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Abstract. With two years, one has roughly heard a thousand hours
of speech — with ten years, around ten thousand. Similarly, an auto-
matic speech recogniser’s data hunger these days is often fed in these
dimensions. In stark contrast, however, only few databases to train a
speaker analysis system contain more than ten hours of speech. Yet,
these systems are ideally expected to recognise the states and traits of
speakers independent of the person, spoken content, language, cultural
background, and acoustic disturbances at human parity or even super-
human levels. While this is not reached at the time for many tasks such
as speaker emotion recognition, deep learning — often described to lead to
‘dramatic improvements’ — in combination with sufficient learning data
satisfying the ‘deep data cravings’ holds the promise to get us there.
Luckily, every second, more than five hours of video are uploaded to the
web and several hundreds of hours of audio and video communication in
most languages of the world take place. If only a fraction of these data
would be shared and labelled reliably, ‘x-ray’-alike automatic speaker
analysis could be around the corner for next gen human-computer inter-
action, mobile health applications, and many further benefits to society.
In this light, first, a solution towards utmost efficient exploitation of the
‘big’ (unlabelled) data available is presented. Small-world modelling in
combination with unsupervised learning help to rapidly identify potential
target data of interest. Then, gamified dynamic cooperative crowdsourc-
ing turn its labelling into an entertaining experience, while reducing the
amount of required labels to a minimum by learning alongside the target
task also the labellers’ behaviour and reliability. Further, increasingly
autonomous deep holistic end-to-end learning solutions are presented for
the task at hand. Benchmarks are given from the nine research challenges
co-organised by the author over the years at the annual Interspeech con-
ference since 2009. The concluding discussion will contain some crystal
ball gazing alongside practical hints not missing out on ethical aspects.
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1 Introduction

X-radiation — here in the sense of Rontgen radiation is composed of x-rays, which
have largely become synonymous of enabling seeing usually hidden aspects via
empowering technology. The field of automatic speaker analysis or ‘Computa-
tional Paralinguistics’ dealing with the automatic characterisation of speakers
(or authors of written text) such as by assessing states and traits from the voice
acoustics and textual cues of an individual is hardly connotated with such ‘see-
through’ abilities in a figurative sense, yet. This comes, as even those tasks which
are directly accessible to a human listener can still pose problems to a machine
such as when aiming at recognition of human emotion. However, largely unno-
ticed by the broad public, computers can indeed already provide ‘x-ray alike’
speaker analysis empowering humans beyond their natural skill-set in terms of
listening such as when automatically estimating height or weight of a speaker
[3,33] down to a few centimetres or kilograms of error, despite such tasks clearly
being challenging [21] also for humans [52].

To be fair, however, humans have an impressive amount of data available to
learn on speech and speaker characteristics contained in the signal — simply, as
they are constantly exposed to it. Likewise, at the age of just two years, we roughly
heard already as much as some thousand hours of speech. At the age of ten years,
this has already increased to around ten thousand hours of speech heard [29].
Obviously, these do not come with ‘labels’ — rather, we learn reinforced and from
the situational context on ‘recognising’, understanding, and analysing the speaker
characteristics as conveyed in the speech signal. At the same time, we synthesise
speech and learn also from coupling analysis and synthesis efforts.

In terms of sheer amount of data, an automatic speech recogniser’s data
hunger is these days often fed in similar dimensions. And in fact, also speech
recognition engines increasingly learn in weakly supervised ways, exploiting also
unlabelled speech data to go from some one or two thousand hours of training
material to the order of tens of thousands [53].

