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Abstract. We discuss the progress in our project which aims to auto-
mate formalization by combining natural language processing with deep
semantic understanding of mathematical expressions. We introduce the
overall motivation and ideas behind this project, and then propose a
context-based parsing approach that combines efficient statistical learn-
ing of deep parse trees with their semantic pruning by type checking
and large-theory automated theorem proving. We show that our learn-
ing method allows efficient use of large amount of contextual information,
which in turn significantly boosts the precision of the statistical parsing
and also makes it more efficient. This leads to a large improvement of
our first results in parsing theorems from the Flyspeck corpus.

1 Introduction: Learning Formal Understanding

Computer-understandable (formal) mathematics [17] is still far from taking over
the mathematical mainstream. Despite recent impressive formalizations such as
the Formal Proof of the Kepler conjecture (Flyspeck) [15], Feit-Thompson [9],
seL4 [23], CompCert [26], and CCL [1], formalizing proofs is still largely unap-
pealing to mathematicians. While research on AI and strong automation over
large theories has taken off in the last decade [2], so far there has been lit-
tle progress in automating the understanding of informal LaTEX-written and
ambiguous mathematical writings.

Automatic parsing of informal mathematical texts into formal ones has
been for long time considered a hard or impossible task. Among the state-of-
the-art Interactive Theorem Proving (ITP) systems such as HOL (Light) [16],
Isabelle [31], Mizar [11] and Coq [4], none includes automated parsing, instead
relying on sophisticated formal languages and mechanisms [7,10,13,28]. The
past work in this direction – most notably by Zinn [33] – has often been cited
as discouraging from such efforts.
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We have recently initiated [21,22] a project to automatically learn formal
understanding of mathematics and exact sciences using a large corpus of align-
ments [8] between informal and formal statements. Such learning can addition-
ally integrate strong semantic filtering methods such as typechecking combined
with large-theory Automated Theorem Proving (ATP). In more detail, we believe
that the current state of human-based formalization can be significantly helped
by automatically learning how to formalize (“semanticize”) informal texts, based
on the knowledge available in existing large formal corpora. There are several
justifications for this belief:

1. Statistical machine learning (data-driven algorithm design) has been respon-
sible for a number of recent AI breakthroughs, such as web search, query
answering (IBM Watson), machine translation (Google Translate), image
recognition, autonomous car driving, etc. Given enough data to train on,
data-driven algorithms can automatically learn complicated sets of rules that
would be often hard to program and maintain manually.

2. The recent progress of formalization, provides reasonably large corpora such
as the Flyspeck project [15]. These, together with additional annotation [14],
can be used for experiments with machine learning of formalization. The
growth of such corpora is only a matter of time, and automated formalization
might gradually “bootstrap” this process, making it faster and faster.

3. Statistical machine learning methods have already turned out to be very
useful in proof assistant automation in large theories [2], showing that data-
driven techniques do apply also to mathematics.

4. Analogously, strong semantic automated reasoning in large theories [30]
(ARLT) methods are likely to be useful in the formalization field also for
complementing the statistical methods that learn formalization. This could
lead to hybrid understanding/thinking AI methods that self-improve on large
annotated corpora by cycling between (i) statistical prediction of the text dis-
ambiguation based on learning from existing annotations and knowledge, and
(ii) improving such knowledge by confirming or rejecting the predictions by
the semantic ARLT methods.

The last point (4) is quite unique to the domain of (informal/formal) mathemat-
ics, and a good independent reason to work on this AI research. There is hardly
any other domain where natural language processing (NLP) could be related
to such a firm and expressive semantics as mathematics has, which is addition-
ally to a reasonable degree already checkable with existing ITP and ARLT sys-
tems. Gradually improving the computer understanding of how mathematicians
(ab)use the normal imprecise vocabulary to convey ideas in the semantically
well-grounded mathematical world, may even improve the semantic treatment
of arbitrary natural language texts.

1.1 Contributions

This paper extends our previous short papers [21,22] on the informal-to-formal
translation. We first introduce the informal-to-formal setting (Sect. 2), sum-
marize our initial probabilistic context-free grammar (PCFG) approach of [21]
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(Sect. 3), and extend this approach by fast context-aware parsing mechanisms
that very significantly improve the performance.

– Limits of the context-free approach. We demonstrate on a minimal
example, that the context-free setting is not strong enough to eventually learn
correct parsing (Sect. 4) of relatively simple informal mathematical formulas.

