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Abstract. The problem of the influence of the structure of forces on
the stability of the relative equilibrium of a controlled satellite with a
gravitational stabilizer on the circular orbit is studied. In the space of
entered parameters, the regions with different degrees of instability by
Poincaré are found. Assuming an instability of a potential system, the
problem of the possibility of its stabilization up to asymptotic stability
is considered. A parametric analysis of the obtained inequalities with the
help of “Mathematica” built-in tools for symbolic-numerical modelling
is carried out.

1 Introduction

Investigation of stability and stabilization of nonlinear or linearized models of
mechanical systems often leads to the problem of “parametric analysis” of the
conditions (inequalities) obtained. In the case of parametric analysis, it is impor-
tant to have a possibility to estimate the domain of values of the parameters
under which a desired system’s state is provided. Naturally, it is hard to hope
for obtaining any readable analytical results for the models which have high
dimensions and contain many parameters. At this stage, one can efficiently use
software packages of computer algebra (SPCA) as well as the corresponding
software elaborated on the basis of these software packages.

The paper considers a problem of stability of the position of relative equilib-
rium in the orbital coordinate system of a controlled satellite with a gravitational
stabilizer. The mechanical system in question is a well-studied model (see, for
example, the review [1]). To obtain sufficient stability conditions, the second Lya-
punov method and the Barbashin–Krasovskii theorem were applied. As noted
in [1], obtaining the necessary stability conditions (by linear equations of per-
turbed motion) leads to presenting very bulky calculations. In contrast to the
passive stabilization and orientation systems, the possibilities of active control of
a gravitational stabilizer are investigated in [2], in particular, the optimization
of the system by degrees of stability and accuracy.

The application of computer algebra methods and SPCA capabilities to the
problems of celestial mechanics has rich history and till today attracts academic
attention (see, for example, [3,4]).
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2 Description and Construction of a Symbolical Model

The system’s mass center moves along the Kepler circular orbit with constant
angular velocity ω . For the description of a motion of the system, two right-
handed rectangular Cartesian coordinate systems are introduced (the orbital
coordinate system (OCS) and the coordinate system rigidly connected to a satel-
lite). To define relative positioning of the axes of these coordinate systems, the
directional cosines defined by the angles ψ , θ , ϕ of Euler’s type, are used (see,
for example, [2]). The stabilizer is a rigid rod with point mass at its free end.
The rod is connected to the satellite with a 2-degree-of-freedom suspension. The
rotation axes of the rod coincide with the direction of the axes of pitch and roll.
The system is influenced by a gravitation moment. When moving undisturbed,
the system’s principal central axes of inertia coincide with the axes of orbital
coordinate system, and the rod is oriented along the radius of the orbit. This is
the equilibrium position of a satellite with the stabilizer in regard to OCS.

With the help of the developed software [5,6], the following results are
obtained in a symbolic form on PC for the system of bodies in question:

• kinetic energy and force function of the approximate Newtonian field of grav-
itation;

• nonlinear equations of motion in Lagrange form of the 2nd kind;
• matrices of equations of perturbed motion in the first approximation in the

vicinity of equilibrium position;
• coefficients of the system’s characteristic equation.

Linearized in the vicinity of the equilibrium position, equations of motion for
a satellite with a stabilizer are decomposed into two subsystems. Respectively,
a “pitch” subsystem ( θ ) and a “yaw-and-roll” subsystem (ψ, ϕ) are:{

M1 q̈1 + K1 q1 = Q1

M2 q̈2 + G q̇2 + K2 q2 = Q2,
(1)

where all derivatives are calculated on dimensionless time τ = ωt (ω= |ω| is the

module of orbital angular velocity); q1 =
(

θ
δ

)
, q2 =

⎛
⎝ψ

ϕ
σ

⎞
⎠; δ, σ are rotation

angles of the rod with regard to the satellite’s body; Q1 =
(

0
Qδ

)
, Q2 =

⎛
⎝ 0

0
Qσ

⎞
⎠

are control forces;

