
Using Workflows to Automate Activities
in MDE Tools

Miguel Andrés Gamboa and Eugene Syriani(B)

Université de Montréal, Montreal, Canada
{gamboagm,syriani}@iro.umontreal.ca

Abstract. Model-driven engineering (MDE) enables to generate soft-
ware tools by systematically modeling and transforming this models. How-
ever, the usability of these tools is far from efficient. Common MDE activi-
ties, such as creating a domain-specific language, are non-trivial and often
require repetitive tasks. This results in unnecessary increases of develop-
ment time. The goal of this paper is to increase the productivity of mod-
elers in their every day activities by automating the tasks they perform
in current MDE tools. We propose an MDE-based solution where the user
defines a reusable workflow that can be parametrized at run-time and exe-
cuted. Our solution works for frameworks that support two level meta-
modeling as well as deep metamodeling. We implemented our solution in
the MDE tool AToMPM. We also performed an empirical evaluation of
our approach and showed that we reduce both mechanical and thinking
efforts of the user. The ideas and concepts of this paper were introduced
at the MODELSWARD conference [1] and are extended in this paper.

1 Introduction

Model-Driven Engineering (MDE) has been advocating faster software devel-
opment times through the help of automation [2]. MDE technologies combine
domain-specific languages (DSL), transformation engines and code generators to
produce various software artifacts. Although some studies report success stories
of MDE [3], some of the less satisfactory results include the presence of a plethora
of MDE tools. Each tool defines its own development and usage process, which is
a burden on the user who needs to adapt himself to every tool. To be successful,
MDE needs tools that are not only well adapted to the tasks to perform, but also
tools that increase the productivity of modelers in their day-to-day activities.

Modeling tools and frameworks, such as AToMPM [4], EMF [5], GME [6], and
MetaEdit+ [7], provide many functionalities, such as DSL creation, model edit-
ing, or model transformations. Although based on common foundational princi-
ples, the process for performing these tasks differs greatly depending on the tool
used. For example, to create a DSL in AToMPM [8], the language designer has
to load the class diagram formalism and graphically build the metamodel. He
generates the abstract syntax of the DSL from that metamodel by loading the
compiler toolbar. Then he has to load the concrete syntax formalism and assign
a concrete syntax to each individual class and association from the metamodel
c© Springer International Publishing AG 2017
S. Hammoudi et al. (Eds): MODELSWARD 2016, CCIS 692, pp. 25–45, 2017.
DOI: 10.1007/978-3-319-66302-9 2

26 M.A. Gamboa and E. Syriani

by drawing shapes. He then generates the domain-specific modeling environment
by loading the compiler toolbar. In contrast, the steps are different to create a
DSL in EMFText [9]. The language designer first creates a new project by speci-
fying the project settings in the wizard dialog. He then creates an Ecore diagram
file and graphically builds the metamodel. He then needs to create a generator
model from the metamodel file. To define the concrete syntax, he creates a file
specifying the textual grammar. Once completed, he executes the generators to
create the domain-specific environment that needs to be launched as a separate
Eclipse instance initiated from the generated Java code.

Many of these activities involve repetitive tasks and a lot of user interac-
tions with the user interface of the MDE tool. These are non-trivial activities.
They involve long sequences of tasks, often repetitive tasks. Additionally, they
require context-dependent decisions leading to a lot of user interactions with
the user interface of the MDE tool. The processes to follow are complex for all
users, whether they are language engineers (i.e., MDE savvy) or domain-specific
modelers (i.e., end-users). They require heavy mental loads and tasks that are
error-prone. In the end, users are spending more time on development than nec-
essary. It is therefore mandatory to try to automate MDE tasks and processes
as much as possible, thus decreasing the accidental complexity of the tools used
and letting the user focus on the essential complexities of the domain problem.

To solve this issue, tools can implement automated workflows for each MDE
activity that involves a complex process or repetitive tasks. Many of the tools
already partially support this with the help of wizards [5] or scripts [10]. How-
ever, even these wizards become quite complex offering too many options that
the user has to manually input each time he wants to repeat an activity, as in
Eclipse based tools. There are also several languages to define processes, such as
SPEM [11], but do not support their execution (or enactment) natively. Other
executable process languages like BPEL [12] are too complex for the tasks we
want to achieve in modeling tools. Workflow languages, such as UML activity
diagrams, can be enacted [13], but the execution relies on programming individ-
ual actions which hampers porting a process from one tool to another.

We therefore propose to define a DSL, inspired from activity diagrams, that
fits exactly the purpose of designing workflows for common tasks in MDE tools.
The tasks encompass simple operations, such as opening, closing or saving mod-
els, and more complex tasks, such as generating the artifacts for a DSL. We
noted that several tasks occur in different workflows, especially common oper-
ations e.g., open and close. Therefore we opted for a reuse mechanism, where
the user defines workflows that can be parametrized at run-time to minimize the
number of workflows to create. Since our solution follows the MDE paradigm,
the execution of workflows is entirely modeled through model transformation.
Ultimately, users spend less time performing the activity by focusing on essen-
tial model management tasks rather than wasting time interacting with the tool.
The ideas and concepts of this paper were introduced at the MODELSWARD
conference [1] and are extended in this paper.

The paper is organized as follows. In Sect. 2, we describe the details of our
solution and discuss how we solved challenges we faced. In Sect. 3, we report

Using Workflows to Automate Activities in MDE Tools 27

on the improved implementation of our approach in AToMPM. Specifically in
Sect. 4, we discuss how model refactoring is automated. In Sect. 5, we perform a
preliminary empirical evaluation of the impact our approach has on improving
the user productivity in AToMPM. Finally, we discuss related work in Sect. 6
and conclude in Sect. 7.

2 Design of a Reusable Workflow Language

We propose an MDE-based solution where the user defines workflows that can be
parametrized at run-time and executed. In this section, we describe a DSL that is
adaptable to a specific modeling tool. We also describe the general process of how
to design reusable workflows to semi-automate MDE activities. Furthermore, we
discuss how to enact workflows using model transformation.

2.1 Language for Semi-automated Workflows

We model the DSL for defining activities that can be performed in MDE tools.
A workflow is composed of tasks, to define concrete actions to be performed, and
control nodes, to define the flow of tasks. The metamodel in Fig. 1 resembles that
of a simplification of UML activity diagrams since, semantically, an instance of
this metamodel is to be interpreted similarly to the control flow in UML activity
diagrams. Additional well-formedness constraints are not depicted in the figure
e.g., a cycle between tasks must involve an iteration node, there must be exactly
one initial and one final node.