– Efficient context inclusion via discrimination trees. We propose and
efficiently implement modifications of the CYK algorithm that take into
account larger parsing subtrees (context) and their probabilities (Sect. 5).
This modification is motivated by an analogy with large-theory reasoning sys-
tems and its efficient implementation is based on a novel use of fast theorem-
proving data structures that extend the probabilistic parser.

– Significant improvement of the informal-to-formal translation per-
formance. The methods are evaluated, both by standard (non-semantic)
machine-learning cross-validation, and by strong semantic methods available
in formal mathematics such as typechecking combined with large-theory auto-
mated reasoning (Sect. 6).

2 Informalized Flyspeck and PCFG

The ultimate goal of the informal-to-formal traslation is to automatically learn
parsing on informal LaTEX formulas that have been aligned with their formal
counterparts, as for example done by Hales for his informal and formal Flyspeck
texts [14,29]. Instead of starting with LaTEX, where only hundreds of aligned
examples are so far available for Flyspeck, we reuse the first large informal/for-
mal corpus introduced previously in [21], based on informalized (or ambiguated)
formal statements created from the HOL Light theorems in Flyspeck. This pro-
vides about 22000 informal/formal pairs of Flyspeck theorems.

2.1 Informalized Flyspeck

We apply the following ambiguating transformations [21] to the HOL parse trees
to obtain the aligned corpus:

– Merge the 72 overloaded instances defined in HOL Light/Flyspeck, such as
("+", "vector add"). The constant vector add is replaced by + in the
resulting sentence.

– Use the HOL Light infix operators to print them as infix in the informalized
sentences. Since + is declared as infix, vector add u v, would thus result in
u + v.

– Obtain the “prefixed” symbols from the list of 1000 most frequent symbols
by searching for: real , int , vector , nadd , treal , hreal ,
matrix , complex and make them ambiguous by forgetting the prefix.

– Overload various other symbols used to disambiguate expressions, for example
the “c”-versions of functions such as ccos cexp clog csin, similarly for
vsum, rpow, nsum, list sum, etc.

– Remove parentheses, type annotations, and the 10 most frequent casting func-
tors such as Cx and real of num.
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2.2 The Informal-to-Formal Translation Task

The informal-to-formal translation task is to construct an AI system that will
automatically produce the most probable formal (in this case HOL) parse trees
for previously unseen informal sentences. For example, the informalized state-
ment of the HOL theorem REAL NEGNEG:

! A0 -- -- A0 = A0

has the formal HOL Light representation shown as a tree in Fig. 1.

Comb

Const Abs

! Tyapp

fun Tyapp Tyapp

fun Tyapp Tyapp

real bool

bool

A0 Tyapp Comb

real Comb Var

Const Comb

= Tyapp

fun Tyapp Tyapp

real fun Tyapp Tyapp

real bool

Const Comb

real_neg Tyapp

fun Tyapp Tyapp

real real

Const Var

real_neg Tyapp

fun Tyapp Tyapp

real real

A0 Tyapp

real

A0 Tyapp

real

Fig. 1. The HOL Light parse tree of REAL NEGNEG

Note that all overloaded symbols are disambiguated there, they are applied
with the correct arity, and all terms are decorated with their result types. To
solve the task, we allow (and assume) training on a sufficiently large corpus of
such informal/formal pairs.

2.3 Probabilistic Context Free Grammars

Given a large corpus of corresponding informal/formal formulas, how can we
train an AI system for parsing the next informal formula into a formal one?
The informal-to-formal domain differs from natural-language domains, where
millions of examples of paired (e.g., English/German) sentences are available for
training machine translation. The natural languages also have many more words
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(concepts) than in mathematics, and the sentences to a large extent also lack
the recursive structure that is frequently encountered in mathematics. Given
that there are currently only thousands of informal/formal examples, purely
statistical alignment methods based on n-grams seem inadequate. Instead, the
methods have to learn how to compose larger parse trees from smaller ones based
on those encountered in the limited number of examples.

A well-known approach ensuring such compositionality is the use of CFG
(Context Free Grammar) parsers. This approach has been widely used, e.g.,
in word-sense disambiguation. A frequently used CFG algorithm is the CYK
(Cocke–Younger–Kasami) chart-parser [32], based on bottom-up parsing. By
default CYK requires the CFG to be in the Chomsky Normal Form (CNF).
The transformation to CNF can cause an exponential blow-up of the grammar,
however, an improved version of CYK gets around this issue [25].