M1 =
(

c f
f d

)
; K1 = 3

(
b − a f

f f

)
; M2 =

⎛
⎝a 0 0

0 b f
0 f d

⎞
⎠;

K2 =

⎛
⎝ c − b 0 0

0 4(c − a) 4f
0 4f 3f + d

⎞
⎠; G =

⎛
⎝ 0 c − b − a 0

a + b − c 0 0
0 0 0

⎞
⎠.
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Here, we introduce the following notations:

a = Jy; b = Jx + mr (l + r) +
1
3

ml2 + m0(l + r)2; c = b + Jz − Jx;

d =
(m

3
+ m0

)
l2; f =

(m

2
+ m0

)
rl + d; c − b − a = Jz − Jx − Jy,

where m and m0 are masses of the rod and the point load at the end, respectively;
l>0 is the rod length; r≥0 is the distance from the system’s mass center to the
point of attachment of the rod; Jx, Jy, Jz; a, b, c are principal inertia moments
of the satellite and whole system, respectively.

Taking into account the mass distribution in the system and in the ellipsoid
of inertia of rigid body, the following inequalities are valid

b > a > 0, c > a, f > d > 0, c > f, b > f,
c + a − b ≡ Jz + Jy − Jx > 0, b + a − c ≡ Jx + Jy − Jz > 0,

(2)

Equation (1) may be interpreted as equations of oscillations of a mechanical
system influenced by potential (with the matrices K1,K2) and gyroscopic (with
the matrix G) forces. These forces are determined by gravitation forces as well
as by orbital motion. The matrices M1 and M2 play the role of diagonal blocks
of a positive definite matrix of kinetic energy.

3 Formulation of the Problem

According to Kelvin–Chetaev’s theorems [7], examination of stability of trivial
solution begins with the analysis of the matrix of potential forces. Let us write
out the conditions of positive definiteness of matrices K1,K2:

b > a + f, c > b, (c − a)(3f + d) − 4f2 > 0. (3)

Let us assume that

(1) for the “pitch” subsystem, the values of the parameters satisfy the condition
a < b < a + f (i.e., the first inequality in (3) is violated);

(2) for the “yaw-and-roll” subsystem, the last inequality in (3) or simultaneously
the second and third inequalities are changed to the opposite.

Taking into account the assumptions presented, the system is unstable when
initial potential forces are in action. The simultaneous stabilization of the two
subsystems by additional forces of different nature is required. For this purpose,
control forces with the suspension of the rod are added into the right-hand sides
of the motion Eq. (1) as it is shown below

Qδ = k̃∗
θ θ̇ − k̃∗

δ δ̇ + k̃θθ − k̃δδ; Qσ = k̃∗
ϕ ϕ̇ − k̃∗

σ σ̇ + k̃ϕϕ − k̃σσ, (4)

where k̃∗
θ =

k∗
θ

ω
; k̃∗

δ =
k∗

δ

ω
; k̃θ =

kθ

ω2
; k̃δ =

kδ

ω2
; k̃∗

ϕ =
k∗

ϕ

ω
; k̃∗

σ =
k∗

σ

ω
;

k̃ϕ =
kϕ

ω2
; k̃σ =

kσ

ω2
are constant coefficients.
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The objective of the paper is to investigate the effect of the structure of
forces on the stability of the equilibrium position of system (1). In addition,
the problem of the possibility of ensuring the asymptotic stability of the two
subsystems by a “reduced” set of forces represented in (4) is formulated.

By splitting the matrices in terms of velocities and coordinates in Eq. (1)
into the symmetric and skew-symmetric parts, it is not difficult to write out
the structure of the forces affecting the system. For example, concerning the
“yaw-and-roll” subsystem, potential (with a matrix P2), non-conservative (N2),
dissipative (D2) and gyroscopic (G2) forces are added to the initial potential
(with a matrix K2) and gyroscopic (with a matrix G) forces, where

P2 =

⎛
⎜⎝

0 0 0
0 0 − k̃ϕ

2

0 − k̃ϕ

2 k̃σ

⎞
⎟⎠; N2 =

⎛
⎜⎝

0 0 0
0 0 k̃ϕ

2

0 − k̃ϕ

2 0

⎞
⎟⎠;

D2 =

⎛
⎜⎝

0 0 0

0 0 − k̃∗
ϕ

2

0 − k̃∗
ϕ

2 k̃∗
σ

⎞
⎟⎠; G2 =

⎛
⎜⎝

0 0 0

0 0 k̃∗
ϕ

2

0 − k̃∗
ϕ

2 0

⎞
⎟⎠.

