mgy is strict
nearly pseudo-Kihler and Lxg C Mk, Lsyg C Mgnx are both Lagrangian. Moreover,
if the splitting of M is global and L is simply connected, then L decomposes globally
as well.

Corollary 3.10.12 If L C M is Lagrangian and p € L a fixed point, then to
each eigenvalue A of the operator r at p there exists a basis e, ..., exf1,....f
of eigenvectors of Eig(A) such that e1,...,ex € T,L, fi,....fx € T‘j‘L Here, 2k
denotes the multiplicity of A.

Proposition 3.10.13 Let (M, J, g) be a nearly Kihler manifold and L C M be a
Lagrangian submanifold. Then TL and T+L are invariant by the Ricci tensor. In
particular the spectrum of Ric is compatible with TL & TL.

Proof Let us recall (cf. [98]) that the Ricci-tensor satisfies (Ric X, Y) = 0if X and Y
are vector fields in eigenbundles Eig(Ax) and Eig(Ay) of the tensor r with different
eigenvalue Ay # Ay. If X, Y belong to the same eigenvalue A then (RicX,Y) is
given by the following formula

I

A
(RicX,Y) = Z (rFietix yy, (3.111)

where 4 is the number of different eigenvalues of r and r¥¢™) is defined by
(rFFEMX.Y) = — trgig) [(Vad) © (VyJ)).
Like in the proof of Theorem 3.10.10 we obtain using Corollary 3.10.12

Ee) Ly c T, FER(TiL) ¢ THL.
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Equation (3.111) implies that
Ric(TL) C TL, Ric(TtL) c T*L.

This further implies that the spectrum of Ric is compatible with the decomposition
TL @ T L and finishes the proof. O

Remark 3.10.14 The last proposition gives in the minimal case (only) a partial
information on the Ricci curvature of L C M. Recall the Gauss equation

(RE(V, W)X, Y) = (R(V, W)X, Y) + (II(V,X), I(W,Y))) — (II(V,Y), (W, X))
which implies using minimality

dimL dimL dimL
D (RMer. Wyei Y) = Y (R(ei. W)ei, Y) — Y (Il(er, Y). ll (e, W)).

i=1 i=1 i=1

It is straight-forward to show, that the second term on the right hand-side vanishes
if and only if II is zero, i.e. L is a totally geodesic manifold. In that case
Proposition 3.10.13 yields the Ricci tensor of L.

Let us recall the situation in dimension 8 and 10 [67, 98].

Proposition 3.10.15

(i) Let M® be a simply connected complete nearly Kiihler manifold of dimension 8.
Then M?® is a Riemannian product M® = % x MgNK of a Riemannian surface X
and a six-dimensional strict nearly Kdhler manifold MgNK.

(ii) Let M' be a simply connected complete nearly Kéhler manifold of dimension
10. Then M'° is either the product M?( X MgNK of a Kdhler surface M?( and
a six-dimensional strict nearly Kdhler manifold MgNK or M is a twistor space
over a positive, eight dimensional quaternionic Kahler manifold.

Note, that any complete, simply connected eight dimensional positive quaternionic
Kihler manifold equals one of the following three spaces: HIP?, Gr,(C?), G,/SO(4).

In the next theorem, part (i) and (ii) collect the information on Lagrangian
submanifolds in nearly Kédhler manifolds of dimension 8 and 10.

Theorem 3.10.16

(i) Let L be a Lagrangian submanifold in a simply connected nearly Kdihler
manifold M®. Then M® = % x MSNK, where X is a Riemann surface, MSNK
is strict nearly Kéhler and L = y x L' is a product of a (real) curve y C X
and a minimal Lagrangian submanifold L' C MSNK.

(ii) Let L be a Lagrangian submanifold in a simply connected complete nearly
Kdhler manifold M'°, then either
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(a) M'0 = M?( X MgNK and the manifold L = S x L' is a product
of a Lagrangian (real) surface S C M?( and a minimal Lagrangian
submanifold L' C My or

(b) the manifold L is a Lagrangian submanifold in a twistor space over a
positive, eight dimensional quaternionic Kahler manifold.

(iii) Let My, M, be two nearly Kihler manifolds. Denote the operator r on M; by r;,
i = 1,2. If Spec(r1) N Spec(r2) = @ and L C My x M, is Lagrangian, then L
splits (locally) into L = Ly X L, where L; C M;, i = 1,2 are Lagrangian. If L
is simply connected, then the decomposition is global.

