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Abstract. Big Data integration frameworks provide unified view of the data
available from heterogeneous data sources. These data sources are continuously
evolving, forcing systems that integrate them to adapt their global schema after
each change. This gets more challenging when aiming to maintain the global
schema always reflecting data sources content. To cope with such complexity, in
this paper we describe evolution scenarios and manage modular ontology
evolution within Big Data integration framework in an a priori way according to
changes performed against the data sources.
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1 Introduction

According to [1], “Big Data can be defined as data that exceed the processing capacity
of conventional database systems. This implies that the data count is too large, and/or
data values change too fast, and/or it does not follow the rules of conventional database
management systems”. Big Data are characterized along three important dimensions,
namely volume, variety and velocity [2, 3] known as 3Vs.

Despite this complexity, users usually look for a unified view of the data available
from heterogeneous data sources. Consequently, several Big Data integration systems
were proposed. Nevertheless, they do not cope with the evolutionary aspect of Big Data
sources. Indeed, maintaining an integrated view over such evolving and heterogeneous
set of data sources is a challenging problem which current systems fail to address.

Regardless of the great amount of work done in ontology-based Big Data inte-
gration, an important problem that most of the systems are likely to ignore is that
ontologies are living artifacts and are subject to change and evolution as well.
Ontologies are frequently changed to reflect the new knowledge that is acquired. The
problem that occurs is the following: when data sources change, the mappings may
become invalid and should be updated. Ontology evolution is defined as the “timely
adaptation of an ontology to the arisen changes and the consistent management of these
changes” [4].

In this paper, we address the problem of ontology evolution under Big Data inte-
gration. We argue that data sources changes should be considered when designing
ontology-based Big Data integration systems. A distinctive solution would be to update
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the mappings and then regenerate the dependent ontologies each time a data source
evolves. We propose an a priori method to correct incoherencies caused by a change and
rely on ontology learning and ontology merging tools to manage the evolution process.

This paper is organized as follows. Section 2 exposes our research context. In the
third section, we describe scenarios that drive to evolve the ontology in a Big Data
integration context. Our approach to manage modular ontology evolution in Big Data
integration is detailed in Sect. 4. We start by describing the evolution process, then we
give examples of coherence constraints that we respect to evolve the ontology. Inspired
by previous research work, we adapt existing notions to our needs and provide an
illustrative example. Section 5 examines related work. A discussion comparing our
research to previous ones encloses this section. Finally Sect. 6 draws conclusions and
suggests further research.

2 Research Context

This work joins within the scope of a Big Data integration approach [5] such that the
departure corpus is formed by Big Data, whereas the target schema is an OWL'
(Ontology Web Language) ontology. We are interested particularly to OWL-DL since
it supports the maximum expressiveness while retaining computational completeness
and decidability.

The original approach aims to build an ontology for Big Data integration where Big
Data are seen as data from many sources having different formats, each source contains
a very big amount of data and grows and evolves independently from the other ones
[5]. This approach is based on three main steps (Fig. 1):

o Wrapping data sources to MongoDB* databases: the content of each data source is
converted to a MongoDB database,

e Mapping MongoDB databases to ontology modules: each MongoDB database is
mapped to an OWL ontology module by means of transformation rules [6, 7]. The
first phase is the creation of the ontology skeleton. It consists of defining ontology
classes and detecting subsumption relationships between them. The second phase is
to learn concepts properties (dataTypeProperties and objectProperties). Individuals
are identified in the third phase. In the fourth phase, class axioms (equivalence and
disjoining), property axioms (inverseOf) and constraints (cardinality constraints,
value constraints) are deduced. Finally, in the fifth phase, the ontology is enriched
with classes’ definition operators (union, intersection, complement).

e Merging ontology modules to get a global one: the modules obtained in the pre-
vious step are merged together in order to get a global ontology [8]. Our algorithm
is based on three main actions. The first action is to detect overlaps between the two
modules to be merged. The second action is to compute similarities between con-
cepts belonging to the two ontology modules and the third action is to update the
reference ontology module with concepts, attributes, as well as relationships from

