Designing Theory Solvers with Extensions

Andrew Reynolds!, Cesare Tinelli'®™) | Dejan Jovanovié¢!®, and Clark Barrett?

! Department of Computer Science, The University of Iowa, Iowa, USA
cesare-tinelli@uiowa.edu
2 Department of Computer Science, Stanford University, Stanford, USA
3 SRI International, Menlo Park, USA

Abstract. Satisfiability Modulo Theories (SMT) solvers have been
developed to natively support a wide range of theories, including linear
arithmetic, bit-vectors, strings, algebraic datatypes and finite sets. They
handle constraints in these theories using specialized theory solvers. In
this paper, we overview the design of these solvers, specifically focusing
on theories whose function symbols are partitioned into a base signature
and an extended signature. We introduce generic techniques that can be
used in solvers for extended theories, including a new context-dependent
simplification technique and model-based refinement techniques. We pro-
vide case studies showing our techniques can be leveraged for reasoning
in an extended theory of strings, for bit-vector approaches that rely on
lazy bit-blasting and for new approaches to non-linear arithmetic.

1 Introduction

A growing number of formal methods applications leverage SMT solvers as rea-
soning engines. To accommodate the unique requirements of these applications,
a number of new theories are now natively supported by SMT solvers, includ-
ing unbounded strings with length constraints [31,39], algebraic datatypes [33],
finite sets [5], and floating-point arithmetic [13]. Solvers for these theories share
functionalities, such as reporting conflicts and propagations based on theory rea-
soning. From both a formal and an engineering perspective, there is a need to
express the common features in these solvers.

This paper focuses on theories whose function symbols can be partitioned
into a base signature X and an extension signature X°. We will refer to such
theories as extended theories. The motivation for considering extended theories
is two-fold:

1. Assume we have developed a constraint solving procedure for some XP-theory,
and say we want to extend this procedure to handle additional symbols in
some signature £°. Can we reuse our procedure for X -constraints in part to
develop a procedure for X U X°-constraints?

2. Assume we want to optimize a procedure for Y-constraints. One way is to
partition its signature X into X® U X, where X contains the symbols that
are easier to reason about. Can we use a stratified approach that first uses
our existing procedure on XP-constraints and reasons about X°-constraints
only when needed?

© Springer International Publishing AG 2017
C. Dixon and M. Finger (Eds.): FroCoS 2017, LNCS 10483, pp. 22-40, 2017.
DOI: 10.1007/978-3-319-66167-4_2

Designing Theory Solvers with Extensions 23

We develop an approach for handling extended theories can be used for
answering both of these questions. This paper observes that the design of many
theory solvers for extended theories follows a similar pattern. First, we observe
that it is often possible to reduce extended constraints to basic ones by reasoning
modulo the equalities entailed by the current assignment. As a simple example,
in the context where y =~ 2 is entailed by the current assignment, the non-linear
constraint = X y + y > 5 can be simplified to a linear one 2 x x > 3. We refer
to this technique as context-dependent simplification. Constraints that are not
reducible in this way can be handled by techniques that follow the common
paradigm of model-based abstraction refinement, where basic constraints can
be used to refine the abstraction of extended terms. The latter is an approach
followed used by several recent approaches to SMT solving [15,17].

In previous work, we showed that techniques based on simplification can
significantly improve the performance of DPLL(T')-based string solvers [34]. In
this work: we formalize the design of theory solvers with extensions, specifically:

— we introduce a generic technique, which we call context-dependent simplifi-
cation, which can reduce extended constraints to basic ones and propagate
equalities between extended terms;

— we define a generic approach for extended theories that leverages this tech-
nique and others to implement modular extensions for the theories of strings,
linear arithmetic and bit-vectors, showing that:

e context-dependent simplification techniques significantly improve the per-
formance and precision of our solver for an extended theory of strings;

o lightweight techniques based on context-dependent simplification and
model-based refinement can extend DPLL(T) linear arithmetic solvers
to handle non-linear arithmetic and have some advantages over state-of-
the-art solvers; and

e the performance of bit-vector solvers can be improved by delaying bit-
blasting of certain functions that require sophisticated propositional
encodings.

1.1 Formal Preliminaries

We assume the reader is familiar with the following notions from many-sorted
logic with equality: (sorted) signature, term, literal, formula, clause, free variable,
interpretation, and satisfiability of a formula in an interpretation (see, e.g., [11]
for more details). We consider only signatures X' that contain an (infix) logical
symbol = for equality. We write ¢ % s as shorthand for —t ~ s. We write Lit(p)
to denote the set of literals of formula ¢. We extend these notations to tuples
and sets of terms or formulas as expected.

If ¢ is a X-formula and 7 a X-interpretation, we write Z |= ¢ if Z satisfies ¢.
If ¢ is a term, we denote by Z(¢) the value of ¢ in Z. A theory is a pair T = (X, 1)
where X' is a signature and I is a class of X-interpretations, the models of
T, that is closed under variable reassignment (i.e., every X-interpretation that

24 A. Reynolds et al.

differs from one in I only in how it interprets the variables is also in I). A X-
formula ¢ is satisfiable (resp., unsatisfiable) in T if it is satisfied by some (resp.,
no) interpretation in I. A set I" of Y-formulas entails in T' a X-formula ¢, written
I' =1 ¢, if every interpretation in I that satisfies all formulas in I" satisfies ¢
as well. Two X-formulas are equisatisfiable in T if for every model A of T' that
satisfies one, there is a model of T that satisfies the other and differs from A
at most over the free variables not shared by the two formulas. We say that I
propositionally entails ¢, written I' |=;, ¢, if I' entails ¢ when considering all
atoms as propositional variables.

2 Theory Solvers

In this paper, we are interested in the design of theory solvers. At an abstract level,
a theory solver for a X-theory T is a terminating procedure specialized in deter-
mining the satisfiability of sets of T-literals, interpreted conjunctively. For our pur-
poses, we summarize the interface for a theory solver in Fig. 1. We view a theory
solver as a procedure Solver that takes as input a set of T-literals M, which we will
call a context, and outputs a value of the following algebraic datatype

type Response = Learn of Clause | Infer of Literal | Sat of Model | Unknown

where Clause, Literal and Model are types respectively for representing clauses,
literals and interpretations. If Solver(M) = Sat(M) then M is a finitary repre-
sentation of a model of T" that satisfies M, hence we will identity the two in the
rest of the paper. We assume that no input context contains both a literal and
its negation.

The value returned by Solver can be used in various ways depending on
the overall search procedure. In most SMT solvers, this search procedure is
based on variants of the DPLL(T) procedure [32] where a theory solver for T
is used in combination with a CDCL propositional satisfiability (SAT) solver
to determine the satisfiability in T' of quantifier-free formulas. In a nutshell,
given a quantifier-free formula ¢, this procedure maintains a set of X-clauses F
equisatisfiable in T" with ¢, and tries to construct a context M that is satisfiable
in T and propositionally entails F. Such context, if it exists, is a witness of the
satisfiability of ¢ in T. Constructing M and checking its satisfiability in T is
done with the aid of a theory solver Solver.