4 Regions of System’s Instability

For the convenience of graphical representation of the regions with different
degrees of instability and subsequent parametric analysis, we introduce four
dimensionless parameters:

α =
c − b

a
=

Jz − Jx

Jy
; γ =

b − a

c
; p1 =

d

f
; p2 =

f

c
. (5)

The physically obtainable values of the parameters, taking into account (2),
lie within the intervals: −1 < α < 1, 0 < γ < 1, 0 < p1 ≤ 1, 0 < p2 < 1. It
is not difficult to show that conditions (2) imply γ + α > 0.

The diagonal blocks of the initial matrix of potential forces (when Qδ = 0,
Qσ = 0) in notation (5) have the form:

K1 = 3
(

γ p2
1 1

)
; K2 =

⎛
⎝α 0 0

0 4(γ + α) 4p2(α + 1)
0 4 3 + p1

⎞
⎠.

In the space of the outlined parameters, the relations γ = p2, α = 0,
S ≡ (γ + α)(3 + p1) − 4p2(α + 1) = 0 define the surfaces which separate the
regions having different degrees of instability. For example, Fig. 1 shows these
regions for the values of the parameters p1 = 4/5, p2 = 5/7.

It is known that if the equilibrium position is unstable at potential forces,
Kelvin–Chetaev’s theorem [7] of influence of gyroscopic forces tells us that gyro-
scopic stabilization is possible only for systems with an even degree of instability.
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Fig. 1. Regions with different degrees of instability.

Here, respectively, instability regions for the entire system have: Z – zero
degree; Ê – an even degree (when γ > p2 ) and E (when γ < p2); O , O , Ô –
odd degree.

The evenness (or oddness) of the degree of instability according to Poincaré
is determined by positivity (or negativity) of the determinant of the matrix of
potential forces. It is necessary to emphasize that for the values of the para-
meters from the regions Ê and E , the unstable equilibrium position has an
even degree of instability (i.e., detK = det K1 ∗ det K2 > 0 ). Thus, under cer-
tain conditions, equilibrium can be stabilized due to the influence of gyroscopic
forces. Earlier in [8], the author has proved the stabilization of the equilibrium
in the needle-shaped part (subregion) of the region Ê for an uncontrolled satel-
lite. The matrices K1 and K2 are positive definitive in the region Z . On the
basis of another Kelvin–Chetaev’s theorem, the addition to the potential forces
of gyroscopic forces preserves the nature of stability of the investigated motion.

The mass distribution in the system in which the initial matrix of potential
forces of the system will be positive definitive is usually given for the applied
problems of spacecraft dynamics. Further, due to the addition of primarily dis-
sipative forces, the asymptotic stability of motion is ensured by Lyapunov’s
theorem. However, unstable systems may also be of interest and, besides, “non-
standard” situations on the orbit are possible.

Thus, taking into account the assumptions made in the formulation of the
problem in Sect. 3, we shall consider the possibility of stabilizing an unstable
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system in the region O (when γ < p2, α < 0, (γ +α)(3+p1)−4p2(α+1) < 0 )
or in the region E (when γ < p2, α > 0, (γ + α)(3 + p1) − 4p2(α + 1) < 0 ) to
asymptotic stability by additional forces (4).