! https://www.w3.org/TR/owl-features/.
2 http://www.mongodb.org/.
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Fig. 1. Ontology-based Big Data integration.

the input ontology module. To measure the similarity between two concepts, one
from the input ontology module and the other from the reference ontology module,
we combine syntactic matching and semantic matching. The syntactic matching
compares strings characterizing concept names as well as concept attributes whereas
the semantic matching is based on relationships similarity. To compute the syntactic
matching, we apply a distance function over a pair of strings. We adopted the
Levenshtein distance [9] which returns the number of character changes needed to
transform one string into another (LEV). The smaller this dissimilarity is (i.e. the
less character changes needed), the more similar are the strings.

The methodology followed to build the global ontology follows a modular conceptu-
alization since the beginning of the ontology development cycle where an ontology
module represents a point of view covered by a data source containing data about the
modeled domain.

Considering that Big Data are dynamic by nature, they are exposed to different
updates. These updates must be sent up to the global ontology and evolution issues have
to be dealt with. Indeed, new sources of data may appear and data about a domain may
change according to different manners. On the one hand, new data may appear, and this
leads to establish new concepts. On the other hand, some data may become obsolete, and
so, some concepts must be removed from the global ontology. Besides, modeling a
domain may necessitate concepts redefinition. New concepts that are more specific than
the pre-existent ones can be defined if the domain needs to be more precise, or more
abstract if we want to simplify the domain and facilitate its comprehension.
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3 Evolution Triggers

Considering the increasing number of Big Data integration frameworks emerging
nowadays with different features and objectives, evolutionary issues are critical for the
contributors involved in the integration process. Conventional data modeling approa-
ches occasionally consider the data model evolution issue. To fill this gap, our Big Data
integration framework (c.f. Fig. 1) is based on three main fields of ontology engi-
neering to manage our global data model, namely ontology learning, ontology merging
and ontology evolution (Fig. 2).

Big Data integration framework
Data
soulrce Ontology I Ontology
learning merging
Data Global
source ontology
2
Data Ontology evolution
source
n

Fig. 2. Big Data integration evolution.

Accordingly, the derived data model represents a shared data model for the various
data sources it integrates and should be always up to date in compliance with the
changes met by the data sources. However, to deal with the evolution of data models
over time, three scenarios may trigger the evolution process as depicted in Fig. 3.

We consider that ontology modules corresponding to each data source are stored
separately in addition to the global ontology for subsequent use.

— Scenario 1 (Introducing a new data source): A new data source may be added to the
framework. It is required to acquire its corresponding ontology module by means of
ontology learning according to the process defined in Fig. 1 (wrapping the data
source to a MongoDB database then mapping the MongoDB database to an
ontology module) [6, 7]. The learned knowledge of the new data source is repre-
sented in a separate ontology module, i.e. Module (New), and then the similarities
between Module (New) and the global ontology are calculated [8]. At the end,
Module (New) is integrated into the global ontology according to the ontology
merging results.
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Fig. 3. Evolutionary scenarios for Big Data integration.

— Scenario 2 (Deleting an existing data source): A current data source may leave the
framework in case the data it contains become obsolete or due to reasons coming
from the outside of the integration framework. Consequently, the corresponding
ontology module (Module (i)) is deleted from the modules database and the other
ontology modules have to be re-merged to constitute the new version of the global
ontology.

— Scenario 3 (Updating an existing data source): When an existing data source
undergoes a modification of one of its entities (addition, deletion, renaming or
modification), the corresponding ontology module must be updated accordingly and
the global ontology as a consequence. We consider two levels of evolution:
inter-modular evolution and intra-modular evolution. The inter-modular level
concerns the global ontology update and is managed by the merging process. After
evolving the corresponding ontology module, the ontology merging process has to
be re-iterated to produce the new global ontology. The intra-modular evolution
concerns the update of the concerned module itself. Detailed characterization of the
intra-modular evolution is described in the next section.