In linguistic applications the input grammar for the CFG-based parsers is
typically extracted from the grammar trees which correspond to the correct
parses of natural-language sentences. Large annotated treebanks of such cor-
rect parses exist for natural languages. The grammar rules extracted from the
treebanks are typically ambiguous: there are multiple possible parse trees for a
particular sentence. This is why CFG is extended by adding a probability to
each grammar rule, resulting in Probabilistic CFG (PCFG).

3 PCFG for the Informal-to-Formal Task

The most straightforward PCFG-based approach would be to directly use the
native HOL Light parse trees (Fig. 1) for extracting the PCFG. However, terms
and types are there annotated with only a few nonterminals such as: Comb (appli-
cation), Abs (abstraction), Const (higher-order constant), Var (variable), Tyapp
(type application), and Tyvar (type variable). This would lead to many possible
parses in the context-free setting, because the learned rules are very universal,
e.g.:

Comb -> Const Var. Comb -> Const Const. Comb -> Comb Comb.

The type information does not help to constrain the applications, and the last
rule allows a series of several constants to be given arbitrary application order,
leading to uncontrolled explosion.

3.1 HOL Types as Nonterminals

The approach taken in [21] is to first re-order and simplify the HOL Light parse
trees to propagate the type information at appropriate places. This gives the
context-free rules a chance of providing meaningful pruning information. For
example, consider again the raw HOL Light parse tree for REAL NEGNEG (Fig. 1).

Instead of directly extracting very general rules such as Comb -> Const Abs,
each type is first compressed into an opaque nonterminal. This turns the parse
tree of REAL NEGNEG into (see also Fig. 2):



Automating Formalization by Statistical and Semantic Parsing 17

"(Type bool)"

! "(Type (fun real bool))"

Abs

"(Type real)" "(Type bool)"

Var

A0

"(Type real)" = "(Type real)"

real_neg "(Type real)"

real_neg "(Type real)"

Var

A0

Var

A0

Fig. 2. Transformed tree of REAL NEGNEG

("(Type bool)" ! ("(Type (fun real bool))" (Abs ("(Type real)" (Var A0)) ("(Type bool)"

("(Type real)" real neg ("(Type real)" real neg ("(Type real)" (Var A0)))) = ("(Type real)"

(Var A0))))))

The CFG rules extracted from this transformed tree thus become more tar-
geted. For example, the two rules:

"(Type bool)" -> "(Type real)" = "(Type real)".

"(Type real)" -> real neg "(Type real)".

say that equality of two reals has type bool, and negation applied to reals
yields reals. Such learned probabilistic typing rules restrict the number of possible
parses much more than the general “application” rules extracted from the orig-
inal HOL Light tree. The rules still have a non-trivial generalization (learning)
effect that is needed for the compositional behavior of the information extracted
from the trees. For example, once we learn from the training data that the vari-
able ‘‘u’’ is mostly parsed as a real number, i.e.:

"(Type real)" -> Var u.

we will be able to apply real neg to u even if the subterm real neg u has never
yet been seen in the training examples, and the probability of this parse will be
relatively high.
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In other words, having the HOL types as semantic categories (correspond-
ing e.g. to word senses when using PCFG for word-sense disambiguation) is a
reasonable choice for the first experiments. It is however likely that even better
semantic categories can be developed, based on more involved statistical and
semantic analysis of the data such as latent semantics [5].

3.2 Semantic Concepts as Nonterminals

The last part of the original setting wraps ambiguous symbols, such as --, in their
disambiguated semantic/formal concept nonterminals. In this case $#real neg
would be wrapped around -- in the training tree when -- is used as negation
on reals. While the type annotation is often sufficient for disambiguation, such
explicit disambiguation nonterminal is more precise and allows easier extrac-
tion of the HOL semantics from the constructed parse trees. The actual tree of
REAL NEGNEG used for training the grammar is thus as follows (see also Fig. 3):

"(Type bool)"

! "(Type (fun real bool))"

Abs

"(Type real)" "(Type bool)"

Var

A0

"(Type real)" $#= "(Type real)"

$#real_neg "(Type real)"

-- $#real_neg "(Type real)"