5 Parametric Analysis of Asymptotic Stability Conditions

It is obvious that the characteristic equation of system (1) is factorized: Λ(λ) ≡
Λ(1) ∗ Λ(2) = 0. After performing elementary transformations with the char-
acteristic matrices (multiplying their rows by positive factors), we obtain the
characteristic determinants in notation (5), respectively, in the “pitch” subsys-
tem and in the “yaw-and-roll” subsystem:

Λ(1) =
∣∣∣∣ λ2 + 3γ p2(λ2 + 3)
λ2 − λk̃∗

θ + (3 − k̃θ) λ2p1 + λk̃∗
δ + (3 + k̃δ)

∣∣∣∣ =
4∑

i=0

wi λi, where

w4≡ det M1= p1 − p2, w3= k̃∗
δ + p2k̃

∗
θ , w2= 3 (p1γ − 2p2 + 1) + k̃δ + p2k̃θ,

w1 = 3
(
γ k̃∗

δ + p2k̃
∗
θ

)
, w0 = 3

(
3 (γ − p2) + γ k̃δ + p2k̃θ

)
;

Λ(2)=

∣∣∣∣∣∣
λ2+ α λ(α − 1) 0

λ(α −1)(γ −1) λ2(1+ γα)+ 4(α+ γ) (λ2+ 4)p2(α + 1)
0 λ2 − λk̃∗

ϕ + (4 − k̃ϕ) λ2p1+ λk̃∗
σ + (3+ p1+ k̃σ)

∣∣∣∣∣∣ =

=
6∑

i=0

vi λi, where v6 ≡ det M2 = (1 + γ α) p1 − (α + 1)p2,

v5 = (1 + γ α) k̃∗
σ + (α + 1) p2 k̃∗

ϕ, v1 = 4α
(
(α + γ) k̃∗

σ + (α + 1) p2 k̃∗
ϕ

)
,

v3 = (1 + 3γ + α(α + 2γ + 3)) k̃∗
σ + (α + 1)(4 + α) p2 k̃∗

ϕ,

v4 = (1+ γα)(3+ p1+ k̃σ) + (1+ 3γ+ α(3+ α+ 2γ))p1 − (α+ 1)p2(8+ α−k̃ϕ),

v2 = (1 + 3γ + α (α + 2γ + 3))
(
3 + p1 + k̃σ

)
+ 4α p1 (γ + α) +

+ (α + 1) p2

(
(4 + α) k̃ϕ − 8(α + 2)

)
,

v0 = 4α
(
(α + γ)

(
3 + p1 + k̃σ

)
+ (α + 1) p2

(
k̃ϕ − 4

))
.

The principal diagonal minors of the Hurwitz matrix, respectively, for two
subsystems

Δ
(1)
3 = w1w2w3 − w4w

2
1 − w0w

2
3; Δ

(2)
3 =

∣∣∣∣∣∣
v5 v3 v1
v6 v4 v2
0 v5 v3

∣∣∣∣∣∣ ; Δ
(2)
5 =

∣∣∣∣∣∣∣∣∣∣

v5 v3 v1 0 0
v6 v4 v2 v0 0
0 v5 v3 v1 0
0 v6 v4 v2 v0
0 0 v5 v3 v1

∣∣∣∣∣∣∣∣∣∣
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are analytically obtained with SPCA “Mathematica” and were used in further
calculations, but due to bulkiness, their explicit form is not given here.

The fulfillment of the conditions on the existence of roots with negative real
parts for the polynomial Λ(λ)

wi > 0, (i = 0, 4); Δ
(1)
3 > 0, (6)

vi > 0, (i = 0, 6); Δ
(2)
3 > 0; Δ

(2)
5 > 0 (7)

ensures the asymptotic stability of the system’s equilibrium position on the basis
of Lyapunov’s theorem on the first approximation.

It is worth noting that the conditions w4 > 0 and v6 > 0 are satisfied by
virtue of the positive definiteness of the kinetic energy matrix.

5.1 Stabilization in the “Pitch” Subsystem

With the help of “Mathematica” function Reduce designed to find the symbolic
(analytical) solution of the inequalities systems, the conditions for the control
parameters k̃∗

θ , k̃∗
δ , k̃θ, k̃δ (when p1 > p2, γ < p2) ensuring the fulfillment of

the system of inequalities (6) are obtained. Due to the solution’s bulkiness, its
presentation is omitted here. It is worth noting that “extra” forces entail “costs”
of their technical implementation.