Solver (M) : Return one of the following:
Learn(p) where o = €1V ...V by, l1,.... 4y C L, O =7, and M £, @
Infer(¢) where M =7 £, £ &€ M, and £ € L
Sat(M) where M =M
Unknown

Fig. 1. Basic functionality of a theory solver.

Designing Theory Solvers with Extensions 25

Asindicated in Fig. 1, calling a theory solver on a set M of literal may produce
one of four results. In the first case (Learn), the theory solver returns a lemma,
clause ¢ that is valid in 7" and not propositionally entailed by M. This clause
may consist of complements of literals in M, indicating that M is unsatisfiable
in T, or may contain atoms not in M, indicating to the rest of the DPLL(T)
procedure that M needs to be extended further. In the second case (Infer), the
theory solver returns a literal ¢ that is entailed by the current context M. We
assume here that the literals returned by these calls are taken from a set £ of
T-literals that ultimately depends on the original input formula . In DPLL(T),
this typically includes all literals over the atoms occurring in F, but may include
additional ones, for instance, for theory solvers that implement the splitting-on-
demand paradigm [10]. In the third case (Sat), the procedure returns a (finitary
representation) of a model of T that satisfies M. In the last case, the theory
solver simply returns Unknown, indicating that it is unable to determine the
satisfiability of M or suggest further extensions.

Using previous results on DPLL(T) [10,32], it can be shown that a DPLL(T)
procedure invoking a theory solver Solver based on this interface is:

— refutation-sound (i.e., it says an input formula is unsatisfiable in T" only if it
is s0),

— model-sound (i.e., it says an input formula is satisfiable in T" only if it is so),

— refutation-complete (i.e., it says an input formula is unsatisfiable in 7" when-
ever it is so) if Solver never returns Unknown, and

— terminating if £ is a finite set.

3 Theory Solvers with Extensions

In this section, we consider a Y-theory T whose signature X is the union XU X*°
of a basic signature X* and an extention signature X where X and X have the
same sort symbols and share no function symbols. We will refer to the function
symbols in X as basic function symbols, and to those in X¢ as extension function
symbols.

We are interested in developing a procedure for the T-satisfiability of a set F
of X-clauses based on the availability of a theory solver Solvel}7 which implements
the interface from Fig. 1, for contexts M consisting of XP-literals only. For the pur-
poses of the presentation, we assume that the variables in F are from some infi-
nite set X and we associate to every Y-term ¢ over X a unique variable z; not
from X which we call the purification variable for t. If e is a X-term or formula
possibly containing purification variables, we denote by X(e) the set {z; ~ ¢ |
z; is a purification variable in e}; we write [e] to denote the expression ec where
o is the substitution {z; — t | x; &~ t € X(e)}. We extend these notations to sets
of terms or formulas as expected.

Without loss of generality, we assume every extension function symbol f
in F occurs only in terms of the form f(x1,...,z,) where z1, ..., x, are variables
from X. We let |F| be the result of replacing every term t of this form in F

26 A. Reynolds et al.

by its purification variable z;. It is not difficult to show that [F| U X(|F]) is
equisatisfiable with F in T'.

Ezample 1. Assume f € X°. Let F be the set {f(z5,23) = x4, x5 =~ f(21,22)}.
After replacing f(xs5,23) and f(z1,22) with their respective purification vari-
ables z; and zo, say, we get |F| = {z1 = x4, x5 = 29} and X(|F]) = {z1 =
f(zs,23), 22 = f(x1,22)}. Note that [|F|]] =F. O

We are interested in developing extended theory solvers which take as input
extended contexts, that is, sets of literals of the form MUX(M), where M a given
set of X-literals possibly with purification variables (coming from the purification
process for F). We discuss in the following two generic classes of techniques:
context-dependent simplification and model-based refinement that can be used
to develop extended theory solvers on top of a basic solver.

3.1 Context-Dependent Simplification

We first observe that many theory solvers already have several features of interest
handling extended contexts M U X(M), namely they:

1. Compute an equivalence relation over terms 7 (M), where ¢; and ¢ are in the
same equivalence class if and only if M =1 t; & t2, and
2. Make use of simplified forms ¢| of X-terms t, where () =1 ¢ = ¢].

Regarding the first point, a number of theory solvers [5,26,31,33] are devel-
oped as modular extensions of the standard congruence closure algorithm, which
builds equivalence classes over the terms in the current context.

Regarding the second point, computing simplified forms for T-literals is
advantageous since it reduces the number of cases that must be handled by the
procedure for T'. Moreover, it reduces the number of unique theory literals for
a given input, which is highly beneficial for the performance of DPLL(T)-based
solvers since it allows the underlying SAT solver to abstract multiple T-literals as
the same propositional (Boolean) variable. For example, assuming (x x 2 > 8)|
is x > 4, the set {z x 2 > 8, =(x > 4)} can be simplified to {z > 4, =(z > 4)},
which is already unsatisfiable at the propositional level. In most SMT solvers,
this is determined by simplification and does not require invoking a theory solver
that implements a procedure for arithmetic.

We argue that it is helpful to apply the same simplification technique
while taking into account the equalities that are entailed by M. In detail,
let y be a tuple of variables and s be a tuple of terms from 7 (M) where
M 1 y =~ s. Let o be the substitution {y — s} which we will refer to as
a derivable substitution (in M). For any term t, we have that M =1 t = (to)]
by definition of simplifications and derivable substitutions.

Designing Theory Solvers with Extensions 27

Reducing Eztended Terms to Basic Terms. We may derive equalities between
extended terms and basic ones based on simplification. In particular, consider an
equality z = ¢ from the X(M) component of our context, recalling that ¢ is a X'¢-
term. If (to)| is a XP-term, then it must be that M |=r (v = t) & (z =~ (to)]).
Hence, we may discard x = ¢t and handle z ~ (to)] using the basic procedure.

Ezample 2. Consider the extended theory A of (integer or rational) arith-
metic, whose basic signature ZR contains the symbols of linear arithmetic and
whose extension signature X3 contains the multiplication symbol x. Let M =
{zm z,y=rw+2, w=1}and X(M) = {& = y x y}. Since M |=a y = 3, the
substitution o = {y — 3} is a derivable substitution in M. Assuming the simplified
form linearizes multiplication by constants, we have that (y x y)o| = (3x3)] =9
where, observe, 9is a XR-term. Thus, we may infer the (basic) equality z ~ 9 which
is entailed by M. a

Inferring Fquivalence of Fxtended Terms. If two extended terms ¢; and 5 can
be simplified to the same term under a derivable substitution, we can conclude
that they must be equivalent. This is regardless of whether their simplified form
is a basic term or not.