4 Intra-modular Evolution Approach

4.1 Evolution Process

To carry out the ontology module evolution task, we propose an a priori process to
address changes composed of three main steps as depicted in Fig. 4. For each change
that occurs in the database, the corresponding mapping must be updated, since the
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Fig. 4. Ontology evolution process.

ontology module has to always reflect the structure of the database and subsequently
the data source.

Step 1: Change Formalization. This step consists of representing the change
expressed over the database entities according to their correspondents into the ontology
module. We define four types of changes similarly to the changes undergone in the
database level, namely insertion, deletion, renaming and updating. Thus, the list of
changes is given in Table 1. The list of changes is performed in compliance with the
transformation rules presented in [6, 7].

Table 1. Changes performed against the ontology module analogously to those performed
against the database.

Database level

Ontology module level

Insertion

Deletion

Renaming

Updating

-Collection

-Document into collection

-Basic field into document

-DBList into document

-Embedded document into document
-Reference with DBRef into document
-Parent reference into document
-Collection

-Document from collection

-Basic field from document

-Insert concept

-Insert individual

-Insert dataTypeProperty
-Insert cardinality constraint
-Insert objectProperty
-Insert objectProperty
-Insert hierarchy relationship
-Delete class

-Delete individual

-Delete dataTypeProperty

-DBList from document

-Embedded document from document
-Reference with DBRef from document
-Parent reference from document
-Collection

-Basic field into document

-Embedded document into document
-Reference with DBRef into document
-Document

-DBList

-Delete cardinality constraint OR
-Update cardinality constraint

-Delete objectProperty
-Delete objectProperty

- Update hierarchy

-Rename class

-Rename dataTypeProperty
-Rename objectProperty
-Rename objectProperty
-Update individual

-Update cardinality constraint

-Parent reference into document

-Update hierarchy
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Step 2: Coherence Management. This step consists of studying the impact of the
selected change on the ontology module coherence. To do this, we reused the notion of
“change kit” of [10, 11] to maintain a priori coherence constraints defined over the
ontology module. Coherence constraints are discussed in Sect. 4.2 and the specification
of change kit is given in Sect. 4.3.

Step 3: Change Application. In this step, changes are implemented over the ontology
module. Hence, we obtain the evolved ontology module which already respects
coherence constraints.

4.2 Coherence Constraints

We classify the coherence constraints that must be respected into three main categories
as in [4]. Structural constraints represent constraints imposed by the ontology repre-
sentation language which is OWL in our context. Logical constraints refer to checking
the semantic correctness of the ontological entities. User-defined constraints describe
specific user requirements. We give examples of these constraints.

OWL Language Constraints

— Isolated classes are not allowed

— A class which is a sub-class of another class must be defined in the ontology

— Each objectProperty relationship must link two classes that are defined in the
ontology

— Each individual must be linked to a class that is defined in the ontology

Logical Constraints

— A class can not be disjoint with its super-class
— Two disjoint classes can not have common sub-classes

User’s Requirements

— Redundant information is not allowed

— Redundant links between two directly linked classes are not allowed

— The resulting ontology must respect the conventional requirements of the trans-
formation rules described in [6].

4.3 Change Kit

A kit of change associates to each change the definition of its pre-conditions, its role,
the mandatory additional changes, the optional additional changes and post-conditions.
The specification of a kit of change is as follows:

e Pre-conditions: a set of predications that must be checked and controlled before
applying the change
e Role: Description of the change
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e Required additional changes: a set of changes that are necessarily attached to the
current change to avoid coherence constraints violation
Optional additional changes: a set of changes that may extend the current change
Post-conditions: a set of predications that must be verified after the application of
the change

4.4 TIlustrative Example

As an example, we suppose that a modification in data source leads to insert an
imbedded document in the corresponding MongoDB database. We describe the effect
of inserting an embedded document (document B) into an existing document (docu-
ment A) in the MongoDB database. According to the correspondences described in
Table 1, this insertion leads to update the corresponding ontology module by inserting
an objectProperty. The kit of change associated to the change “insert objectProperty” is
as follows (Table 2).