An analysis of the solution obtained allows us to conclude that it is possible
to achieve stabilization of the subsystem to asymptotic stability by a “reduced”
set of control forces in Case 1 Qδ = −k̃∗

δ δ̇ − k̃δ δ or Case 2 Qδ = k̃∗
θ θ̇ + k̃θ θ.

In Case 1, additional dissipative and potential forces make an impact on the
subsystem, and in Case 2, all forces (potential, non-conservative, dissipative and
gyroscopic) are present. As a result, the following proposition is formulated and
proved.

Proposition 1. When choosing control parameters that satisfy the conditions

k̃∗
δ > 0, k̃δ > 3

(
p2
γ

− 1
)

in Case 1 or k̃∗
θ > 0, k̃θ > 3

(
1 − γ

p2

)
in

Case 2, all the roots of the polynomial Λ(1)(λ) have negative real parts.

5.2 Stabilization in the “Yaw-and-Roll” Subsystem

We note that the control parameters k̃∗
ϕ and k̃∗

σ enter only the odd coefficients
v1 , v3 , v5 of the characteristic equation. With the above mentioned Reduce func-
tion, their positivity is analyzed separately for the regions O and E . For example,
for the region O , the function call and the solution have the following form:

Reduce[ { 0 < p2 < p1 ≤ 1, 0 < γ < p2, −γ < α < 0, S < 0,

v1 > 0, v3 > 0, v5 > 0 }, { k̃∗
σ, k̃∗

ϕ }, Reals]
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p2 < p1 ≤ 1 ∧ γ < p2 ∧ −γ < α < 0 ∧

∧ k̃∗
σ > 0 ∧ − (1 + 3γ + α(3 + α + 2γ)) k̃∗

σ

(α + 1)(α + 4)p2
< k̃∗

ϕ < − (α + γ) k̃∗
σ

(α + 1)p2
.

Looking at the analytical solution of this system of inequalities, we note the
positivity of k̃∗

σ and the negativity of k̃∗
ϕ . Therefore, forces (in the matrix D2) can

only be dissipative but not accelerating. As a result, the following proposition is
formulated and proved.

Proposition 2. It is impossible to ensure the coefficients v1 , v3 , v5 are simul-
taneously positive for the values of the parameters from the region O when
k̃∗

σ = 0 or k̃∗
ϕ = 0, but in the region E , this can be done.

Thus, in order to stabilize the system in the region O , a complete set of
control forces with respect to velocities is required (in contrast to the region E ,
where a “reduced” set of forces is sufficient).

It is not possible to obtain an analytical solution for the entire system of
inequalities (7) because of the large number of parameters and the complexity
of the expressions being analyzed. Therefore, to simplify the analysis, let us move
on to symbolic-numerical analysis for fixed values of some parameters.

To start with, we consider the question of the possibility of asymptotic sta-
bility for the region O . Since in this region v0

∣∣∣k̃σ=0 , k̃ϕ=0 ≡ det K2 > 0 , it is
possible not to take into account the positional forces in Qσ from (4) (i.e., let
us add k̃σ = 0 and k̃ϕ = 0). When solving the system of inequalities (7) using
Reduce function for the specific numerical values k̃∗

ϕ < 0, k̃∗
σ > 0 (for example,

k̃∗
σ = 1, k̃∗

ϕ = −γ/p2, p1 = 4/5) we get the answer FALSE (i.e. the system is
incompatible). The same answer was received in the case k̃σ �= 0 , k̃ϕ �= 0 (i.e.
under the action of the whole set of forces Qσ). As a result of the analysis, the
following proposition can be formulated.

Proposition 3. For the values of the parameters in the region O system (1)
cannot be stabilized up to the asymptotic stability due to the control forces’
effect (4).