Proof This is a combination of the results of Theorem 3.10.10, Corollary 3.10.12
and Proposition 3.10.15. O

Remark 3.10.17 As in Remark 3.10.11 we may note, that using our results one can
generalise Theorem 3.10.16 to the case of indefinite metrics, where we omit part
(iii):

Theorem 3.10.18

(i) Let L be a Lagrangian submanifold in a simply connected nice nearly pseudo-
Kdhler manifold M8. Then M® = T x MgNK, where X is a Riemann surface,12
MgNK is strict nearly Kéihler and L = y xL' is a product of a (real) curve y C X
and a minimal Lagrangian submanifold L' C MSNK.

(ii) Let L be a Lagrangian submanifold in a simply connected complete nice
decomposable nearly pseudo-Kdihler manifold M'°, such that the kernel'® of
17 admits an orthogonal complement, then either

(a) M0 = M?(ngNK and the manifold L = SxL' is a product of a Lagrangian
(real) surface S C M?( and a minimal Lagrangian submanifold L' C MSNK
or

(b) the manifold L is a Lagrangian submanifold in a twistor space over
a negative, eight dimensional quaternionic Kdhler manifold or a para-
quaternionic Kdhler manifold.

Theorems 3.10.16 (3.10.16) and 3.10.18 (3.10.18), parts (b) motivate the discussion
of Lagrangian submanifolds in twistor spaces in the subsequent section. Indeed, the
results derived in the next section imply that Lagrangian submanifolds in twistor
spaces are, regardless their dimension, always minimal.

12Remark, that the restriction of g to X is always definite.
131 et us recall, that in the case (b) r has trivial kernel.
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3.10.4 Lagrangian Submanifolds in Twistor Spaces

An important class of examples for nearly pseudo-Kihler manifolds is given
by twistor spaces Z*'*2 over quaternionic Kihler or para-quaternionic Kihler
manifolds N**, as we have seen in Sects. 3.3 and 3.4 of this chapter.

For the readers convenience, let us shortly recall that the twistor space is
the bundle of almost complex structures in the quaternionic bundle Q over the
(para-)quaternionic Kéhler manifold N. It can be endowed with a Kéhler structure
(Z,J%,g%), such that the projection # : Z — N is a Riemannian submersion
with totally geodesic fibres S?. Denote by 7 and V the horizontal and the vertical
distributions of the submersion 7. Then the direct sum decomposition

TZ=Ha®V (3.112)

is orthogonal and compatible with the complex structure JZ. Let us consider now a
second almost Hermitian structure (J/, g) on Z which is defined by

g2 (X, Y), forX,Y e H,
g:= ;gZ(V, W), forV,W eV,
gV, X)=0,forVeV,XeH

and

J? ,
Jom onH
—JZon V.

Note, that in view of (3.112), the decomposition 7Z = H @ V is also compatible
w.r.t. J and orthogonal w.r.t. g.

The manifold (Z, J, g) is a strict nearly pseudo-Kihler manifold and the distri-
butions V and H are parallel w.r.t. the connection V. The projection 7 is also a
Riemannian submersion with totally geodesic fibres for the metric g.

Let us summarise some information which will be useful later in this section.

Lemma 3.10.19 [n this situation we have the following information:

(a) The torsion T = —JVJ of the characteristic connection satisfies (see
Lemma 3.4.3)

TX,Y)eV, forX,YeH, 3.113)

TX,V)e™H, forXeH, Ve, 3.114)

T(U,V) =0, forU,VeV. (3.115)
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(b) The association (see Lemma 3.4.3)
Ho3X—T(Y,X)eV (3.116)
is surjective for 0 # Y € H and the map
Vi H3X— T(V,X) (3.117)

with 0 # V € V is invertible and squares to ek*Idy, for some k € R, e € {£1},
cf. Lemma 3.4.9.

(c) The operator r has eigenvalues A = 4k*, Ay = ”EISAH. Ifn > 1, then the
eigenbundle of Ay is H and V is the eigenbundle of Ay, cf. Corollary 3.4.17.

In the rest of this section we consider a nearly pseudo-Kihler manifold (M =
Z,J, g) of twistor type and study Lagrangian submanifolds L C M.

Remark 3.10.20 As will be shown in the next theorem, for n > 1 we have
a"(TL)y=HNTL, =nY(TL)=VNTL,

where 7" (TL), 7" (T+L) and 7V (TL), 7Y (T+L) are the orthogonal projections of
TLand TLL wrt. H @ V.