Ezample 8. LetM = {x1 # 20, wx 4-2, y = 2-z} and X(M) = {1 = y Xy, z9 &
w X z} where - denotes linear multiplication (i.e., 2 - z is equivalent to z 4+ z in A).
We have that o = {w — 4.z, y — 2-z} is a derivable substitution in M. Moreover,
(yxy)ol =(2-2) x (2-2))l =4-(zx2)=((4-2) X 2)| = (w x 2)o|. Thus, we
may infer that x1 &~ x5 is entailed by M (which shows that M is unsatisfiable in A).
O

We call this class of techniques context-dependent simplification. For the-
ory solvers that build an equivalence relation over terms, a simple method for
constructing a derivable substitution is to map every variable in 7 (M) to the
representative of its equivalence class in the congruence closure of M. However,
more sophisticated methods for constructing derivable substitutions are possible,
which we will describe later.

3.2 Model-Based Refinement

Note that |F] is effectively a conservative abstraction of F. A complementary
approach to context-dependent simplification involves then refining this abstrac-
tion as needed to determine the satisfiability of F in 7. We do that based on
the model that the basic solver finds for a context M, which consists of liter-
als from F. Generally speaking, other SMT theory approaches already rely on
some form of model-based refinement [15,17]. This section defines this notion
according to the terminology used here.

Consider an extended context M U X(M) where context-dependent simplifi-
cation does not apply, and moreover the basic theory solver has found that M
is satisfied by some model M of T. If M | X(M), then it is a model of our
context. On the other hand, if M = X(M), then the extended solver may be

28 A. Reynolds et al.

instrumented to return a clause that when added to F refines the abstraction by
eliminating the spurious model M. We generate such clauses from refinement
lemmas.

Definition 1. Let MUX(M) be an extended context and let M be a model of T
satisfying M. A refinement lemma for (M, X(M), M) is a X®-clause ¢ such that
X(M) Er ¢ and M £ ¢. |

Ezample 4. Let M be the set {z % 0} and X(M) be {z = y x y}. Let M be
model A satisfying M with M(z) = —1. A refinement lemma for (M, X(M), M
is ¢ > 0. Observe that [z > 0] =y x y > 0 is valid in T

~—

O

An extended solver that constructs a refinement lemma ¢ for an input context
M UX(M) may return clause [¢] which by construction is valid in 7', as one can
show.

The following definition will be useful when discussing how refinement lem-
mas are constructed for specific theories.

Definition 2. Let M be a model of T, let M a set of basic constraints. The set:

TyM) ={z=t|z~teXM), LeM, zeV(), M (0]}
is the relevant inconsistent subset of X(M) with respect to M. O

To compute the relevant inconsistent subset of X(M) with respect to M, we
consider each literal ¢ € M, and check whether [¢] is satisfied by M. For such
literal ¢o, ZX,(M) contains the equalities ~ ¢ for purification variables z that
occur the free variables of . Relevant inconsistent subsets are useful because
they tell us which variables should likely appear in refinement lemmas.

Ezample 5. Let M = {x >0,y > 0, z > 0}, X(M) = {z =~ y x z}, and let M be
the model of T satisfying M where M(z) = 3, M(y) = 2, and M(z) = 1. We have
that ZX,(M) = 0 since [z > 0] = y x 2z > 0, which is satisfied by M. On the other
hand, if M is the set {z > 3,y > 0, z > 0}, then ZX,(M) = {z ~ y x 2} since
[> 3] =y x z > 3 which is not satisfied by M. Intuitively, this means the value
of x should be refined based on its definition in X(M), which is y x z. A possible
refinement lemma for (M, X(M), M) is then (y <3Az=1) =2 < 3. |

We will see examples of how refinement lemmas are constructed in Sects. 4
through 6, each of which learn X"-formulas that state properties of extended
terms that appear in the relevant inconsistent subset of the current context.

3.3 A Strategy for Extended Theory Solvers

We summarize a strategy, given by Solve7 in Fig. 2, for designing a solver to
handle an extended theory. It first tries to apply context-dependent simplifi-
cation techniques based on the two kinds of inferences in Sect.3.1. Otherwise,

Designing Theory Solvers with Extensions 29

SolveT (M U X(M)): Perform the following steps.

1. (Context-Dependent Simplification) Let y, s be terms in 7 (M) such that M =1 y =
s. Let o be the substitution {y — s}.
(2) (Ext-Reduce) If there exists a = ~ t € X(M) such that s = (to){ is a Z°-term
and z = s € L, return Infer(z ~ s).
(b) (Ext-Equal) If there exists z1 & t1,x2 & to € X(M) such that (t10)] = (t20)]
and x1 & 2 € L, return Infer(z1 = x2).
2. (Basic Procedure) Let r = Solve.(M). If r # Sat(_), return r.

3. (Model-Based Refinement) If r = Sat(M), either:
(a) (Check) return r if M = X(M),
(b) (Refine) return Learn([¢]) for some X -clause ¢ such that X(M) =1 ¢, M
p,and Lit(p) C L
(¢) (Unknown) return Unknown

Fig. 2. A strategy for an extended theory solver.

it invokes the basic procedure Solvel% on the basic portion M of our context.
If this determines that M is satisfied by model M, it uses model-based refine-
ment techniques, as described in Sect. 3.2. This will either determine that M is
also a model of X(M) in which case it returns Sat(M), construct a refinement
lemma for (M, X(M), M), or return Unknown. As mentioned, implementations of
model-based refinement vary significantly from theory to theory, and hence our
definition of how refinement lemmas are chosen is intentionally left underspeci-
fied here.

The next three sections considers examples of DPLL(T') theory solvers that
are designed according to Fig. 2. In each section, we provide details on how the
steps in Solve]. are specifically implemented for that theory. We consider an
extended theory of strings, a theory of bit-vectors with a partitioned signature,
and the theory of linear arithmetic extended with multiplication.

4 An Efficient Solver for an Extended Theory of Strings

Recently, SMT solvers have been extended with native support for the theory
unbounded strings and regular expressions. Implementations of these solvers
have significant improved in both performance and reliability in the past several
years [1,31,39]. This support has enabled a number of applications in security
analysis, including symbolic execution approaches that reason about strings as a
built-in type [34].

Consider the extended theory of strings whose signature Xs contains a sort
Str for character strings and a sort Int for integers. We partition the function
symbols of this signature in two parts. The base signature Eg contains the
standard symbols of linear integer arithmetic, words constructed from a finite

30 A. Reynolds et al.

alphabet A, string concatenation con and string length len. The extension signa-
ture X< contains four function symbols whose semantics are as follows in every
model of the theory. For all z,y, z,n, m, the term substr(x,n,m) is interpreted
as the maximal substring of = starting at position n with length at most m, or
the empty string if n is an invalid position; contains(x, y) is interpreted as true if
and only if string = contains string y; idof (x, y,n) is interpreted as the position
of the first occurrence of y in z starting from position n, or —1 if y is empty, n
is an invalid position, or if no such occurrence exists; repl(z,y, z) is interpreted
as the result of replacing the first occurrence in = of y by z, or z if z does not
contain y.