The global evolution process monitors the following steps. The corresponding
ontology module is updated according to the intra-modular ontology evolution process
described in Fig. 4 and the change kit specified in Table 2 while respecting coherence
constraints. Then the global ontology is updated according to the merging process
performed against the updated module and the other previously existing modules that
are related to the other data sources. The evolved global ontology is consequently
structurally and logically consistent according to the researches developed in [6—8].

Table 2. Example of a change kit

Kit of change “insert objectProperty”

Role The kit of change “insert objectProperty” serves to link two classes A
and B with an objectProperty relationship

Pre-conditions -The class corresponding to the document A exists already in the
ontology module

-The class corresponding to document B doesn’t exist in the ontology

module
-The objectProperty relationship doesn’t exist in the ontology module
Required additional -Insert class corresponding to document B
changes
Optional additional -
changes
Post-conditions -The class corresponding to the document A belongs to the ontology
module
-The class corresponding to the document B belongs to the ontology
module

-The name of the objectProperty is the concatenation of the word
“has” and the name of the class corresponding to document B

-The domain of the inserted objectProperty is the class corresponding
to document A

-The range of the inserted objectProperty is the class corresponding to
document B
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5 Related Work

To situate our research in the area of ontology evolution, we focus on a priori evolution
approaches and concentrate on recent solutions addressing ontology evolution in Big
Data integration frameworks.

In [10], a preventive approach that manages the inconsistencies generated by each
change is described and a set of rules that must be maintained during the evolution of
an ontology is defined. Authors define kits of changes to a priori manage the incon-
sistencies generated by each change. They rely on the UML specifications to take into
account the maximum of evolution cases, independently of the ontology representation
language and consider all conceptual relationships supported by the UML language,
such as n-ary relationships, but do not define explicitly the type of coherence which is
considered.

Authors in [11] present an evolution process composed of three main steps. The
first step consists of presenting all the possible changes for the naRyQ ontological and
terminological resource (OTR) evolution to the ontology engineer, from which he
chooses the ones to be applied. The second step consists of preserving the coherence
constraints (CC-coherence) of naRyQ during its evolution. To do this, authors adapted
the notion of kit of changes of [10] to their needs, thus an additional set of changes is
added automatically to maintain a priori the CC-coherence of the OTR before the
application of the requested changes. In the third and last step, requested and additional
changes are applied to the OTR.

Authors in [12] focused on addressing the need to reflect the evolution of
ontologies used as global schemata onto the underlying data integration systems. They
consider that when ontologies evolve, the changes should necessarily be rendered and
used by the pre-existing data integration systems. They propose to answer query in data
integration systems under evolving ontologies without mappings redefinition. This is
ensured by rewriting queries among ontology versions and then sending them to the
underlying data integration systems to be answered. Initially, the changes among
ontology versions are automatically detected and described using a high level language
of changes. These changes are then interpreted as sound global-as-view (GAV) map-
pings, used to produce equivalent rewritings among ontology versions.