AutomaticTask

GenericTask
WFParams: string

RTParams@2: string

extension: string

location@2: string

SaveModel

EditModel

InitialNode FinalNode

DecisionNode

condition: Constraint id: int

IterationNode
iterations: int = 1

ControlNode

0..1 0..1

0..1 *

0..1

0..1 0..1

2..*2
*

**

2..*

1 1

1

ManualTask
message: string

duration: int =

executing: bool = False

∞

*0..1

2..*

Task
name: string

id: int

JoinNode

ForkNode

Flow
chosen: bool = False

Dependency
srcParam: string

tarParam: string

1

Element

RTParamList: dict

Parameters

Alternative
isTrue: bool = False

next

Fig. 1. Generic metamodel of workflows for modeling tools.

28 M.A. Gamboa and E. Syriani

There are different kinds of tasks in an MDE tool. As for any modern soft-
ware, there are tasks specific to the user interface, such as opening, closing, and
saving models or windows. There are also tasks that are specific to models, such
as editing (CRUD operations) models, constraints, or transformations. There are
also tasks that are specific to the particular modeling tool used, such as loading
or executing a transformation, generating code from a model, or synthesizing
a domain-specific environment from a DSL. Furthermore, we want to automate
users’ activities as much as possible, therefore most of the tasks are automatic:
they do not require human interaction. For example, loading a formalism to
create a metamodel is (e.g., Ecore in EMF or Class Diagrams in AToMPM) is
a task that can be automated, since the location of that formalism is known.
Shaded classes in Fig. 1 (SaveModel and EditModel) are examples of tasks that
may vary from one MDE tool to another. Otherwise, this is a generic metamodel
implementable in any MDE tool.

Nevertheless, some tasks are hard, even impossible, to automate and thus
must remain manual. These are typically tasks specific to a particular model,
such as deciding what new element to add in the model. A message is specified to
guide the user during manual tasks. A maximum duration can also be specified
to limit the time spent on a manual task.

A workflow conforming to this metamodel starts from the initial node and
terminates at the final node. Tasks can be sequenced one after the other. A
decision node can be placed to provide alternative flows (one true and one false)
depending on a Boolean condition evaluated at run-time. Repetitions are possible
with an iteration node. This node repeats the flow along the true alternative as
long as the condition is satisfied. A common condition is to limit the number of
iterations: e.g., self.iterations <= 2. The cycle ends when either the specified
number of iterations is reached or a terminating condition is satisfied. Fork
and join nodes provide non-determinism when the order of execution of tasks
is not relevant. Fork node is a control node that splits a flow into multiple
concurrent flows and join node is a control node that synchronizes multiple flows.
These correspond to the common basic control flow patterns for workflows [14].
Although not supported in our current implementation, tasks may be executed
concurrently, except if the concurrent tasks are manual.

2.2 Parameters

One issue that may slow down the development time of users using workflows, is
that many tasks require parameters. For example, the task SaveModel requires
the location of where to save the model (path and name) and the extension to
be used. The extension is generally known from the context of the workflow. For
example, a generic model ends with .ecore in EMF and .model in AToMPM,
but a domain-specific model may have a specific extension in EMF. The designer
of the workflow can thus set the value of this attribute at design-time. However,
the location of the model is generally unknown to the workflow designer because
it is a decision often left at the discretion of the domain user. We therefore

Using Workflows to Automate Activities in MDE Tools 29

distinguish between workflow parameters that are fixed for all executions of the
workflows and run-time parameters that are specific to individual executions of
the workflow.

Within the same workflow, several tasks may share the same parameters.
Workflow parameters are specified once per workflow. However, run-time para-
meters must be manually specified each time the workflow is executed. Therefore,
a Dependency link can be specified between different tasks that share the same
run-time parameters. A dependency link specifies which attribute from the tar-
get task gets its value from an attribute in the source task. For example, the
location of the SaveModel task is the same as the location of the OpenModel
when saving a model we just opened and modified.

2.3 Activities as Workflows

To set the values of run-time parameters, we need an intermediate model of
workflows that is an instance of the metamodel presented, but where some para-
meters are left for further assignment. As explained in [15], the commonly used
technique of two-level metamodeling does not allow us to represent this need.

An attractive solution is to apply techniques from deep metamodeling [16],
and in particular, the approach defining metamodels with potency [17]. We assign
a potency of 2 to attributes representing run-time parameters and a potency of
1 to those representing workflow parameters, as depicted in Fig. 1. This way,
the workflow designer only needs to create one workflow for saving models with
the extension set to e.g., .model and the user can execute the workflow only
caring of the location where to save the model and not bother what the right
extension is. In this setup, an instance of the workflow metamodel in Fig. 1 is a
workflow. A workflow is itself the metamodel of its instantiation at run-time. The
enactment of a workflow therefore consists in providing the run-time parameters
to a workflow and executing it. These definitions are consistent with what the
Workflow Management Coalition specifies [18].

2.4 Workflow Enactment by Model Transformation

In this section, we describe how workflows are instantiated with run-time para-
meters and executed.

Deep Instantiation. The issue with the above solution is that not many
modeling frameworks (e.g., AToMPM1 and EMF) support deep metamodeling
with potency like metadepth [20] or Melanee [21] do. Therefore, we propose a
workaround to enact workflows by emulating deep metamodeling with potency
for tools that do not natively support it. The solution is to add a Parameters
class to the metamodel that is instantiated once per workflow enactment. Its
1 In [19], the authors proposed a deep metamodeling solution for the Modelverse of

AToMPM, but no usable implementation was available at the time of writing this
paper.

30 M.A. Gamboa and E. Syriani

attributes are populated dynamically for the enactment. They consist of all the
run-time parameters of every task in the workflow. The parameter object is used
to generate a wizard prompting for all run-time parameters needed in the tasks
of a workflow.