-- Var

A0

= Var

A0

Fig. 3. The parse tree of REAL NEGNEG used for the actual grammar training
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("(Type bool)" ! ("(Type (fun real bool))" (Abs ("(Type real)" (Var A0)) ("(Type bool)"

("(Type real)" ($#real neg --) ("(Type real)" ($#real neg --) ("(Type real)" (Var A0))))

($#= =) ("(Type real)" (Var A0))))))

3.3 Modified CYK Parsing and Its Initial Performance

Once the PCFG is learned from such data, the CYK algorithm augmented with
fast internal semantic checks is used to parse the informal sentences. The seman-
tic checks are performed to require compatibility of the types of free variables in
parsed subtrees. The most probable parse trees are then typechecked by HOL
Light. This is followed by proof and disproof attempts by the HOL(y)Hammer
system [18], using all the semantic knowledge available in the Flyspeck library
(about 22000 theorems). The first large-scale disambiguation experiment con-
ducted over “ambiguated” Flyspeck in [21] showed that about 40% of the
ambiguous sentences have their correct parses among the best 20 parse trees
produced by the trained parser. This is encouraging, but certainly invites fur-
ther research in improving the statistical/semantic parsing methods.

4 Limits of the Context-Free Grammars

A major limiting issue when using PCFG-based parsing algorithms is the
context-freeness of the grammar. This is most obvious when using just the low-
level term constructors as nonterminals, however it shows often also in the more
advanced setting described above. In some cases, no matter how good are the
training data, there is no way how to set up the probabilities of the parsing rules
so that the required parse tree will have the highest probability. We show this
on the following simple example.

Example: Consider the following term t:

1 * x + 2 * x.

with the following simplified parse tree T0(t) (see also Fig. 4).
(S (Num (Num (Num 1) * (Num x)) + (Num (Num 2) * (Num x))) .)

When used as the training data (treebank), the grammar tree T0(t) results in
the following set of CFG rules G(T0(t)):

S -> Num . Num -> 1
Num -> Num + Num Num -> 2
Num -> Num * Num Num -> x

This grammar allows exactly the following five parse trees T4(t), ..., T0(t)
when used on the original (non-bracketed) term t:

(S (Num (Num 1) * (Num (Num (Num x) + (Num 2)) * (Num x))) .)
(S (Num (Num 1) * (Num (Num x) + (Num (Num 2) * (Num x)))) .)
(S (Num (Num (Num 1) * (Num (Num x) + (Num 2))) * (Num x)) .)
(S (Num (Num (Num (Num 1) * (Num x)) + (Num 2)) * (Num x)) .)
(S (Num (Num (Num 1) * (Num x)) + (Num (Num 2) * (Num x))) .)
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S

Num .

Num + Num

Num * Num

1 x

Num * Num

2 x

Fig. 4. The grammar tree T0(t).

Here only the last tree corresponds to the original training tree T0(t). No
matter what probabilities p(Rulei) are assigned to the grammar rules G(T0(t)),
it is not possible to make the priority of + smaller than the priority of *. A
context-free grammar forgets the context and cannot remember and apply com-
plex mechanisms such as priorities. The probability of all parse trees is thus in
this case always the same, and equal to:

p(T4(t)) = ... = p(T0(t)) = p(S -> Num .) × p(Num -> Num + Num)
×p(Num -> Num * Num) × p(Num -> Num * Num)

×p(Num -> 1) × p(Num -> 2) × p(Num -> x) × p(Num -> x)

While the example’s correct parse does not strictly imply the priorities of +
and * as we know them, it is clear that we would like the grammar to prefer
parse trees that are in some sense more similar to the training data. One method
that is frequently used for dealing with similar problems in the NLP domain
is grammar lexicalization [3]. There an additional terminal can be appended
to nonterminals and propagated from the subtrees, thus creating many more
possible (more precise) nonterminals. This approach however does not solve the
particular problem with operator priorities. We also believe that considering
probabilities of larger subtrees in the data as we propose below is conceptually
cleaner than lexicalization.

5 Using Probabilities of Deeper Subtrees

Our solution is motivated by an analogy with the n-gram statistical machine-
translation models, and also with the large-theory premise selection systems.
In such systems, characterizing formulas by all deeper subterms and subfor-
mulas is feasible and typically considerably improves the performance of the
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algorithms [20]. Considering subtrees of greater depth for updating the parsing
probabilities may initially seem computationally involved. Below we however
show that by using efficient ATP-style indexing datastructures such as discrim-
ination trees, this approach becomes feasible, solving in a reasonably clean way
some of the inherent problems of the context-free grammars mentioned above.