Now, let us consider the question of the possibility of asymptotic stability for
the region E . Taking into account the second part of Proposition 2, we assume
that Qσ = −k̃∗

σ σ̇ − k̃σ σ (that is, additionally only dissipative and potential
forces act). In this case, the principal diagonal minors of the third and fifth
order Hurwitz matrix do not depend on the second control parameter k̃σ and
have the form:

Δ
(2)
3 = −p2(α − 1)2(α + 1)(γ − 1)( 9 (1 − γ) + α (6 (1 − γ) + α + 1) )(k̃∗

σ)2,

Δ
(2)
5 = −144 p22 α (α − 1)4(α + 1)2(γ − 1)3(k̃∗

σ)3.

When solving the system of inequalities (7) (where, as in Fig. 1, p1 = 4/5,
p2= 5/7 ) in relation to k̃∗

σ, k̃σ using function

Reduce[ { 0 < γ < 5/7, 0 < α < 1, S < 0, v6 > 0, v0 > 0, v2 > 0, v4 > 0,

v1 > 0, v3 > 0, v5 > 0, Δ
(2)
3 > 0, Δ

(2)
5 > 0 }, { k̃∗

σ, k̃σ }, Reals],
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we get the answer:

k̃∗
σ > 0 ∧ k̃σ >

100 − 33α − 133 γ

35 (α + γ )
∧

∧
((

0 < α ≤ 3
25

∧ 0 < γ <
5
7

)
∨

( 3
25

< α ≤ 5
33

∧ 25α − 3
28α

< γ <
5
7

)
∨

∨
( 5

33
< α <

19
44

∧ 25α − 3
28α

< γ <
100 − 33α

133

))
. (8)

It is not difficult to show that in the region E , the value 100−33α−133γ
35(α+γ) > 0,

and, therefore, the parameter k̃σ in (8) is positive. We note that any positive
value of the other parameter k̃∗

σ satisfies solution (8). Thus, in the present case,
Qσ are the forces of friction and elasticity.

Let us construct the region of asymptotic stability (8) in the parameter plane
α, γ using “Mathematica” function RegionPlot, designed for a graphical repre-
sentation of the solution of the system of inequalities, with the next value of
the parameter k̃σ = 10 . The result obtained is shown with a shaded region in
Fig. 2. It has been found that with an increasing (decreasing) value k̃σ, this area
expands (narrows) within the limits of the borders found v6 = 0 , S = 0 , α = 0 ,
γ = 0 , γ = 5/7 (see Fig. 2) and disappears at a value k̃σ = 0 .

Fig. 2. Region of asymptotic stability.
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A similar symbolic-numerical analysis has also been carried out for the control
forces Qσ = k̃∗

ϕ ϕ̇ + k̃ϕ ϕ . As a result of the analysis, the following proposition
can be formulated.

Proposition 4. For the values of the parameters from the region E , system
(1) can be stabilized up to an asymptotic stability thanks to the effect of control
forces Qσ = −k̃∗

σ σ̇ − k̃σ σ or Qσ = k̃∗
ϕ ϕ̇ + k̃ϕ ϕ.

6 Conclusion

Based on the analogy with the parametric analysis presented above, the pos-
sibility of asymptotic stability was also investigated for other regions in Fig. 1.
The study has shown that replacing the initial parameters a, b, c, f, d with the
parameters α, γ, p1, p2 only slightly simplified the symbolic-numerical analysis.
But due to the limited values of α, γ, p1, p2, this replacement allowed us to see
a qualitative picture of the research. For a future research, the problem of the
influence of the structure of forces on system’s stability and its stabilization
requires a more detailed study.

It is necessary to emphasize the problems of reliability and precision of com-
putations, as well as the problems of explicitness and speeding-up of the process
of investigations can be partially solved when SPCA is chosen as a software
tool. Along with the application of the SPCA (as “a calculator”) for solving a
definite problem, the approach, which implies the elaboration of some software
for solving a definite class of problems on the basis of the internal program-
ming language of the SPCA (in our case – “Mathematica”), is quite important.
Practically, the whole above analysis has been conducted using this software.

The work has been partially supported by the Russian Foundation for Basic
Research (grant No. 16-07-00201). The research is partially supported by the
Council for Grants of the President of Russian Federation, state support of the
leading scientific schools, project No. NSh-8081.2016.9.
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