Once a workflow has been created by the workflow designer, a user can enact
the workflow. He creates a parameter object to specify run-time parameters
and executes the workflow. We have modeled the enactment of workflows by
model transformation. Figure 2 depicts the transformation in MoTif [22], a rule-
based graph transformation language in AToMPM. Rules are defined with a
pre-condition pattern on the left and a post-condition pattern on the right.
Constraints Const and actions Act on attributes are specified in Python. A
scheduling structure controls the order of execution of rules. Figure 2 shows the
two-step transformation that retrieves all run-time parameters of the workflow.
The transformation on the left of the figure populates all attribute fields of
the parameter object (the icon with two gears) by visiting each task in the
workflow model. The first rule makes sure a depended run-time parameter is not
added to the parameter list of the parameter object. For each parameter, we
store the task type, its task name (in case multiple instances of the same task
type are in the workflow), and the name of the parameter. We make use of the
setAttr and getAttr functions that allows us to get and set attribute values
using the attribute name as a string. This information is then used to render a
wizard prompting for their corresponding values to the user. Once the user enters
all parameters, the transformation on the right of the figure copies the values
entered in the source run-time parameters to the target run-time parameters.
This makes sure that all run-time parameters of all tasks are set. Note that the
transformations uses FRules to make sure that each task is visited exactly once,
which is why no negative application condition is needed.

LoadRTParams:

LoadRTParams

Act: for a in PostNode(1).getAttrs():
 if '@2' in a and getAttr(a,PostNode(1)) != ' ' :
 PostNode(2).RTParamList.add(
{ PostNode(1).getType() + PostNode(1).name : a[:-2] })

Task1

2

Task1

2

F

F
SkipDependParam:

SkipDependParam

Task1

2

Task1

2Task Task
Act: setAttr(getAttr(PostNode(3).srcParam,
 PostNode(3)),' ',PostNode(2))'

AddDependParam

Task1

2

Task1

2Task Task

 Act: PostNode(4).RTParamList.add({(PostNode(2).getType(),
 PostNode(2).name,PostNode(3).tarParam) :
 PostNode(4)[(PostNode(1).getType(),
 PostNode(1).name,PostNode(3).srcParam)]})

AddDependParam: F

33 3 3

4 4

Fig. 2. Transformation for loading run-time parameters in MoTif.

Using Workflows to Automate Activities in MDE Tools 31

Execution. With all run-time parameters set, there are two ways to execute
the workflow. One is to transform the workflow into a model transformation
that gets executed, as done in [23]. In this case, a higher-order transformation
takes as input the workflow and parameter object, generates a rule for each
task, and schedules the rules according to the order of the tasks in the workflow.
This is possible in MoTif since rules and scheduling are specified in separate
models. Although this approach has the advantage to reuse built-in execution
mechanisms from the MDE tool, a new transformation must be generated for
each workflow and, in particular, if the designer makes changes to the workflow
model.

In this work, we have implemented an alternative solution: we define the oper-
ational semantics of a workflow and execute it as a simulation. Figure 3 illustrates
the overall structure of this transformation and Fig. 4 depicts some of the rules.
The process starts from the element (task or control node) marked with the ini-
tial node. The rule GetInitialElement is responsible for this and specifies only
a pre-condition. The general idea is that then, each task to process each element
in the order of the workflow by advancing the current pointer called pivot in
MoTif, with the rule GetNextElement. The simulation ends when the final node
is reached, satisfying the rule IsFinalElement. Executing an automatic task,
such as save model depicted in rule ExecuteSaveModel, is performed by call-
ing the corresponding API operation of the MDE tool with the corresponding
run-time parameters. We assume that the MDE tool offers an API for interact-

: GetInitialElement
?

: GetNextElement

: IsFinalElement

B

B

: EvalCtrlNode

: ExecAutoTask

: ExecManTask

: TerminateManTask

?

: EvalDecisionNode

: EvalFlowNode

: EvalCtrlNode

: FalseAlternative

: EvalFlowNode

: FlowIncomplete

: ChooseFlow : Join

: EvalDecisionNode

: Iterate

: TrueAlternative

Fig. 3. Control structure of the transformation in MoTif that executes a workflow.

32 M.A. Gamboa and E. Syriani

TerminateManTask

Const: PreNode(1).executing==True
Act: PostNode(1).executing=False

current1

1

GetInitialElement

current

Element

ExecuteSaveModel

Act: _saveModelInNewWindow(
 PostNode(2)[(PostNode(1).getType(),
 PostNode(1).name, 'location')])

current

1

2

1

2

ExecuteEditModel

Act: PostNode(1).executing=True

current

1

2

1

2

GetNextElement
current

current

Element

Element

Element

Element

IsFinalElement

current

Element

current

Join

current
Element

Element

Element

Element

ChooseFlow

Const: PostNode(1).chosen==False
Act: PreNode(1).chosen=True

current

current

1

Element

Element

Element

Element

Iterate

Const: eval(PreNode(1).condition)==True
 and PreNode(2).isTrue==True
Act: PostNode(1).iterations+=1

current
1

2 Element

Element
1

2 Element

Element

current

F

T

F

T

FalseAlternative

Const: eval(PreNode(1).condition)==False
 and PreNode(2).isTrue==False

current

1

Element

Element
1

2 Element

Element
currentF

T

F

T
2

TrueAlternative

Const: eval(PreNode(1).condition)==True
 and PreNode(2).isTrue==True

current
1

2 Element

Element
1

2 Element

Element

current

F

T

F

T

FlowIncomplete

Const: PreNode(1).id==PreNode(2).id
 and PreNode(3).chosen==False

2

3
Element

current

1

Element

2

3
Element

current

1
Element

Fig. 4. Transformation rules in MoTif that execute a workflow.

ing with it programmatically (e.g., Python API for AToMPM and Java API for
EMF).

When a control node is the current element to process, we need to decide
on which element is next to be processed. For a decision node, if the condition
is true, then the next element along the true branch is selected. Otherwise, it
is the next element along the false branch. This assignment is the same for
iteration nodes, except that the iterations count is incremented as long as
the condition is satisfied. In our implementation, the semantics of a fork is to
choose non-deterministically one of the flows, execute all tasks in that flow in
order, and then choose another flow. The rules in EvaluateFlowNode ensure this
logic: when a join node is reached, we make sure that all flows outgoing from
the corresponding fork are complete as expressed by rule FlowIncomplete.

This process runs autonomously as long as there are automatic tasks. How-
ever, manual tasks require interruption of the transformation in real-time so
that the user can complete the task at hand and then resume the transformation.
Automating such a process requires to be able to pause and resume the transfor-
mation from the rules being executed. Although some transformation languages

Using Workflows to Automate Activities in MDE Tools 33

support real-time interruption [24], most do not. Therefore, as depicted in Fig. 3,
we extend the logic to handle manual tasks separately. If the next task to exe-
cute is manual, the corresponding rule simply flags the task as executing, as rule
ExecuteEditModel shows, and the transformation terminates. The user notifies
the MDE tool that his manual task is complete by restarting the transforma-
tion. Consequently, the transformation executes the first rule TerminateManTask
which resumes the execution from the task that was last marked as executing.
The executing attribute for manual tasks allows the workflow model to keep
track of the last manual task executed after the transformation is stopped.