In more detail, our approach is as follows. We extract not just subtrees of
depth 2 from the treebank (as is done by the standard PCFG), but all subtrees
up to a certain depth. Other approaches – such as frequency-based rather than
depth-based – are possible. During the (modified) CYK chart parsing, the prob-
abilities of the parsed subtrees are adjusted by taking into account the statistics
of such deeper subtrees extracted from the treebank. The extracted subtrees are
technically treated as new “grammar rules” of the form:

root of the subtree − > list of the children of the subtree

Formally, for a treebank (set of trees) T, we thus define Gn(T) to be the
grammar rules of depth n extracted from T. The standard context-free gram-
mar G(T) then becomes G2(T), and we denote by Gn,m(T) where n ≤ m the
union1 Gn(T) ∪ ... ∪ Gm(T). The probabilities of these deeper grammar rules
are again learned from the treebank. Our current solution treats the nonter-
minals on the left-hand sides as disjoint from the old (standard CFG) nonter-
minals when counting the probabilities (this can be made more complicated
in the future). The right-hand sides of such new grammar rules thus contain
larger subtrees, allowing to compute the parsing probabilities using more con-
text/structural information than in the standard context-free case.

For the example term t from Sect. 4 this works as follows. After the extraction
of all subtrees of depth 2 and 3 and the appropriate adjustment of their proba-
bilities, we get a new extended set of probabilistic grammar rules G2,3(T0(t)) ⊃
G(T0(t)). This grammar could again parse all the five different parse trees
T4(t), ..., T0(t) as in Sect. 4, but now the probabilities p(T4(t)), ..., p(T0(t)) would
in general differ, and an implementation would be able to choose the training
tree T0(t) as the most probable one. In the particular implementation that we
use (see Sect. 5.1) its probability is:

p(T0(t)) = p(Num -> (Num 1)) × p(Num -> (Num x))
× p(Num -> (Num 2)) × p(Num -> (Num x))
× p(Num -> (Num Num * Num) + (Num Num * Num))
× p(S -> Num .)

Here the second line from the bottom stands for the probability of a subtree of
depth 3. For the case of the one-element treebank T0(t), p(T0(t)) would indeed
be the highest probability. On the other hand, the probability of some of the
other parses (e.g., T4(t) and T3(t) above) would remain unmodified, because in
such parses there are no subtrees of depth 3 from the training tree T0(t).
1 In general, a grammar could pick only some subtree depths instead of their contigu-

ous intervals, but we do not use such grammars now.
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5.1 Efficient Implementation of Deeper Subtrees

Discrimination trees [27], as first implemented by Greenbaum [12], index terms
in a trie, which keeps single path-strings at each of the indexed terms. A dis-
crimination tree can be constructed efficiently, by inserting terms in the traver-
sal preorder. Since discrimination trees are based on path indexing, retrieval of
matching subtrees during the parsing is straightforward.

We use a discrimination tree D to store all the subtrees Gn,m(T) from the
treebank T and to efficiently retrieve them together with their probabilities dur-
ing the chart parsing. The efficiency of the implementation is important, as
we need to index about half a million subtrees in D for the experiments over
Flyspeck. On the other hand, such numbers have become quite common in large-
theory reasoning recently and do not pose a significant problem. For memory
efficiency we use OCaml maps (implemented as AVL trees) in the internal nodes
of D. The lookup time thus grows logarithmically with the number of trees in
D, which is the main reason why we so far only consider trees of depth 3.

When a particular cell in the CYK parsing chart is finished (i.e., all its
possible parses are known), the subtree-based probability update is initiated.
The algorithm thus consists of two phases: (i) the standard collecting of all
possible parses of a particular cell, using the context-free rules G2(T) only, and
(ii) the computation of probabilities, which involves also the deeper (contextual)
subtrees G3,m(T).

In the second phase, every parse P of the particular cell is inspected, trying
to find its top-level subtrees of depths 3, ...,m in the discrimination tree D. If
a matching tree T is found in D, the probability of P is recomputed, using the
probability of T . There are various ways how to combine the old context-free
and the new contextual probabilities. The current method we use is to take the
maximum of the probabilities, keeping them as competing methods. As men-
tioned above, the nonterminals in the new subtree-based rules are kept disjoint
from the old context-free rules when computing the grammar rule probabilities.
The usual effect is that a frequent deeper subtree that matches the parse P gives
it more probability, because such a “deeper context parse” replaces the corre-
sponding two shallow (old context-free) rules, whose probabilities would have to
be multiplied.