Lemma 3.10.21 Let L***! € M***2 with n > 1 be a Lagrangian submanifold in a
twistor space as described above. Then the second fundamental form II satisfies

(X,Y) e n™(T*L), forX,Y € n™(TL), (3.118)
II(X,Y) € nV(T*L), forX,Y € n¥(TL), (3.119)
II(X,Y) =0, forXen"(TL),Y € nY(TL). (3.120)

Proof The second fundamental form is given by C(X,Y,Z) = (VxY,JZ) for
X,Y,Z € I'(TL). The lemma follows since the decomposition (3.112) is @-parallel,
orthogonal and J-invariant and as the tensor C is completely symmetric. O
With these preparations we prove the next result.

Theorem 3.10.22 Let L***' C M*'*2 be a Lagrangian submanifold in a nearly
pseudo-Kdihler manifold of the above type. Then L is minimal. If n > 1, then the
tangent space of L splits into a one-dimensional vertical part and a 2n-dimensional
horizontal part. Moreover, the second fundamental form Il of the vertical normal
direction vanishes completely if n > 1.

Proof

i) By Theorem 3.10.6 it suffices to consider the case n > 1.

ii) Let L C M be a Lagrangian submanifold. Since n > 1, the two eigenvalues
Ay, Ay of r are distinct and the eigenspace V of 1y is two-dimensional. By
Corollary 3.10.12 this induces a one-dimensional vertical tangential distribution
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iii)

iv)

V)

D on L in the Riemannian case. In the pseudo-Riemannian case this follows,
since the restriction of the metric to V is definite. In particular, D is not isotropic.
Then, by the Lagrangian condition, we get D := 7Y (TL).

Denote by D+ the orthogonal complement of D in TL. We claim, that the trace
of the second fundamental form II of L restricted to D is zero.

Proof First we observe that by Lemma 3.10.21 we can restrict the second
fundamental form /I to D+ = 7™ (TL). We fix U € D of unit length. Using
Lemmas 3.10.2 and 3.10.19 we observe, that ®(X) := ,iJ(VUJ)X defines an
(almost) (para-)complex structure on DL which is compatible with the metric.
With X € D+ and ®? = eld we compute

(X, X) = ell(X, ®(P(X))) = gllclz(x, J(VulJ) ®(X))
I [(Vax.oH®X) + (Vo) I(X, D(X))]

=&

= ¢ J(VuJ) (X, (X)) = eDII(X, D(X)).

e = RN

After polarising we obtain
H(®X, dY) = ell(X,Y), VX, YeDt. (3.121)
In particular, taking a trace over (3.121) we get
P I =0,

where we keep in mind, that it holds g(®-, ®-) = —eg(-,-).

We have

a(X,Y)=0, VX, YeD.
Proof By (ii) we may choose a pseudo-orthonormal frame {ey, ..., ez+1} of
TL such thateq, . .., es, € Dt and exm+1 € D. Since

2n+1
a(X.Y) =Y 0iClei, X, T(e:,Y))

i=1

and the tensor C is fully symmetric we see that by Lemma 3.10.21 all terms
on the RHS vanish since either ¢; € D = nY(TL), X € D+ = n™(TL) or
e, X € DY and T(e;, Y) € D (cf. Lemma 3.10.19).

By Lemma 3.10.21 and (iii) the mean curvature vector Ti) satisfies JTi) eD.
From (3.106) and (iv) we get

(JH,T(X,Y)) =0, VX,YeD*. (3.122)
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Sincg J maps V to itself, we also have JTi) € D C V. Now we choose X € D+
and Y € H with

T(X,Y)=JH

This is possible since the map H 3 ¥ > T(X,Y) € Vis s surjective by (3.116).
Let Y = Y + Y+ be the orthogonal decomposition of Y into the tangent and
normal parts of Y. Note that Y, Y1 are both horizontal. We claim

T(X, YY) = 0.

This follows, since T(X,-) maps tangent to tangent and normal to normal
vectors and one has

T(X,V) = T(X,Y) + T(X, YY) = JH e TL.
Therefore there exist two tangent vectors X, Y € DL with
—
T(X,Y) =JH .

This implies

HI> = JH.T(X, 1)) °Z?