2.5 Extensions and Exceptions

The approach presented here is evolution safe. MDE tools evolve with new fea-
tures added. If a new feature is available via the API and is needed in an
workflow, then there are only two steps the designer is required to perform
to support that feature. He shall add a new sub-class of automatic or man-
ual task in the metamodel of Fig. 1 and add a rule under ExecAutoTask or
ExecManTask in Fig. 3 that calls the appropriate API function to perform the
operation. ExecAutoTask (respectively ExecManTask) is a BRule that contains
all the rules to execute automatic (respectively manual) tasks. BRules execute at
most one of their inner rules unless none of them are applicable. The modularity
of this design reduces significantly the effort of workflow designers who wish to
provide additional tasks available via new features of the MDE tool.

Although it is common to explicitly model exceptional cases in workflows
[25,26], we have decided not to do that at the workflow model level. Exceptions
can only occur if a task execution fails because the user is constrained to do
exactly what the workflow allows as next action. In this version of our imple-
mentation, if an exception occurs, the workflow execution stops at the failing
task in the workflow, as depicted by the circled crosses in Fig. 3. The user must
then manually recover from the error and restart the execution of the workflow.
Nevertheless, run-time parameters are retained.

3 Implementation in AToMPM

We implemented a prototype in the MDE tool AToMPM [4], since it offers a
graphical concrete syntax for DSLs, which is best suited for workflow languages,
and a backdoor API to programmatically interact with the tool in headless mode.
Nevertheless, our approach can be implemented in any MDE tool as long as it
offers an accessible API to perform operations that their user interface allows to.
We implemented the workflow DSL following the metamodel in Fig. 1. Figure 5
shows the graphical representation used for each task, each control node, and
parameter object.

We analyzed several processes and noted the user interactions needed to per-
form each task, e.g., creation of DSL. We had to decide on what level of granular-
ity we want to present tasks. One option is to go to the level of mouse movements

34 M.A. Gamboa and E. Syriani

GeneratePMM

VerifyAS OpenTransformation

ForkNode JoinNodeFinalNodeInitialNode DecisionNode

Control nodes

LoadToolbar

Automatic tasks

Workflow execution

LoadParametersExecuteWorkflow

Manual tasks

ManualTask EditModel

CompleteManual

OpenModel SaveModel GenerateAS GenerateCS

Parameters

IterationNode

ExecuteTransformation RefactorModel

Fig. 5. Concrete syntax of the workflow DSL in AToMPM.

(graphically moving objects), clicks (selections), and keystrokes (textual editing).
Although this would enable us to model nearly any user interaction AToMPM
allows for, this would make the workflows very verbose and complex for design-
ers. We therefore opted for tasks to represent core functionalities instead. Subse-
quently, the most common tasks we noted are opening models, loading toolbars
and formalisms, saving models, generating concrete and abstract syntax of DSLs,
as listed in Fig. 5. All these operations can be automated, since they require a
location as run-time parameter. SaveModel also has a workflow parameter for
the extension of the model file. Additionally, a task to edit models is needed,
but cannot be automated since it is up to the user to create or edit the model.

3.1 Process

Our prototype is to be used as follows. The designer defines workflows by creat-
ing instances of the workflow DSL. A user (a language engineer in this example)
then selects which workflow he desires to enact. To set the run-time parameters,
he pushes the LoadParameters button. This creates an instance of the parameter
object and pops up a dialog prompting for all required parameters, following the
transformation from Fig. 2. Upon pushing ExecuteWorkflow button, the simula-
tion (presented in Fig. 3) executes the workflow autonomously. When a manual
task is reached, a new AToMPM window is opened with all necessary toolbars
pre-loaded. A message describing the manual task to perform is displayed to the
user and the simulation stops. After the user completes the task, he pushes the
CompleteManual button. Then, the window closes and the simulation restarts.

3.2 Example Workflow for Creating a DSL

Figure 6 shows the workflow that specifies how to create a DSL and generate a
modeling environment for it in AToMPM. The first task is LoadToolbar. Its loca-
tion parameter is already predefined with the class diagram toolbar, since this is
the standard formalism with which one creates a metamodel in AToMPM. The
following task is EditModel. In this manual task, the user creates the metamodel
of the DSL using class diagrams. Once this is complete, the workflow restarts

Using Workflows to Automate Activities in MDE Tools 35

executing from that task and proceeds with SaveModel. This task requires a
run-time parameter to specify the location of where the metamodel is saved.
The user sets the value in the popup dialog wizard. Now that the metamodel is
created, a fork node proposes two flows: one for creating the concrete syntax of
the DSL and one to generate the abstract syntax from the metamodel. Recall
that the simulation chooses one flow and then the other in no specific order. Sup-
pose the former flow is chosen. Then, a LoadToolbar task is executed to load the
concrete syntax toolbar, the standard formalism in AToMPM. This is followed
by an EditModel so the user can manually create the shapes of each element
of the metamodel. Once this is complete, the workflow restarts and proceeds
with a SaveModel task. Recall that the location is a run-time parameter to save
the concerte syntax model with a predefined extension. In the popup dialog, we
distinguish between different task with their type, and in this case their name
(1 and 2). The following task in this flow is GenerateCS. It takes as run-time
parameter the location of where the generated artifact must be output. Specif-
ically, the name used will be also the name of the toolbar that will be used to
create a model with this DSL. Therefore, the location of the generated concrete
syntax is the same as the location of the concrete syntax model the user cre-
ated manually. The dependency link prevents the user from having to duplicate
parameter values in the wizard. When the join node is reached, the simulation
notices that the second flow was not executed yet. Therefore the next task to
be executed is GenerateAS. Its location parameter uses the same value of the
location attribute of SaveModel 1, as depicted by the dependency link between
these two tasks. When the join node is reached again, this time all flows were
executed and proceeds with the final task LoadToolbar 3. As stated before, its
location parameter use the same value of the location attribute of SaveModel 2.
The simulation ends on a new window open with the new DSL loaded, ready for
the user to create his domain-specific model.

Fig. 6. Workflow to create a DSL.

36 M.A. Gamboa and E. Syriani

4 Automating Refactoring Tasks

Refactoring is common operation on modeling artifacts that improves the struc-
ture of a model while preserving its external behavior [27]. In MDE, refactoring
is either done manually on a model or through the application of a model trans-
formation [28]. There exists several techniques to perform refactoring on generic
or domain-specific models [29], and even a catalog of refactoring patterns on
metamodels [30].