We describe our approach for this extended theory of strings in terms of the
three steps outlined in Fig. 2.

Procedure for Zg-constmmts. In previous work [31], we developed an effi-
cient calculus for the satisfiability of quantifier-free strings with length con-
straints. The calculus handles X&-constraints (but not X¢-constraints), and also
includes partial support for regular expressions. The calculus is implemented as
a theory solver in cvc4. At a high level, this solver infers equalities between
string variables based on a form of unification (e.g., it infers x ~ z when
con(z,y) =~ con(z,w) and lenz = len z are both in M), returns splitting lem-
mas based on the lengths of string terms and derives conflicts for instance when
it can infer an equality between distinct character strings. The decidability of
strings constraints, even in the basic signature that includes length constraints, is
an open problem [24]. Nevertheless, the calculus from [31] is sound with respect
to models and refutations, and terminates often for constraints that occur in
applications.

Context-Dependent Simplification. Functions in the extended signature of strings
are a clear target for context-dependent simplification, due to the complexity
of their semantics and the multitude of simplifications that can be applied to
extended string terms. Examples of non-trivial simplifications for extended string
terms include:
contains(con(y, z, abc), con(z,a))| =T contains(abcde, con(d, z,a))| = L

contains(con(a, x), con(b, z,a))] = L repl(con(a, z), b,c)| = con(a, repl(z, b, c))

idof (con(A, z,b),b,0)| = 1+ idof(z, B, 0) repl(z,a,a)| =

The method for computing the simplified form of extended string terms is around
2000 lines of C++ code in the cvc4 code base.! Despite the complexity of the
simplifier, computing simplified forms often leads to significant performance ben-
efits, as we discuss later. In addition to using aggressive rewriting techniques
for extended string terms, it is often advantageous to use methods for con-
structing derivable substitutions based on flattening sequences of equalities that
involve string concatenation terms. For instance, if M contains = ~ con(ab, y),
y =~ con(c,z) and z = con(de, u), where ab, c and de are string constants, then
our implementation computes {x +— con(abcde,u)} as a derivable substitution
in M.

! See [34] for more details.

Designing Theory Solvers with Extensions 31

[x = substr(y,n,m)] = ite(0 <n <leny A0 < m,
y = con(z1,m,22) Alenzi ~n Alenzs ~ leny—m,z ~ ¢)
[z = contains(y, 2)] = (z % T) & AX_,n < leny — len z = —[z ~ substr(y, n, len 2)]
[x = idof(y, z,n)] = [21 = substr(y,n,leny — n)]A
ite(0 <nAz#eA[T = contains(z1, 2)],

[z = substr(z1,z — n,len 2)]|A
[L = contains(substr(y’,0,z +lenz — (n + 1)),2)],z ~ —1)

[x = repl(y, z,w)] = ite(z % e A [T ~ contains(y, 2)],
x & con(z1,w, 22) Ay =~ con(z1, 2, z2) A [len z1 = idof(y, z,0)],
Txy)

Fig. 3. Reduction of Xs-constraints to £2-constraints for bounded length K, where z1, 2o
are fresh variables. The operation nq ~ns denotes the maximum of n1 — ns and 0.

Model-Based Refinement. If all string variables are known to have length bounded
above by some concrete natural number K, then reasoning about constraints in
the full signature X5 of the extended theory of strings can be reduced to reasoning
about Zg—constraints. Concretely, for any equality of the form z ~ f(z1,...,2,)
where f € X¢, we write [z ~ f(x1,...,2,)] to denote a formula equivalent to
x = f(x1,...,2,) based on the recursive definition in Fig.3. The size of [x =
f(z1,...,x,)] is finite since the reduction replaces extended terms with simpler
ones based on a well-founded ordering over extended string functions. Our model-
based refinement for the extended theory of strings chooses some x = t in the
relevant inconsistent subset ZX,(M) and returns a lemma of the form (z ~ t) <
[x =~ t]. The lemmas we learn by this form require us to fix a bound K on the
length of strings. Although not shown here, this can be done in an incremental
fashion by reasoning about bounded integer quantified formulas, that is formulas
of the form Vk.0 < k < t = ¢, where t does not contain k and ¢ is quantifier-free.
Such formulas can be handled in an incomplete way by guessing upper bounds on
the value of ¢, and subsequently applying finite instantiation as needed [34].
Similar techniques are used in a number of approaches to the extended theory
of strings [12], which perform this reduction to basic constraints eagerly. In con-
trast to those approaches, we perform this reduction in a model-based manner,
and only when reasoning by context-dependent simplification does not suffice.

Ezample 6. Let M be {z ~ L1,y = abc,z =~ con(b,w,a)} and X(M) be
{z = contains(y, z)}, where a, b and abc are string constants. The substitution
o = {y — abc,z =~ con(b,w,b)} is a derivable substitution in M. Moreover,
contains(y, z)o| = contains(abc, con(b,w,b))| = L with L a basic term. Thus,
using context-dependent simplification, we may infer that =~ contains(y, z) is
equivalent to z &~ | in this context. This allows us to avoid constructing the refine-
ment lemma x &~ contains(y, z) < [z = contains(y, z)] according to Fig. 3. O

Evaluation. We considered 25,386 benchmarks generated by PyEx, an SMT-
based symbolic execution engine for Python programs which is a recent extension
of PyExZ3 [4]. These benchmarks heavily involve string functions in the extended

32 A. Reynolds et al.
PyEx-c (5557)|PyEx-z3 (8399) | PyEx-z32 (11430)| Total (25386)
Solver # time # time # time # time
cved+sm |5485 52m (11298 2h33m |7019 1h43m {23802 5h8m
cved+m 5377 1h8m [10355 2h29m |6879 3h6m 22611 6h44m
z3 4695 2h44m | 8415 5h18m |6258 3h30m [19368 11h33m
z3str2 |3291 3h47m | 5908 7h24m (4136 4h48m |13335 16hlm
60000 : : — :
50000 [Cved+rm + " -
o 40000 | cved+m * o x E
E 30000 H z3 x o x E
B 200001 z3str2 © DDD x .
10000 | e X e
0 e 1 L ki ke R RAN
0 5000 10000 15000 20000 25000
Solved

Fig. 4. Table of results of running each solver over benchmarks generated by PyEx,
where all benchmarks were run with a 30s timeout. The cactus plot shows the cumu-
lative runtime taken by each of the four configurations over all benchmarks from the
three sets.

signature. We compare our implementation in the SMT solver cvcd [7] against
z3-STR [39] and z3 [19], both of which use eager reductions to handle extended
string functions. We tested two configurations of cvcd4. The first, cve4+m uses
model-based refinement techniques (m) for reducing constraints over extended
string terms to basic ones. The second, cvc4+sm additionally uses context-
dependent simplification techniques (s) which, following Fig. 2, are applied with
higher priority than the model-based refinement techniques.?