In [13], authors present an approach that enables to integrate situational data
coming from external providers, and to facilitate the co-evolution of data and analytical
processes preserving backward compatibility. They introduce the Big Data Integration
ontology that allows the isolation of analytical queries and applications from the
technological details of the sources and accommodates syntactic evolution from the
sources. Its goal is to model and integrate, in a machine-readable format,
semi-structured data while preserving data independence regardless of the source
formats or schema. The introduced ontology incorporates two layers to provide to the
analysts an integrated and format-agnostic view of the sources. The global level pro-
vides a unified schema to query and relevant metadata about the attributes, while the
source level deals with the physical details of each data source. This structure is
exploited to handle the evolution of source schema via semi-automated transformations
on the ontology upon service releases. Aided by semi-automatic techniques, a data
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steward is responsible for, first incorporating to the source level the triple-based rep-
resentation of the schema of newly incoming events (Ei) produced by APIs, and second
make such data available for data analysts to query (Qi) by creating mappings from the
source level to the global level. To semi-automatically adapt the BDI ontology to such
evolution, authors present an algorithm to aid the data steward to enrich the ontology
upon new releases to shield analytical processes, implemented on top of the global
level, so that they do not crash upon new API version releases. This aims to adapt the
source level to schema evolution in the events, so that the global level is not affected.

The following table summarizes advantages and drawbacks of these works
(Table 3).

Table 3. Comparison between ontology evolution approaches.

Approaches | Advantages Drawbacks

[10] Anticipatory approach that takes into | Does not define the type of coherence
account the maximum of evolution which is considered
cases

[11] Anticipatory approach that is based Does not propagate changes to the
on a clear definition of ontology related artifacts
coherence

[12] The proposed architecture can be Does not consider local schema
placed on top of any traditional evolution, thus the ontology used as a
ontology-based data integration global schema may contain
system, enabling ontology evolution | inconsistencies

[13] The proposed method handles Focuses only on enrichment and does
schema evolution using a not cover other change types
metadata-driven approach in the (deletion, renaming, updating)
context of Big Data integration

From these perspectives, we notice the following remarks against the studied
approaches.

Authors of [10, 11], although they develop preventive ontology evolution
approaches, the latters do not fit evolution in data integration frameworks. On the other
hand, evolution approaches developed in [12, 13] in the context of Big Data integration
are not preventive and suffers from some limitations.

Authors of [13] aim to aid the data steward to only enrich the ontology upon new
releases and do not consider other aspects of evolution such as deletion and modifi-
cation. Moreover, they address the evolution locally in the source level and do not
propagate changes to the global level. Conversely, we consider all evolution types
namely insertion, deletion, update and renaming and we propagate changes to the
global ontology by means of merging re-iteration.

Authors of [12] are interested to ontology evolution in data integration like us. But,
while they focus on propagating changes from the ontological level to the data sources
level, we make the opposite and try to communicate changes over the data sources to
the global ontology.
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The notion of change kit was initially proposed by [10] but relying on UML
specification, authors of [11] adapted it to the specificities of the OWL language, and in
our work, we adapted it to the context of ontology-based Big Data integration founded
on data sources evolution.

Our approach has three main advantages. It firstly covers the entire ontology
evolution cycle and manages incoherencies that are likely to occur in a priori manner,
secondly relies on the use of background releases i.e. previously developed compo-
nents [6-8] to potentially decrease, or even eliminate, user involvement, and finally fits
all evolution scenarios.

6 Conclusions and Future Work

Ontologies need to be updated across their life cycle to reflect new requirements and
must remain coherent. We are interested in this work to the ontology evolution in the
context of Big Data integration. The majority of existing works about ontology-based
Big Data integration ignores evolution issues.

When an ontology is used as a component of an advanced information system, its
evolution is a complex process and raises several challenges such as the formal rep-
resentation of ontology changes, the verification of ontology consistency when
applying the ontology changes, and the propagation of these changes to the ontology
related artifact. We discussed related work relative to a priori ontology evolution and
Big Data integration evolution. We presented evolution scenarios in the context of Big
Data integration and proposed a solution to deal with modular ontology evolution while
considering changes performed against the data sources.

There are many interesting future directions. A prominent one is to explore how to
manage change history and to record changes performed against the ontology. As a
short-term goal, we plan to integrate such functionality to our approach. Other avenue
of research would be to propose an approach to enhance the change propagation step to
the global ontology.
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