AutomaticTask

MacroTask

TransformationLocation: string

ModelLocation@2: string

ModelExtension: string

RefactorModel

Fig. 7. Generic metamodel of Refactoring Model.

Refactoring is an activity that can be automated in our workflow system.
By default, this can be done through a manual task. However, we also support
automating this task for the user. To do so, we extend the metamodel of Fig. 1
with the concept of a MacroTask as depicted in Fig. 7. A macro task is an implicit
workflow of other tasks. For example, as illustrated in Fig. 8, RefactorModel is
decomposed into opening the model to refactor, loading the transformation that
implements the refactoring, and executing that transformation on the model.
For the RefactorModel task, the location of the transformation is a workflow
parameter specified by the workflow designer. Additionally, this task requires
the location of the model to refactor, but this is a run-time parameter that the
user specifies. The extension of the model is generally known from the context
of the workflow.

A macro task serves as syntactic sugar to simplify the workflow of the user.
The semantics of a macro task is modeled by a transformation executed dur-
ing the simulation in Fig. 3. The implicit transformation that is executed for

RefactorModel

Automatic Refactoring Tasks

OpenModel OpenTransformation ExecuteTransformation

Fig. 8. Generic metamodel of Refactoring Model.

Using Workflows to Automate Activities in MDE Tools 37

RefactorModel can be defined on the meta-metamodel level (e.g., class diagram
in AToMPM or Ecore in EMF) so that it is syntactically applicable on any given
model. The burden is on the user who needs to define a meaningful transfor-
mation that can be applied on the desired model. For example, if the model is
a metamodel, then a refactoring can add a unicity constraint. If the model is
a concrete syntax assignment, then a refactoring can create a default concrete
syntax to every class of the metamodel.

5 Evaluation of the Improvement of MDE Activities

5.1 Research Question

The goal of the experiment is to determine whether the productivity of the user
is increased when performing complex or repetitive tasks. Thus, our research
question is “is the time for mechanical and cognitive efforts of the user reduced
when automating activities with workflows?” Therefore, we conduct the exper-
iment to verify that these efforts are reduced when using our approach versus
when not.

5.2 Metrics

The total time T spent by a user to perform one activity is one way to quantify
the effort the user produces. T is mainly made up of the mechanical time Tm

(hand movements) and cognitive effort time Tt (thinking time) of the user, thus
T = Tm + Tt, assuming there are no interruptions or distractions.

Since AToMPM only presents a web-based graphical user interface and most
interactions are performed with a mouse, we can apply Fitts Law [31] to measure
the time of mouse movements tFL = a + b × log2(1 + D/S). D is the distance
from a given cursor position to the position of a widget to reach (e.g., button,
text field) and S is the smallest value of the width or height of the widget. We
denote TFL as the sum of all the tFL for each useful mouse movement to perform
one activity.

Another useful metric we noted for the mechanical effort is the number of
clicks c needed to complete the activity. Relying on empirical data from an online
benchmark [32], the average time to click reactively is 258 ms. Thus we denote
Tc = 258 × c the time spent clicking during an activity.

Therefore a rough estimate of the time spent on mouse actions in an activity
is Tm = TFL + Tc for every straight line distance D between two clicks and the
size S of the widget at every even click.

Delays between mechanical actions is a rough estimate of the time the user
spent thinking during the activity. Hence, we deduce the thinking time Tt =
T − Tm.

Finally, we measure the complexity N of a task by the number of automatic
tasks it requires the user to perform.

38 M.A. Gamboa and E. Syriani

These metrics are far from accurate, but serve at least as a preliminary eval-
uation of our approach to discard the null hypothesis: Tm, Tc and Tt are smaller
for performing an MDE activity in AToMPM using workflows than without
workflows.

5.3 Experimental Setup

We performed all experiments on a 15.6” laptop monitor with a resolution of
1920 × 1080. The machine was an ArchLinux virtual machine using 2 cores and
4 GB of RAM, running on Windows 10 quad-core computer at 2.4 GHz with
16 GB of RAM. Given this performance, we neglected the computation time of
AToMPM triggered by each click. To keep a fair comparison, the experiments
using the workflow did not take into account the mouse activity and time spent
during manual tasks. This is the time after the simulation terminates and before
the notification from the CompleteManual button is received.

5.4 Data Collection

To calculate t using Fitts law, the coefficients a and b must be determined empir-
ically. For that, we recorded the straight line distances between meaningful clicks
(e.g., center of canvas to toolbar button) as well as different sizes of clickable
elements (e.g., model elements on the canvas) in AToMPM. We recorded 12
distances ranging from 79 to 1027 pixels and 5 sizes ranging from 20 to 305
pixels. We then placed on an empty screen a point and a rectangle of sizes and
at distances that correspond to these measurements. We measured the time it
took to click on the initial point and move the cursor as fast as possible to click
inside the opposite rectangle. This data collection was performed by the first
author who is an expert in AToMPM. We repeated each of the 57 cases 20 times
(excluding those where D ≤ S). The maximum variation in the same case was
less than 9%. We determined by regression analysis the values a = 166.75 and
b = 155.93 with correlation R2 = .9106 with a median and average margin of
error of 8%.

In our prototype, we implemented the five most common tasks in AToMPM
shown in Fig. 5. There is an infinite number of possible combinations of these
tasks because tasks can be repeated and the order matters. Therefore, we reduced
the number of cases to only meaningful combinations of tasks in AToMPM. We
identified 4 meaningful for activities with one task (compiling the concrete syntax
requires a model to be opened), 9 for activities with two tasks (e.g., open then
save model), 13 for activities with three tasks, 4 for activities with four tasks, 5
for activities with five tasks, 3 for activities with six tasks, and 3 for activities
with seven tasks. Hence we ran our experiments on 38 distinct activities varying
up to seven automatic tasks.

The most complex activity we evaluated is for the creation of a DSL in
AToMPM modeled with the workflow in Fig. 6, consisting of seven automatic
tasks. The workflow starts by loading the Class Diagram formalism. It lets
the user manually create the appropriate class diagram model to define the

Using Workflows to Automate Activities in MDE Tools 39

metamodel. When the user completes that task, the metamodel is saved (loca-
tion provided at run-time) and the abstract syntax is generated. Then the
ConcreteSyntax formalism is loaded and the user creates the shapes for links
and icons. When the user completes that task, the concrete syntax model is
saved (name provided at run-time) and the GenerateCS task generates the code
for the new DSL environment. Finally, the new formalism is loaded in a new
window showing the new generated DSL environment to the user. Note that in
this situation, the first LoadToolbar object does not require a run-time parame-
ter, but a workflow parameter for the location of the Class Diagram formalism.
We therefore suggest to create two classes in the metamodel for the same task
when we want to give the option to set either run-time or workflow parameters
depending on the context.