This is in stark contrast to the situation in Computational Paralinguistics.
There, only few databases allow to train a speaker analysis system based on more
than ten hours of speech — ten hours of speech vs several thousand. Yet, expecta-
tions are high as to what these systems ideally should be able to recognise: The
tasks are often ambiguous such as automatic recognition of emotion or likability
or the perceived personality of a speaker — all subjective and therefore ambiguous
tasks. At the same time, recognition should be reliable independent of the per-
son, i.e., work also for unknown speakers. Then, such automatic assessment of
speaker characteristics should also work independent of the spoken content and
by that ideally also independent of the spoken language, i. e., as for the acoustic
analysis, there should be no requirement for prompted speech. A potentially even
higher depending on the type of information that shall be extracted from spo-
ken language is the desired indifference to varying cultural backgrounds. Then,
acoustic disturbances including severe cases such as multiple speakers speaking
overlapping should not be in the way of reliable assessment — best at human par-
ity or even super-human levels such as when attempting automatic recognition
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of heart-beat down to a few beats of error [19], or recognition of diverse health
conditions which at best a trained human could hear from the voice, or even
earlier on in terms of age of the affected individual than a human could [32].

Likewise, having only a few hours of learning material at hand, it is not sur-
prising that some automatic recognition tasks have not yet reached or surpassed
human parity — an example being the above named emotion recognition from
voice acoustics [40,57]. However, the recent advances in processing power, and
machine learning methods — most notably deep learning which is often described
to lead to ‘dramatic improvements’ [10] — in combination with sufficient amounts
of learning data that can satisfy the ‘deep data cravings’ [6] that come with deep
neural network approaches hold the promise to reach the point of super-human
level on most or even all Computational Paralinguistics tasks likely already in
the near future.

As to the amount of data available, luckily, every second, more than five hours
of video are uploaded to the web. YouTube alone reached 70 million hours of video
material by March 2015'. This is added by several hundreds of hours of audio and
video communication in most languages of the world taking place. If only a frac-
tion of these data would be shared and labelled reliably, ‘x-ray’-alike automatic
speaker analysis could be around the corner for next gen human-computer inter-
action, mobile health applications, and many further benefits to society.

In this context, the remainder of this paper is laid out as follows: first, a solu-
tion towards utmost efficient exploitation of the ‘big’ (unlabelled) data available
is presented in Sect. 2. Small-world modelling in combination with unsupervised
learning help to rapidly identify potential target data of interest. Then, gam-
ified dynamic cooperative crowdsourcing aim at turning its labelling into an
entertaining experience, while reducing the amount of required labels to a min-
imum by learning alongside the target task also the labellers’ behaviour and
reliability. Subsequently, Sect. 3 introduces increasingly autonomous deep holis-
tic end-to-end learning solutions for the rich speaker analysis. Demonstrating
the performance of today’s engines, benchmarks are then given in Sect. 4. These
stem from the nine research challenges dealing with Computational Paralinguis-
tics held over the years at Interspeech. The concluding discussion will contain
some crystal ball gazing alongside practical hints not missing out on ethical
aspects.

2 Big Data, Little Labels — Efficiency Matters

While it was outlined above that there is sufficient data for most tasks of interest
in Computational Paralinguistics owing to the rich amounts of videos available
on social media, it is mostly the labels that lack. Certainly, some tasks of speaker
analysis will be hard to find on social media or in conversations of millions of
users, such as those dealing with rare diseases or disorders. For others, it may
be hard to obtain a ‘ground truth’ such as accurate height of speakers, accu-
rate heart rate of speakers, etc., from social media and human labelling alone.

! https://www.youtube.com/yt/press/de/statistics.html — accessed 1 June 2017.
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However, for practically any task dealing with perceived speaker characteris-
tics and some more, exploiting the data in combination with efficient human
labelling mechanisms seems a promising avenue. For the remaining tasks, purely
semi-supervised or unsupervised learning approaches may still benefit from sheer
endless amounts of speech available [36]. In the ongoing, different ways of reach-
ing utmost efficiency in exploiting big speech data are laid out.