0,

which proves that the mean curvature vector vanishes, as the metric restricted
to V is definite (even in the pseudo-Riemannian case). From this, the fact that
D is one-dimensional and from Lemma 3.10.21 it follows that II(V,-) = 0 for
any V € D.

O

Corollary 3.10.23 Let L C M be a Lagrangian submanifold in a twistor space
M*"*2 a5 above with n > 1. Then the integral manifolds c of the distribution D are
geodesics (hence locally great circles) in the totally geodesic fibres S?.

Proof The last theorem implies that the geodesic curvature vanishes and that in
consequence an integral manifold ¢ of D is totally geodesic in the fibres. O

Remark 3.10.24

@

(i)

It is well-known, that the twistor space of HP" is CP*'*!. Therefore the
above result applies to (CP?"*!, J, g) endowed with its canonical nearly Kihler
structure.

Using Remark 3.10.14 (for Riemannian metrics) and Lemma 3.10.19 (c) we
observe that totally geodesic Lagrangian submanifolds in twistor spaces have
two different Ricci eigenvalues with multiplicities 2n and 1.



3.10 Lagrangian Submanifolds in Nearly Pseudo-Kéhler Manifolds 127

3.10.5 Deformations of Lagrangian Submanifolds in Nearly
Kdihler Manifolds

Our aim in this section is to study the space of deformations of a given Lagrangian
(and hence minimal Lagrangian) submanifold L in a strict six-dimensional nearly
(pseudo-)Kihler manifold M®. In an article by Moroianu et al. [96] the deformation
space of nearly Kédhler structures on six-dimensional nearly Kahler manifolds has
been related to the space of coclosed eigenforms of the Hodge-Laplacian. As we
will show below, a similar statement holds for the deformation of Lagrangian
submanifolds in strict nearly (pseudo-)Kihler six-manifolds. To this end we assume
that

F:Lx(—€,¢) > M

is a smooth variation of Lagrangian immersions F, := F(-,t) : L — M, t € (—¢€,¢€)
into a nearly (pseudo-)Kéhler manifold M. Let

V.= F
dr '

denote the variation vector field. Since tangential deformations correspond to
diffeomorphisms acting on L, we may assume w.l.0.g. that V € T'(T*L) is a normal
vector field. The Cartan formula and F}'w = 0 for all  then imply that

0 =d(iyw) + ivdw
holds everywhere on L. By the nearly Kéhler condition this is equivalent to
d(Viw) +3ViVeo =0 (3.123)
on L. Let us define the variation 1-form 6 € Q'(L) by
0:=V.io.

This Theorem has recently been used in [97]. In this paper the authors relate
generalised Killing spinors on spheres to Lagrangian graphs in the nearly Kahler
manifold §* x $3.

Theorem 3.10.25 Let F; : L — M be a variation of Lagrangian immersions in a
six-dimensional nearly (pseudo-)Kdhler manifold M. Then the variation 1-form 0
is a coclosed eigenform of the Hodge-Laplacian, where the eigenvalue )\ satisfies
A = 9a with the type constant o of M. If the metric is positive definite this space is
finite dimensional.
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In the case of Riemannian metrics a similar result was also shown in Theorem 7 of
[71]. For a more recent study of deformations of Lagrangian submanifolds we refer
to [91].

Proof ForX,Y e TLand V € TLL we compute

(V.V0)(X, Y) = Vo(V, X, )

= ((Vx))Y, V)
(J(Vx)Y, JV)
_JV,T(X, Y)).

Since T induces an orientation on the Lagrangian submanifold by the three-form
1X,Y,2) =(TX.,Y),2Z),

we obtain a naturally defined *-operator * : Q”(L) — *77(L) which for 1-forms
is given by

4p= O oT
Vel

Here, « is the type constant of M (cf. Remark 3.10.7) and 0 € {£1} depends only
on the signature. This implies that equation (3.123) can be rewritten in the form

df =30 +/|a| %6 . (3.124)
Consequently, if the signature of the metric g restricted to L is (p, g), we obtain
sign(p — q) 80 = xd+6 =0
and
sign(p—¢q)édf8 = 3o \/|a| xd*xx0
=10 30 \/|a| xd6

3.124
CLY 9| %0

= 91410
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In total as the sign of « is also sign(p — g) we get
Attodged = (8d + d8)6 = 96 .

This proves the theorem. Since one has Ric = 5ag this is equivalent to

3
AHodget = 10scal€,

where scal is the scalar curvature of M. O
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