5.5 Results

The two plots in Fig. 9 report the time performances for each case. We aggregated
the times by the number of tasks because there was very few variability between
activities with the same number of tasks: the highest coefficient of variability
20% was obtained for activities with three tasks since this was the most populous
set, while all the others remained under 5%. Both plots confirm that the use of
workflows does reduce the time to perform the activity, as the complexity of the
activity increases.

0
5

10
15
20
25
30
35
40
45

1 2 3 4 5 6 7

Tm (s)

NWithout workflow With workflow

(a)

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7

Tt (s)

NNo workflow Workflow

(b)

Fig. 9. Mechanical (a) and cognitive (b) efforts with respect to the number of tasks in
a workflow.

The results obtained correspond to what one would expect when adding
automation in a development process. The mechanical effort is greater when
using workflows for simple activities that have up to three tasks. However, after
that point, the mechanical effort remains almost identical as the number of tasks
increases. This behavior, depicted in Fig. 9(a), is due to the overhead to open
the appropriate workflow and set all run-time parameters. The reason why Tm

plateaus after N = 5 is that the only mechanical effort needed is to specify

40 M.A. Gamboa and E. Syriani

additional run-time parameters. However, this is done by typing the values with
the keyboard which we haven’t taken into account in this experiment. When
performing the experiments, we noted that the slowest task performed manually
was for loading toolbars.

Figure 9(b) reports on the non-mechanical effort needed by the user to per-
form each activity. We note a trend similar to the mechanical effort. However,
the flip point where less effort is needed when using workflows occurs as early
as activities with more than one task. The cognitive effort increases linearly for
activities with more than three tasks. An interesting result is that, when not
using workflows, the cognitive effort is always greater than the mechanical effort
for N > 1 and that gap keeps on increasing as there are more tasks. On the
contrary, when using workflows, the mechanical effort is greater for activities
with up to two tasks, but when the cognitive effort is greater for N > 2, the
gap remains almost identical. When performing the experiments, we noted that
most of the time was spent searching on the screen to select toolbars to load,
even for an expert user who knows exactly their locations.

To complement this information, Table 1 details each metric for the most
complex activities we evaluated. It shows that, although using workflows
improves all the metrics, the cognitive time is the most improved component.

Table 1. Time measurements in seconds and improvements when using workflows for
N = 7 tasks.

T TFL Tc Tm Tt

No workflow 138 29 11 41 98

Workflow 66 18 6 24 42

Improvement 52% 38% 45% 41% 57%

We conclude that our hypothesis is verified and answer our research question:
for the extent of the experiments we conducted, the time for mechanical and
cognitive efforts of the user is reduced when automating activities with our
approach by half.

5.6 Threats to Validity

There are several threats to the construct validity of this preliminary evaluation.
First, the metrics we used are not sufficient to assess the complete mechanical
effort. Keystrokes can also be taken into account since there is an effort needed
to set the values of run-time parameters. However, the length of the string of
each depends on the file paths of the host machines and the operating system
used. We discarded this metric for its lack of generalization. Further mechanical
metrics could be used such as eye movements, but we lacked the proper hard-
ware to perform eye-tracking experiments. We further mitigated these threats
by using Fitts Law to achieve an objective measure of time mouse movements.

Using Workflows to Automate Activities in MDE Tools 41

We measured cognitive effort by considering it as all non-mechanical effort, which
is not a completely true statement. Otherwise, this would have required more
fine grained measurements of brain activity. We also did not include the time
and effort for manual tasks, which may have a negative influence on the results
if they take longer than the automatic tasks. The data collection was performed
by only one person, but this was only necessary to calculate t since all other
metrics are obtained using Fitts Law, without needing to perform the activities.
This threat only affects the absolute time, but does not affect the improvement
ratio.

With respect to threats internal validity, the selection and configuration of the
tools for time measurements has a weak influence on the results. We calibrated
the parameters based on a pilot experiment and our experience. However, this
should not strongly affect the time because we took care of configuring the tools
in a way that corresponds to the empirical data from an online benchmark.
We also pre-processed inconsistent times (e.g., clicks outside target) in order to
eliminate false positives. Nevertheless, this only reduces the chances that we can
answer our research question positively.

As far as threats to external validity are concerned, the activities were obvi-
ously not sampled randomly from all possible MDE tools activities, but we relied
on our knowledge in MDE tools. Hence, the set of activities is not completely
representative. The results of this study can only be generalized to the extent
of AToMPM. Nevertheless, all five tasks we considered are part of the most
common activities in the majority of MDE tools, such as EMF. We further miti-
gated this threat by including tasks with different complexity (i.e., Open Model
vs Compile Abstract Syntax) and focusing on their meaningful combinations.

6 Related Work

A lot of work can be found in the literature on workflow definition and enact-
ment [33–35]. In [36], the authors proposed a textual DSL for workflow definition
that supports sequencing and iteration. It is not meant to be enacted, but serves
as specification for subsequent code generators. Workflow enactment has been
particularly applied in process modeling.

Various techniques exist to service the execution of workflows, such as dis-
tributing the execution on the cloud [37,38]. However, none of these approaches
models workflow enactment explicitly as we did using model transformation.

We proposed a model transformation as a novel workaround for tools that do
not support deep instantiation of metamodels. An alternative is to define meta-
models following the Type-Object pattern [39] where both types and instances
are explicitly modeled in the metamodel. This is similar to the notion of clab-
ject [40] which generalizes this approach.

From an implementation point of view, the closest work to ours automates
transformation chains in AToMPM [23]. They developed a formalism transfor-
mation graph (FTG) that specifies a megamodel indicating the transformations
between languages and a process model (PM) that specifies the control and data

42 M.A. Gamboa and E. Syriani

flow to schedule the order of execution of model transformations. The execu-
tion of an FTG+PM instance is modeled as a higher-order transformation that
converts the FTG+PM model into a model transformation instance, whereas
our approach executes workflows by simulation. The authors also distinguish
automatic actions from manual ones, but the latter are not modeled in the
transformation.