Our speed measurement with depth 3 has shown that the new implementation
is (surprisingly) faster. In particular, when training on all 21695 Flypeck trees
and testing on 11911 of them with the limit of 10 best parses, the new version
is 23% faster than the old one (10342.75 s vs. 13406.97 s total time). In this
measurement the new version also failed to produce at least a single parse less
often than the old version (631 vs 818). This likely means that the deeper subtrees
help to promote the correct parse, which in the context-free version is considered
at some point too improbable to make it into the top 10 parses and consequently
discarded.
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6 Experimental Evaluation

6.1 Machine Learning Evaluation

The main evaluation is done in the same cross-validation scenario as in [21]. We
create the ambiguous sentences (Sect. 2) and the disambiguated grammar trees
from all 21695 Flyspeck theorems,2 permute them randomly and split into 100
equally sized chunks of about 217 trees and their corresponding sentences. The
grammar trees serve for training and the ambiguous sentences for evaluation.
For each testing chunk Ci (i ∈ 1..100) of 217 sentences we train the probabilistic
grammar Pi on the union of the remaining 99 chunks of grammar trees (alto-
gether about 21478 trees). Then we try to get the best 20 parse trees for all the
217 sentences in Ci using the grammar Pi. This is done for the simple context-
free version (depth 2) of the algorithm (Sect. 3), as well as for the versions using
deeper subtrees (Sect. 5). The numbers of correctly parsed formulas and their
average ranks across the several 100-fold cross-validations are shown in Table 1.

Table 1. Numbers of correctly parsed Flyspeck theorems within first 20 parses and
their average ranks for subtree depths 2 to 7 of the parsing algorithm (100-fold cross-
validation).

Depth Correct parse found (%) Avg. rank of correct parse

2 8998 (41.5) 3.81

3 11003 (50.7) 2.66

4 13875 (64.0) 2.50

5 14614 (67.4) 2.34

6 14745 (68.0) 2.13

7 14379 (66.2) 2.17

It is clear that the introduction of deeper subtrees into the CYK algorithm
has produced a significant improvement of the parsing precision. The number of
correctly parsed formulas appearing among the top 20 parses has increased by 22%
between the context-free (depth 2) version and the subtree-based version when
using subtrees of depth 3, and it grows by 64% when using subtrees of depth 6.

The comparison of the average ranks is in general only a heuristic indicator,
because the number of correct parses found differ so significantly between the
methods.3 However, since the number of parses is higher in the better-ranking
methods, this improvement is also relevant. The average rank of the best subtree-
based method (depth 6) is only about 56% of the context-free method. The

2 About 1% of the longest Flyspeck formulas were removed from the evaluation to
keep the parsing times manageable.

3 If the context-free version parsed only a few terms, but with the best rank, its average
rank would be 1, but the method would still be much worse in terms of the overall
number of correctly parsed terms.
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results of the best method say that for 68% of the theorems the correct parse
of an ambiguous statement is among the best 20 parses, and its average rank
among them is 2.13.

6.2 ATP Evaluation

In the ATP evaluation we measure how many of the correctly parsed formulas the
HOL(y)Hammer system can prove, and thus help to confirm their validity. While
the machine-learning evaluation is for simplicity done by randomization, regard-
less of the chronological order of the Flyspeck theorems, in the ATP evaluation
we only allow facts that were already proved in Flyspeck before the currently
parsed formula. Otherwise the theorem-proving task becomes too easy, because
the premise-selection algorithm will likely select the theorem itself as the most
relevant premise. Since this involves large amount of computation, we only com-
pare the best new subtree-based method (depth 6) from Table 1 (subtree-6 ) with
the old context-free method (subtree-2 ).

In the ATP evaluation, the number of the Flyspeck theorems is reduced
from 21695 to 17018. This is due to omitting definitions and duplicities during
the chronological processing and ATP problem generation. For actual theorem
proving, we only use a single (strongest) HOL(y)Hammer method: the distance-
weighted k-nearest neighbor (k-NN) [6] using the strongest combination of fea-
tures [20] with 128 premises and running Vampire 4.0 [24]. Running the full
portfolio of 14 AI/ATP HOL(y)Hammer strategies for hundreds of thousands
problems would be too computationally expensive.