The results are shown in Fig.4 for three sets of benchmarks, PyEx-c,
PyEx-z3 and PyEx-z32. These benchmarks were generated by PyEx on func-
tions sampled from popular Python packages (httplib2, pip, pymongo, requests)
using cvcd4, z3 and Z3-STR as a backend solver respectively. The results show that
cvced+-sm has better overall performance than the other solvers, solving 23,802
benchmarks while taking a total of 5h and 38 min on benchmarks it solves. This
is 1,193 more benchmarks that cvc4 with context-dependent simplification dis-
abled, indicating that context-dependent rewriting is a highly effective technique
for this set. With respect to its nearest competitor z3, which took 11 h and 33 min
on the 19,368 benchmarks its solves, cve4+sm solved its first 19,368 benchmarks
in 1 h and 23 min, and overall solves a total of 4,434 more benchmarks.

5 Lightweight Techniques for Non-linear Arithmetic

In this section, we consider an extended theory of (real or integer) arithmetic
A whose signature Xa is partitioned so that X} contains the basic symbols of
linear arithmetic, and X3 contains the variadic multiplication symbol x. In the

2 For details on our experiments, see http://cvcd.stanford.edu/papers/
FroCoS2017-ext.

http://cvc4.stanford.edu/papers/FroCoS2017-ext
http://cvc4.stanford.edu/papers/FroCoS2017-ext

Designing Theory Solvers with Extensions 33

following, a monomial refers to a flattened application of multiplication z; x
... X Tp, where x1,...,x, are (not necessarily distinct) variables. The obvious
motivation for this partitioning is that SMT solvers implement efficient decision
procedures for linear arithmetic, but their support for non-linear arithmetic is
limited (and is necessarily incomplete for integer arithmetic). We outline our
approach according to the steps in Fig. 2.

Basic Procedure for XX -constraints. Many efficient solvers for linear arithmetic in
DPLL(T)-based SMT solvers are based on work by de Moura and Dutertre [22].
Approaches for linear arithmetic in our solver ¢vc4 are described in King’s the-
sis [29].

Context-Dependent Simplification. For arithmetic, context-dependent simplifi-
cation allows us to “linearize” non-linear terms by straightforward evaluation
of constant factors. To start, all literals are normalized to atoms of the form
p ~ 0 where ~ is a relational operator and p is a sum of terms of the form
c-x1 X ... X T, with ¢ a concrete integer or rational constant and z; X ... X x,
a monomial. Note a term in this sum is a basic if m < 1. To construct derivable
substitutions for a given set of linear equalities M, we use a technique inspired
by Gaussian elimination that finds a set of variables that are entailed to be equal
to constants based on the equalities in M. For example, if M contains =z 4+ y ~ 4
and y =~ 3, then {z — 1,y — 3} is a derivable substitution in M.

Model-Based Refinement. Differently from the theory strings, there is no finite
reduction from extended constraints to basic ones for the theory of arithmetic.
Instead, our approach for model-based refinement technique for equalities = ~ ¢
in our relevant inconsistent subset of X(M), where ¢ is a monomial, adds lemmas
that help refine the value of = in future models by stating various properties of
multiplication. We see t as decomposed into the product ¢; Xt of two monomials.
Figure 5 lists three basic templates we use for generating refinement lemmas
based on x = t; X ty. This list is not comprehensive, but represents the three
most commonly used lemma templates in our implementation.

Suppose we have a model M for our set of basic constraints M. Let ¢ be a for-
mula that is an instance of one of the templates in Fig. 5, meets the side conditions
in the figure (if any), and is such that [¢] = ¢{x — t; X t2} is a valid formula in
theory A. Notice that ¢ is a refinement lemma for (M, X(M), M) if M [~ ¢. For the
first two lemmas, ¢ is equivalent to a formula whose literals are either of the form
uy ~ ug, where ~ is one of {=2, >, <, <, >}, and for i = 1,2, the term w; is either

(Sign) t1 ~10Ato~ 0=2~0
(Magnitude) |1 |~1]s1| A |t2 |~z|s2|=|x|~](s1 X s2)| where (s1 X s2)] € T(X(M))
(Multiply) t1 ~1 pAts ~2 0=z ~ (t2 X p) where deg(t1) > deg(p) and
(t1 ~1p)l eM

Fig. 5. Templates for model-based refinement lemmas for x & t; X t2, where t1, t2, s1, s2
are monomials, p is a polynomial, ~1,~2,~ € {&, >, <, <, >}, || is shorthand for the
if-then-else term ite(t > 0,¢, —t), and deg(t) denotes the degree of ¢.

34 A. Reynolds et al.

0, or a monomial of the form z; X ... X z,,, where foreach j = 1,...,n, z;is a
variable from V(X(M)). Only a finite number of literals of this form exist. Thus, all
refinement lemmas generated using the first two templates are built from a finite
set of literals £. A more detailed argument can show that lemmas generated from
the third template are built from a finite set of literals as well. This fact suffices to
argue that our extended solver will generate only a finite number of refinement lem-
mas for a given context M which is enough for termination in DPLL(T"). However,
it is not enough for refutation completeness in A since one may need refinement
lemmas that are not an instance of these templates.

Ezample 7. Let M = {z < 0,y > z} and X(M) = {z ~ y x z}. Let M be a model
of M where M(z) = —1, M(y) = 3 and M(z) = 2. The relevant inconsistent
subset ZX,(M) contains x ~ y x z. The formula ¢ = (y > 0A 2z >0) =2 >0 is
an instance of first template in Fig. 5, and [¢] = (y >0A2>0)=>yx2>0
is valid in A. Since M =y > 0A 2z > 0 but M (= z > 0, we have that ¢ is a
refinement lemma for (M, X(M), M). Returning [¢] as a learned clause has the
effect of ruling out a class of models that includes M in subsequent states. 0O

Ezample 8. Let M ={y >3,z >y,x <3-z—1} and X(M) = {z = y x z}. Let
M be a model of M where M(y) = 4, M(z) =5 and M(z) = 3, where again
(z ~yxz) €IX(M). The formula ¢ = (y > 3Az > 0) = z > 3.2 is an instance
of the third template in Fig.5, and [¢] = (y >3A2>0) = yxz>3-z1is
valid in A. Since M =y >3 Az > 0 but M = = > 3z, we have that ¢ is a
refinement lemma for (M, X(M), M). Returning [¢] as a learned clause suffices
to show this context is unsatisfiable. O

Evaluation. We considered all benchmarks of the SMT-LIB library [9] that con-
tain non-linear real (QF_ZNRA) and non-linear integer (QF_NIA) quantifier-free
problems. We evaluated two configurations of cvc4: cve4+sm and cve4d—+m. The
first configuration implements both context-dependent simplification (based on
linearizing variables that are entailed to be equal to constants), and model-based
refinement lemmas (Fig. 5), whereas the second implements model-based refine-
ment only.