Similarly to FTG+PM, Wires [41] supports the specification and execution
of model transformation workflows. Wires is graphical executable language for
ATL transformations that provides mechanisms to create model transformations
chains. Kepler [42] is a tool to create and execute scientific workflows. Since it
is based on the Ptolemy II multi-paradigm simulation system, a coordinator
must be hand-written in Java to define the semantics of the workflow, unlike our
approach that makes use of model transformation.

In our approach, activities essentially encapsulate model management tasks.
The Epsilon language suite [43] can be used to perform model management
tasks such as CRUD operations, transformations, comparisons, merging, val-
idation, refactoring, evolution, and code generation. To combine and integrate
these different tasks into workflows, the user defines Ant scripts. In our approach,
users define workflows in a DSL specific to the features the MDE tool provides.
As such, it reduces accidental complexity imposed by Ant and is accessible to
a broader set of users that do not know Ant. One particular language is the
Epsilon Wizard Language (EWL) [44] whose purpose is to refactor, refine, and
update models. EWL allows users to define wizards that serve as encapsulation
of EOL scripts, the action language in Epsilon. Wizards are similar to activities
in our case. EWL provide feedback that can drive the execution of a model man-
agement operation using a context-independent user input. It is a command line
user input interface. In our approach, the user-input method is a popup dialog
with several parameters. Their approach has a more fine-grained wizard selec-
tion process, since a wizard can have a guard that must be satisfied in order to
execute it. Nevertheless, EWL does not support the explicit modeling of manual
tasks. EWL is especially designed for refactoring models automatically. These
model refactorings are applied on model elements that are explicitly selected by
the user. Typical supported refactoring patterns include adding the stereotypes,
attributes and operations. EWL has constructs specifically to refactor model ele-
ments. In our approach, workflows rely on a model transformation to express the
modification to the model. Therefore the user only needs to specify the model,
and not individual model elements.

7 Conclusion

In this paper, we presented a model-based environment for automating daily
activities of language engineers and domain-specific modelers. Designers define
workflow templates conforming to a DSL to increase the productivity of users.
Users enact workflows to perform tasks automatically. Our framework also sup-
ports the integration of manual tasks. The execution of workflows is entirely

Using Workflows to Automate Activities in MDE Tools 43

modeled as a model transformation, making it reusable and portable on various
MDE tools. Preliminary results of our prototype indicate that, using workflows,
users reduce cognitive and mechanical effort to perform common activities in
the MDE tool AToMPM.

We are integrating more features of AToMPM in our prototype to allow
designers define workflows for nearly any interaction process the tool can do. As
future work, we plan to implement this approach in other MDE frameworks, such
as EMF, in order to further generalize the reusability aspect of the metamodel
of activities and their enactment by model transformation.

References

1. Gamboa, M.A., Syriani, E.: Automating activities in MDE tools. In: Model-Driven
Engineering and Software Development, SciTePress, pp. 123–133 (2016)

2. Schmidt, D.C.: Model-driven engineering. IEEE Comput. 39, 25–31 (2006)
3. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven

engineering. IEEE Softw. 31, 79–85 (2014)
4. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Van Mierlo, S., Ergin, H.:

AToMPM: a web-based modeling environment. In: Invited Talks, Demonstration
Session, Poster Session, and ACM Student Research Competition, MODELS 2013,
vol. 1115, pp. 21–25. CEUR-WS.org (2013)

5. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison Wesley Professional, Boston (2008)

6. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C.,
Nordstrom, G., Sprinkle, J., Volgyesi, P.: The generic modeling environment. In:
Workshop on Intelligent Signal Processing, WISP 2001, vol. 17 (2001)

7. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+ a fully configurable multi-user and
multi-tool CASE and CAME environment. In: Constantopoulos, P., Mylopoulos,
J., Vassiliou, Y. (eds.) CAiSE 1996. LNCS, vol. 1080, pp. 1–21. Springer, Heidelberg
(1996). doi:10.1007/3-540-61292-0 1

8. AToMPM tutorial (2013). http://www.slideshare.net/eugenesyriani/atompm-
introductory-tutorial. Accessed 07 Aug 2015

9. EMFText screencast (2014). http://www.emftext.org/index.php/EMFText Gett-
ing Started Screencast. Accessed 07 Aug 2015

10. JetBrains MPS (2015). https://www.jetbrains.com/mps/ Accessed 07 Aug 2015
11. OMG: Software & Systems Process Engineering Metamodel specification 2.0 edn.

(2008)
12. OASIS: Web Services Business Process Execution Language, 2nd edn. (2007)
13. Syriani, E., Ergin, H.: Operational semantics of UML activity diagram: an appli-

cation in project management. In: RE 2012 Workshops, pp. 1–8. IEEE (2012)
14. Russell, N., van der Aalst, W., ter Hofstede, A., Mulyar, N.: Workflow Control-

Flow Patterns: A Revised View. Technical report BPM-06-22, BPM Center (2006)
15. Gonzalez Perez, C., Henderson Sellers, B.: Metamodelling for Software Engineer-

ing. Wiley Publishing, Hoboken (2008)
16. Lara, J.D., Guerra, E., Cuadrado, J.S.: When and how to use multilevel modelling.

ACM Trans. Softw. Eng. Methodol. 24, 1–46 (2014)
17. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: Gogolla, M.,

Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 19–33. Springer, Heidelberg
(2001). doi:10.1007/3-540-45441-1 3

http://dx.doi.org/10.1007/3-540-61292-0_1
http://www.slideshare.net/eugenesyriani/atompm-introductory-tutorial
http://www.slideshare.net/eugenesyriani/atompm-introductory-tutorial
http://www.emftext.org/index.php/EMFText_Getting_Started_Screencast
http://www.emftext.org/index.php/EMFText_Getting_Started_Screencast
https://www.jetbrains.com/mps/
http://dx.doi.org/10.1007/3-540-45441-1_3

44 M.A. Gamboa and E. Syriani

18. WMC: Terminology and glossary. Technical report, WFMC-TC-1011, Workflow
Management Coalition (1999)

19. Van Mierlo, S., Barroca, B., Vangheluwe, H., Syriani, E., Kühne, T.: Multi-level
modelling in the modelverse. In: Workshop on Multi-Level Modelling, MULTI 2014,
vol. 1286, pp. 83–92. CEUR-WS.org (2014)

20. Lara, J., Guerra, E.: Deep meta-modelling with MetaDepth. In: Vitek, J. (ed.)
TOOLS 2010. LNCS, vol. 6141, pp. 1–20. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13953-6 1