Table 2 shows the results. In this evaluation we also detect situations when an
ambiguated Flyspeck theorem T1 is parsed as a different known Flyspeck theorem
T2. We call the latter situation other library theorem (OLT). The removal of
definitions and duplicitites made the difference in the top-20 correctly parsed
sentences even higher, going from 33.8% for subtree-2 to 63.1% in subtree-6. This
is an improvement of 86.9%. A correspondingly high increase between subtree-2

Table 2. Statistics of the ATP evaluation for subtree-2 and subtree-6. The total number
of theorems tried is 17018 and we require 20 best parses. OLT stands for other library
theorem.

Subtree-2 (%) Subtree-6 (%)

At least one parse (limit 20) 14101 (82.9) 16049 (94.3)

At least one correct parse 5744 (33.8) 10735 (63.1)

At least one OLT parse 808 (4.7) 1584 (9.3)

At least one parse proved 5682 (33.3) 7538 (44.3)

Correct parse proved 1762 (10.4) 2616 (15.4)

At least one OLT parse proved 525 (3.1) 814 (4.8)

The first parse proved is correct 1168 (6.7) 2064 (12.1)

The first parse proved is OLT 332 (2.0) 713 (4.2)
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and subtree-6 is also in the number of situations when the first parse is correct
(or OLT) and HOL(y)Hammer can prove it using previous Flyspeck facts. The
much greater easiness of proving existing library theorems than proving new
theorems explains the high number of provable OLTs when compared to their
total number of occurences. Such OLT proofs are however easy to filter out when
using HOL(y)Hammer as a semantic filter for the informal-to-formal translation.

7 Conclusion and Future Work

In this paper, we have introduced our project aiming at automated learning of
formal understanding of mathematics. In comparison to our first results [21], we
have introduced efficient context-based learning and parsing, which significantly
increases the success rate of the informal-to-formal translation task on the Fly-
speck corpus. The overall improvement in the number of correct parses among
the top 20 is 64%, and even higher (86.9%) when omitting duplicities and defin-
itions. The average rank of the correct parse has decreased to about 56% of the
previous approach. We believe that the contextual approach to enhancing CYK
we took is rather natural (in particular more natural than lexicalization), the
discrimination tree indexing scales to this task, and the performance increase is
very impressive.

Future work includes adding further semantic checks and better probabilistic
ranking subroutines directly into the parsing process. The chart-parsing algo-
rithm is easy to extend with such checks and subroutines, and already the cur-
rent semantic pruning of parse trees that have incompatible variable types is
extremely important. While some semantic relations might eventually be learn-
able by less efficient learning methods such as recurrent neural networks (RNNs),
we believe that the current approach allows more flexible experimenting and non-
trivial integration and feedback loops between advanced deductive and learning
components. A possible use of RNNs in such a setup is for better ranking of
subtrees and for global focusing of the parsing process.

An example of a more sophisticated deductive algorithm that should be easy
to integrate is congruence closure over provably equal (or equivalent) parsing
subtrees. For example, ‘‘a * b * c’’ can be understood with different brack-
eting, different types of the variables and different interpretations of *. However,
* is almost always associative across all types and interpretations. Human read-
ers know this, and rather than considering differently bracketed parses, they
focus on the real problem, i.e., which types to assign to the variables and how to
interpret the operator in the current context. To be able to emulate this ability,
we would cache directly in the chart parsing algorithm the results of large-theory
ATP runs on many previously encountered equalities, and use them for fast con-
gruence closure over the subtrees.

Similar ATP/logic-based components also seem necessary for dealing with
more involved type systems and human-like parsing layers, such as the one used
by the Mizar system. Our first experiments in combining the contextual parsing
with ATPs to deal with phenomena like hidden variables and intersection types
are described in [19].
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22. Kaliszyk, C., Urban, J., Vyskočil, J., Geuvers, H.: Developing corpus-based
translation methods between informal and formal mathematics: project descrip-
tion. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.)
CICM 2014. LNCS, vol. 8543, pp. 435–439. Springer, Cham (2014). doi:10.1007/
978-3-319-08434-3 34

23. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: formal verification of an operating-system kernel. Commun. ACM
53(6), 107–115 (2010)
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