The results are presented in Fig. 6. On the QF_NRA problems, we compared
cved with 73, YICES2 [21], and RASAT [37]. RASAT is an incomplete interval based
solver, while both z3 and YICES2 are complete solvers based on NLSAT [28] (with
YICES2 relying on the more recent variant called MCSAT [20]). Note that NLSAT
and the underlying algorithms are highly non-trivial and not based on DPLL(T),
making integration with DPLL(T")-based solvers such as ¢vc4 impossible.

Although our method is incomplete, overall CvC4 solves an impressive frac-
tion of SMT-LIB problems. The first interesting observation is that cvc4 solves
all instances in the hong problem set. These are problems that are know to
be hard for the methods underlying 73 and YICES2, but easy for solvers based
on interval reasoning such as RASAT. Note that cvc4 does not directly employ
any interval reasoning, and the extra deductive power comes as a side-effect of
model-based refinement. Another positive result is that cvc4 solves most prob-
lems in the lranker [30] and uauto problem sets. CvC’s performance on these

Designing Theory Solvers with Extensions 35

QF_NIA | aprove | calypto |Iranker | Ictes | leipzig | mecm |uauto|ulranker| Total

time| # time| # time|# time| # time| # time|# time| # time # time
yices 8706 1761|173 83| 98 102|0 0| 92 30| 4 327 0|32 11/9112 2021
z3 8253 7636{172 146| 93 767|0 0[157 173|16 180|7 0|32 43|8730 8947
cved+m (8234 4799(164 43|111 52|11 0| 69 589 0 0|6 0(32 84(8617 5569
cved+sm (8190 3723170 611108 57|10 68 375 3 107(7 1(32 86(8579 4413
AProVE|8028 3819 72 110 3 2|0 0|157 169 0 0|0 0] 6 418266 4106

QF_NRA| hong | hycomp |kissing| Iranker | mtarski | uauto | zankl Total

time # time| # time| # time # time| # time| # time # time
73 9 16|2442 3903|27 443|235 1165|7707 37060 175|87 23]10567 6098
yices 7 59]2379 594|10 0]213 3110|7640 707|50 210|91 61[10390 4744

raSat |20 1[1933 409|12 32| 0 0]6998 504| 0 0|54 52| 9017 999
cved+sm 20 0(2246 718| 5 0]623 8375|5434 3711|11 31|33 36| 8372 12874
cved+m (20 0[2236 491| 6 0]603 6677|5440 353210 33|31 25| 8346 10761

Fig. 6. Results for benchmarks in the QF_NIA and QF_NRA logics of SMT-LIB. All
experiments are run with a 60s timeout. Time columns give cumulative seconds on
solved benchmarks.

problems which come from invariant generation [18], show that our proposed
methods work well on practical problems. An example of a class of benchmarks
where cvc4 does not perform well are the mtarski benchmarks [2]. These bench-
marks come from the analysis of elementary real functions and, due to their high
degrees, solving them requires full support for algebraic reasoning. The results
show that our new method is positioned between the incomplete interval-based
methods like those implemented in RASAT, and the complete methods like those
implemented in z3 and YICES2, while performing well on practical problems.

On the QF_NIA problems, we compare CvCc4 with z3, YICES2, and APROVE
[25]. The APROVE solver relies on bit-blasting [23], z3 relies on bit-blasting aided
with linear and interval reasoning, while YICES2 extends NLSAT with branch-
and-bound [27]. Both versions of cvc4 perform well, especially considering that
we do not rely on bit-blasting or sophisticated non-linear reasoning. Again, on
the lranker and ulranker problem sets the new method in cvc4 excels, solv-
ing the highest number of problems. Overall, cve44+m proves 812 problems
unsatisfiable, and cve4+sm proves 825 problems unsatisfiable, while YICES2,
73, and APROVE can show 975, 485 and 0 problems unsatisfiable, respectively.
Focusing on unsatisfiable problems, our results show that the new method is
positioned between the incomplete bit-blasting-based solvers like APROVE, and
more sophisticated solvers like YICES2.

6 Lazy Bit-Blasting for Bit-Vector Constraints

In this section, we present our preliminary work on a stratified approach for
solving bit-vector constraints. We consider the theory of fixed-width bit-vectors
whose signature contains a bit-vector sort BV,, for each n > 0, and a variety of
functions that are used to encode bit-level arithmetic and other operations [8].

36 A. Reynolds et al.

A common method for constraints in this theory is to eagerly reduce bit-vector
constraints to propositional ones, where this method is often called bit-blasting.
However, certain bit-vector functions require fairly sophisticated propositional
encodings which may degrade the performance of the SAT solver that reasons
about the bit-blasted form of the problem. Thus, we consider a theory of bit-
vectors whose signature is partitioned such that its extended signature contains
the symbols for bit-vector multiplication (bvmul), unsigned and signed division
(bvudiv and bvsdiv), unsigned and signed remainder (bvurem and bvsrem), and
signed modulus (bvsmod). All other symbols are assumed to be in the basic
signature.

Procedure for Egv-constmints. In previous work [26], Hadarean et al. developed
lazy techniques for a theory of fixed width bit-vectors. In their approach, the solver
resorts to bit-blasting only when algebraic approaches do not suffice to establish
satisfiability. The solver may use algebraic reasoning to infer additional equalities,
for instance based on specialized reasoning about inequalities, bit-shifting, or con-
catenation and extraction. If M is still satisfiable, then the solver resorts to bit-
blasting. In other words, for each £ € MN L, the solver learns the formula ¢ < B(¢),
where B(¥) is the propositional encoding of bit-vector literal £.

Context-Dependent Simplification. Competitive modern solvers including cvc4
use aggressive simplification techniques for the theory of bit-vectors which we
leverage in the first step of Fig. 2. Our technique for constructing derivable sub-
stitutions is based on mapping variables x to bit-vector constants that occur in
the same equivalence class as x in the congruence closure of M.

Model-Based Refinement. Our model-based refinement techniques chooses a
z ~ tin I%,(M) and learns = ~ t < B(z =~ t), where B(z ~ t) is the propo-
sitional encoding of x ~ t. In other words, we bit-blast constraints from X(M)
at lower priority than constraints in M, and only if they appear in our relevant
inconsistent subset.