21. Atkinson, C., Gerbig, R.: Melanie: multi-level modeling and ontology engineering
environment. In: International Master Class on Model-Driven Engineering: Mod-
eling Wizards, MW 2012, pp. 7:1–7:2. ACM (2012)

22. Syriani, E., Vangheluwe, H.: A modular timed model transformation language. J.
Softw. Syst. Model. 12, 387–414 (2011)

23. Lúcio, L., Mustafiz, S., Denil, J., Vangheluwe, H., Jukss, M.: FTG+PM: an inte-
grated framework for investigating model transformation chains. In: Khendek, F.,
Toeroe, M., Gherbi, A., Reed, R. (eds.) SDL 2013. LNCS, vol. 7916, pp. 182–202.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38911-5 11

24. Syriani, E., Vangheluwe, H.: Programmed graph rewriting with time for
simulation-based design. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT
2008. LNCS, vol. 5063, pp. 91–106. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-69927-9 7

25. Russell, N., Aalst, W., Hofstede, A.: Workflow exception patterns. In: Dubois, E.,
Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 288–302. Springer, Heidelberg
(2006). doi:10.1007/11767138 20

26. Syriani, E., Kienzle, J., Vangheluwe, H.: Exceptional transformations. In: Tratt, L.,
Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 199–214. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-13688-7 14

27. von Pilgrim, J., Ulke, B., Thies, A., Steimann, F.: Model/code co-refactoring: an
MDE approach. In: Automated Software Engineering, pp. 682–687. IEEE (2013)

28. Mens, T.: On the use of graph transformations for model refactoring. In: Lämmel,
R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 219–257.
Springer, Heidelberg (2006). doi:10.1007/11877028 7

29. Zhang, J., Lin, Y., Gray, J.: Generic and domain-specific model refactoring using a
model transformation engine. In: Beydeda, S., Book, M., Gruhn, V. (eds.) Model-
Driven Software Development, pp. 199–217. Springer, Heidelberg (2005)

30. Metamodel refactoring catalog (2016). http://www.metamodelrefactoring.org/?
page id=584. Accessed 19 May 2016

31. MacKenzie, I.S.: Fitts’ law as a research and design tool in human-computer inter-
action. Hum.-Comput. Interact. 7, 91–139 (1992)

32. Benchmark, H.: (2015). http://www.humanbenchmark.com/tests/reactiontime/
statistics

33. WMC: Process Definition Interface - XML Process Definition Language 2.00. Tech-
nical report, WFMC-TC-1025, Workflow Management Coalition (2005)

34. Mahmud, M., Abdullah, S., Hosain, S.: GWDL: a graphical workflow definition lan-
guage for business workflows. In: Gaol, F. (ed.) Recent Progress in Data Engineer-
ing and Internet Technology. LNEE, vol. 156, pp. 205–210. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-28807-4 29

35. Russell, N., Aalst, W.M.P., Hofstede, A.H.M., Edmond, D.: Workflow resource
patterns: identification, representation and tool support. In: Pastor, O., Falcão e
Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer, Heidelberg
(2005). doi:10.1007/11431855 16

http://dx.doi.org/10.1007/978-3-642-13953-6_1
http://dx.doi.org/10.1007/978-3-642-13953-6_1
http://dx.doi.org/10.1007/978-3-642-38911-5_11
http://dx.doi.org/10.1007/978-3-540-69927-9_7
http://dx.doi.org/10.1007/978-3-540-69927-9_7
http://dx.doi.org/10.1007/11767138_20
http://dx.doi.org/10.1007/978-3-642-13688-7_14
http://dx.doi.org/10.1007/11877028_7
http://www.metamodelrefactoring.org/?page_id=584
http://www.metamodelrefactoring.org/?page_id=584
http://www.humanbenchmark.com/tests/reactiontime/statistics
http://www.humanbenchmark.com/tests/reactiontime/statistics
http://dx.doi.org/10.1007/978-3-642-28807-4_29
http://dx.doi.org/10.1007/11431855_16

Using Workflows to Automate Activities in MDE Tools 45

36. Jacob, F., Gray, J., Wynne, A., Liu, Y., Baker, N.: Domain-specific languages
for composing signature discovery workflows. In: Workshop on Domain-Specific
Modeling, pp. 61–64. ACM (2012)

37. Alajrami, S., Romanovsky, A., Watson, P., Roth, A.: Towards cloud-based software
process modelling and enactment. In: Model-Driven Engineering on and for the
Cloud, CloudMDE 14, vol. 1242, pp. 6–15 (2014)

38. Martin, D., Wutke, D., Leymann, F.: A novel approach to decentralized work-
flow enactment. In: Enterprise Distributed Object Computing, pp. 127–136. IEEE
(2008)

39. Johnson, R., Woolf, B.: The type object pattern. In: EuroPLoP (1996)
40. Atkinson, C.: Meta-modelling for distributed object environments. In: Enterprise

Distributed Object Computing Workshop, pp. 90–101. IEEE (1997)
41. Rivera, J.E., Ruiz Gonzalez, D., Lopez Romero, F., Bautista, J., Vallecillo, A.:

Orchestrating ATL model transformations. In: Proceedings of MtATL, vol. 9, pp.
34–46 (2009)

42. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee,
E.A., Tao, J., Zhao, Y.: Scientific workflow management and the kepler system:
research articles. Concurrency Comput.: Pract. Exp. Workflow Grid Syst. 18,
1039–1065 (2006)

43. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Novel features in languages of the
epsilon model management platform. In: Modeling in Software Engineering, pp.
69–73. ACM (2008)

44. Kolovos, D.S., Paige, R.F., Polac, F.A., Rose, L.M.: Update Transformations in
the Small with the Epsilon Wizard Language. J. Object Technol. 6, 53–69 (2007)

http://www.springer.com/978-3-319-66301-2

	Using Workflows to Automate Activities in MDE Tools
	1 Introduction
	2 Design of a Reusable Workflow Language
	2.1 Language for Semi-automated Workflows
	2.2 Parameters
	2.3 Activities as Workflows
	2.4 Workflow Enactment by Model Transformation
	2.5 Extensions and Exceptions

	3 Implementation in AToMPM
	3.1 Process
	3.2 Example Workflow for Creating a DSL

	4 Automating Refactoring Tasks
	5 Evaluation of the Improvement of MDE Activities
	5.1 Research Question
	5.2 Metrics
	5.3 Experimental Setup
	5.4 Data Collection
	5.5 Results
	5.6 Threats to Validity

	6 Related Work
	7 Conclusion
	References