Evaluation. We provide a preliminary evaluation of a new version cvc4-+sm
whose signature is partitioned according to this section and that implements
both context-dependent simplification and model-based refinement techniques,
and compared this with the default configuration of cvc4 with lazy bit-blasting
from [26] that does not consider the partitioned signature. We ran both on the
sage2 family of benchmarks from the QF_BV division of SMT LIB [9]. Over-
all, cved+sm solved 11415 benchmarks compared to 11256 solved by cvc4.
While these results are not competitive with state-of-the-art eager bit-blasting
techniques such as those in Boolector [14] which solves 13549, we believe these
results are encouraging due to the simplicity of the implementation and orthogo-
nality with eager bit-blasting approaches, as cve4+sm solved 2171 benchmarks
in this set not solved by Boolector.

Designing Theory Solvers with Extensions 37

7 Related Work

A common way to support extensions of theories is to provide first-order axiom-
atizations of additional symbols in the signature of the extension. One can show
decision procedures for theory extensions exist, given a finite instantiation strat-
egy [6,35]. In contrast, the approaches we develop are specialized to particular
extensions, and thus have specific advantages over an axiomatic approach in
practice.

The idea of using inconsistent (partial) models that guide the learning of new
facts is not new. For example, the CDCL algorithm of modern SAT solvers learns
clauses to eliminate inconsistent assignments; branch-and-bound in integer pro-
gramming learns lemmas to eliminate real solutions; and the decision procedure
for the theory of arrays [15] generates expensive array lemmas based on the cur-
rent model. The MCSAT approach to SMT, as another example, [20] is based
entirely on the interplay of models and lemmas that refute them. Although our
approach is similar in spirit, our goals are different. All mentioned approaches
are targeting concrete theories where saturation with lemmas is complete and
the models are used to guide control the saturation. Our approach, on the other
hand, targets generic theories where a decision procedure is either not avail-
able or incompatible with DPLL(T"). The advantage of the presented framework
is that reasoning in complex theories can be achieved by relying on existing
DPLL(T) technology supported by the majority of existing SMT solvers (solv-
ing the base theory, relying on equality reasoning and simplification), and very
little additional engineering effort to generate relevant refinement lemmas.

A number of SMT solvers support string reasoning [1,31,36,39]. Techniques
for extended string constraints [12,36,39] rely on eager reductions to a core lan-
guage of basic constraints. To our knowledge, no other string solvers leverage
context-dependent simplification. Recent lightweight approaches for non-linear
arithmetic constraints have been explored in [3,17]. Current state-of-the-art
approaches for bit-vectors rely on eager bit-blasting techniques with approaches.
An earlier approach for lazy bit-blasting was proposed by Bruttomesso et al. [16].
A recent approach for bit-vectors uses lazy bit-blasting based on the MCSAT
framework is given by Zeljic et al. [38].

8 Conclusion and Future Work

We have presented new approaches for handling constraints in the theories of
strings, bit-vectors, and non-linear arithmetic. The common thread in each of
these approaches is to partition the signatures of these signatures into a basic and
extended parts, and treat constraints in the extended signature using context-
dependent simplification and model-based refinement techniques. Our evaluation
indicates that these techniques are highly effective for an extended theory of
strings and give cvC4 some advantages with the state-of-the-art for non-linear
arithmetic. Our preliminary results suggest the approach may be promosing for
bit-vectors as well.

38

A. Reynolds et al.

We plan use these techniques in part to develop further theory extensions

that would be useful to support in SMT solvers. Other extensions of interest
worth pursuing include a stratified approach for floating-point constraints, com-
monly used type conversion functions (e.g. bv_to_int, int_to_str), and transcen-
dental functions.

Acknowledgments. We would like to thank Liana Hadarean and Martin Brain for
helpful discussion about bit-vectors, and Tim King for his support for arithmetic in
cved.

References

1.

10.

11.

12.

Abdulla, P.A., Atig, M.F., Chen, Y.-F., Holik, L., Rezine, A., Riimmer, P., Sten-
man, J.: Norn: an SMT solver for string constraints. In: Kroening, D., Pasareanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 462-469. Springer, Cham (2015).
doi:10.1007/978-3-319-21690-4_29

. Akbarpour, B., Paulson, L.C.: Metitarski: an automatic theorem prover for real-

valued special functions. J. Autom. Reason. 44(3), 175-205 (2010)
Avigad, J., Lewis, R.Y., Roux, C.: A heuristic prover for real inequalities. J. Autom.
Reason. 56(3), 367-386 (2016)

. Ball, T., Daniel, J.: Deconstructing dynamic symbolic execution. In: Proceedings

of the 2014 Marktoberdorf Summer School on Dependable Software Systems Engi-
neering. I0S Press (2014)

Bansal, K., Reynolds, A., Barrett, C., Tinelli, C.: A new decision procedure for
finite sets and cardinality constraints in SMT. In: Olivetti, N., Tiwari, A. (eds.)
IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 82-98. Springer, Cham (2016). doi:10.
1007/978-3-319-40229-1_7

Bansal, K., Reynolds, A., King, T., Barrett, C., Wies, T.: Deciding local
theory extensions via e-matching. In: Kroening, D., Pasireanu, C.S. (eds.)
CAV 2015. LNCS, vol. 9207, pp. 87-105. Springer, Cham (2015). doi:10.1007/
978-3-319-21668-3_6

Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovié¢, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171-177. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22110-1_14

Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: version 2.5. Tech-
nical report, Department of Computer Science, The University of Iowa (2015).
www.SMT-LIB.org

Barrett, C., Fontaine, P., Tinelli, C.: The satisfiability modulo theories library
(SMT-LIB) (2016). www.SMT-LIB.org

Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on demand in SAT
modulo theories. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI),
vol. 4246, pp. 512-526. Springer, Heidelberg (2006). doi:10.1007/11916277_35
Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories.
In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satis-
fiability, Chap. 26, vol. 185, pp. 825-885. IOS Press, February 2009

Bjgrner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS
2009. LNCS, vol. 5505, pp. 307-321. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00768-2_27

http://dx.doi.org/10.1007/978-3-319-21690-4_29
http://dx.doi.org/10.1007/978-3-319-40229-1_7
http://dx.doi.org/10.1007/978-3-319-40229-1_7
http://dx.doi.org/10.1007/978-3-319-21668-3_6
http://dx.doi.org/10.1007/978-3-319-21668-3_6
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://www.SMT-LIB.org
http://www.SMT-LIB.org
http://dx.doi.org/10.1007/11916277_35
http://dx.doi.org/10.1007/978-3-642-00768-2_27
http://dx.doi.org/10.1007/978-3-642-00768-2_27

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Designing Theory Solvers with Extensions 39

Brain, M., D’Silva, V., Griggio, A., Haller, L., Kroening, D.: Deciding floating-
point logic with abstract conflict driven clause learning. Form. Methods Syst. Des.
45, 213 (2014)

Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and
arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505,
pp. 174-177. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00768-2_16
Brummayer, R., Biere, A.: Lemmas on demand for the extensional theory of arrays.
J. Satisf. Boolean Model. Comput. 6, 165-201 (2009)

Bruttomesso, R., et al.: A lazy and layered SMT(BV) solver for hard industrial
verification problems. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol.
4590, pp. 547-560. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73368-3_54
Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Invariant checking
of NRA transition systems via incremental reduction to LRA with EUF. In: Legay,
A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 58-75. Springer, Hei-
delberg (2017). doi:10.1007/978-3-662-54577-5_4

Col6én, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation
using non-linear constraint solving. In: Hunt, W.A., Somenzi, F. (eds.) CAV
2003. LNCS, vol. 2725, pp. 420-432. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45069-6_39

Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337—-340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3_24

Moura, L., Jovanovi¢, D.: A model-constructing satisfiability calculus. In: Gia-
cobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
1-12. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35873-9_1

Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737-744. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9_49

Dutertre, B., Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81-94. Springer, Heidelberg
(2006). doi:10.1007/11817963_11

Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:
SAT solving for termination analysis with polynomial interpretations. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340-354. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-72788-0_33

Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with
length constraints: what’s decidable? In: Biere, A., Nahir, A., Vos, T. (eds.) HVC
2012. LNCS, vol. 7857, pp. 209-226. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39611-3_21

Giesl, J., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Otto, C., Pliicker, M.,
Schneider-Kamp, P., Stroder, T., Swiderski, S., Thiemann, R.: Proving termination
of programs automatically with AProVE. In: Demri, S., Kapur, D., Weidenbach, C.
(eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 184-191. Springer, Cham (2014).
doi:10.1007/978-3-319-08587-6_13

Hadarean, L., Bansal, K., Jovanovi¢, D., Barrett, C., Tinelli, C.: A tale of two
solvers: eager and lazy approaches to bit-vectors. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 680-695. Springer, Cham (2014). doi:10.1007/
978-3-319-08867-9_45

Jovanovi¢, D.: Solving nonlinear integer arithmetic with MCSAT. In: Bouajjani,
A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 330-346. Springer,
Cham (2017). doi:10.1007/978-3-319-52234-0_18

http://dx.doi.org/10.1007/978-3-642-00768-2_16
http://dx.doi.org/10.1007/978-3-540-73368-3_54
http://dx.doi.org/10.1007/978-3-662-54577-5_4
http://dx.doi.org/10.1007/978-3-540-45069-6_39
http://dx.doi.org/10.1007/978-3-540-45069-6_39
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-642-35873-9_1
http://dx.doi.org/10.1007/978-3-319-08867-9_49
http://dx.doi.org/10.1007/11817963_11
http://dx.doi.org/10.1007/978-3-540-72788-0_33
http://dx.doi.org/10.1007/978-3-642-39611-3_21
http://dx.doi.org/10.1007/978-3-642-39611-3_21
http://dx.doi.org/10.1007/978-3-319-08587-6_13
http://dx.doi.org/10.1007/978-3-319-08867-9_45
http://dx.doi.org/10.1007/978-3-319-08867-9_45
http://dx.doi.org/10.1007/978-3-319-52234-0_18

40

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

A. Reynolds et al.

Jovanovié¢, D.; Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339-354. Springer, Hei-
delberg (2012). doi:10.1007/978-3-642-31365-3_27

King, T.: Effective algorithms for the satisfiability of quantifier-free formulas over
linear real and integer arithmetic. Ph.D. thesis, Courant Institute of Mathematical
Sciences New York (2014)

Leike, J., Heizmann, M.: Ranking templates for linear loops. In: Abrahém, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 172-186. Springer, Heidel-
berg (2014). doi:10.1007/978-3-642-54862-8_12

Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 646—662. Springer, Cham (2014). doi:10.
1007/978-3-319-08867-9_43

Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). J.
ACM 53(6), 937-977 (2006)

Reynolds, A., Blanchette, J.C.: A decision procedure for (co)datatypes in SMT
solvers. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol.
9195, pp. 197-213. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6_13
Reynolds, A., Woo, M., Barrett, C., Brumley, D., Liang, T., Tinelli, C.: Scaling up
DPLL(T) string solvers using context-dependent simplification. In: Majumdar, R.,
Kuncak, V. (eds.) CAV 2017. LNCS, vol. 10427. Springer, Cham (2017). doi:10.
1007/978-3-319-63390-9_24

Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 219-234. Springer,
Heidelberg (2005). doi:10.1007/11532231_-16

Trinh, M.-T., Chu, D.-H., Jaffar, J.: S3: a symbolic string solver for vulnerability
detection in web applications. In: Yung, M., Li, N. (eds.) Proceedings of the 21st
ACM Conference on Computer and Communications Security (2014)

Van Khanh, T., Ogawa, M.: SMT for polynomial constraints on real numbers.
Electron. Notes Theor. Comput. Sci. 289, 27-40 (2012)

Zelji¢, A., Wintersteiger, C.M., Riimmer, P.: Deciding bit-vector formulas with
mcSAT. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp.
249-266. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2_16

Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: a z3-based string solver for web appli-
cation analysis. In: Foundations of Software Engineering, ESEC/FSE 2013 (2013)

http://dx.doi.org/10.1007/978-3-642-31365-3_27
http://dx.doi.org/10.1007/978-3-642-54862-8_12
http://dx.doi.org/10.1007/978-3-319-08867-9_43
http://dx.doi.org/10.1007/978-3-319-08867-9_43
http://dx.doi.org/10.1007/978-3-319-21401-6_13
http://dx.doi.org/10.1007/978-3-319-63390-9_24
http://dx.doi.org/10.1007/978-3-319-63390-9_24
http://dx.doi.org/10.1007/11532231_16
http://dx.doi.org/10.1007/978-3-319-40970-2_16

2 Springer
http://www.springer.com/978-3-319-66166-7

Frontiers of Combining Systems

11th International Symposium, FroCoS 2017, Brasilia,
Brazil, September 27-29, 2017, Proceedings

Dixon, C.; Finger, M. (Eds.)

2017, X, 351 p. 38 illus., Softcover

ISEMN: 978-3-319-66166-7

	Designing Theory Solvers with Extensions
	1 Introduction
	1.1 Formal Preliminaries

	2 Theory Solvers
	3 Theory Solvers with Extensions
	3.1 Context-Dependent Simplification
	3.2 Model-Based Refinement
	3.3 A Strategy for Extended Theory Solvers

	4 An Efficient Solver for an Extended Theory of Strings
	5 Lightweight Techniques for Non-linear Arithmetic
	6 Lazy Bit-Blasting for Bit-Vector Constraints
	7 Related Work
	8 Conclusion and Future Work
	References