2.1 Network Analysis for Pre-selection of Social Media Data

It seems obvious that labelling social multimedia needs some efficient pre-
selection on ‘where to start’ looking at, e.g., the above named more than 70
million hours of video material available on YouTube alone. At the age of 80,
we roughly lived 700000 hours, i.e., around 1% of the available video time on
YouTube in March 2015. Entering a search term such as ‘joy’ in a social multime-
dia platform is unfortunately insufficient to quickly lead to a selection of suited
videos (or directly audio streams such as by services as SoundCloud) containing
joyful speech, as the retrieved videos may deal with anything related to joy such
as movies, songs, etc. that somehow related to joy. This makes it evident that
some smart pre-filtering is needed. Such smart pre-filtering could be realised
by a ‘complex network analysis’ to quickly retrieve related videos from social
multimedia platforms. Such platforms usually have their own suggestion on the
next best related videos to watch, which could be exploited to identify next best
options for more data. Unfortunately, the algorithms behind these recommenda-
tions are usually unknown, but they are mostly based on the title and description
as well as more general (textual) meta-data as well as ‘social’ data including the
viewing statistics including demographic aspects, number of likes/dislikes given
by viewers, and related search queries of the users [7]. In particular, the social
aspects can be unrelated or even counter-productive if establishing a database
for machine learning, as they will likely lead to a biased set of data. Based on
existing recommendations, one can aim to reach more suited candidates of videos
by providing one’s own network analysis to identify relevant videos for database
establishment. This can, for example, be based on the assumption of high simi-
larity of videos. An option is then to use interconnections of videos as generated
by the social media platform’s recommendations such as by small-world models
and graph-based analysis finding cliques in the graph. Ideally, some content-
based verification check is additionally implemented verifying coarsely that the
found videos at least likely contain the desired speech samples. This can contain
a speech activity detection engine or even some comparison against an initial or
several initial exemplary audio streams.

2.2 Game’s On! — Making Crowdsourcing Fun — Seriously

Whether freshly recorded or retrieved from social media, the speech and audio
or language data next has to be annotated. Crowdsourcing can be a highly
efficient way to label data, but it has also been questioned in terms of ethical
aspects [1]. Such concerns touch upon whether the crowd workers are potentially
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exploited [11], or “ethical norms of privacy” could be violated — potentially even
knowingly by the crowd workers [18]. In addition, unreliable raters can be a
severe problem adding noise to the labels [48]. In rather subjective tasks such
as observed emotion or perceived personality, it can be particularly difficult to
estimate the reliability of raters. Likewise, motivating the crowd worker seems
an interesting option for example by gamification of the labour to turn it into
fun aiming at lowering the risks of exploitation and unreliable labelling [30]. This
may include social elements such as competing against other crowd workers on a
leaderboard or in one vs one challenges, a point system and ‘badges’ or levels such
as ‘master rater’, ‘grand master’, etc. An exemplary existing platform in the field
is given by the iIHEARu-PLAY platform [16]. More interestingly, crowd workers
could experience how their work empowers Artificial Intelligence by having a
gamified crowd-sourcing platform train models exclusively from their labels (or
by improving existing systems with their labels) and have these compete against
other crowd-workers’ engines trained on their respective labels. In automatic
speaker analysis, this would mean training engines based on different crowd-
workers’ labels and having them compete, e.g., on well-defined test-beds such
as the challenges introduced in Sect. 4.

2.3 Cooperative Learning: The Matrix Needs Us

Aiming to reduce human labelling effort has long since led to the idea of self-
learning by machines such as by unsupervised, semi-supervised, or reinforcement
learning. This could be shown successful in Computational Paralinguistics tasks
starting with the recognition of emotion [64] or the confidence estimation in
emotion recognition results [9] exploiting unlabelled data and even earlier on in
textual cues’ exploitation [14] in sentiment analysis. Purely self-learning hardly
seems unsuited, as the risk to run into stagnation of improvement despite adding
exponentially more unlabelled data can be high. Furthermore, models could of
course also become corrupted by purely semi-supervised learning, if no proper
control mechanisms of model performance are in place to monitor the develop-
ment of the models when adding increasingly more machine-labelled data for
model training. Thus, even when aiming at ‘never-ending learning’ [27], it seems
wise to keep the human in the loop by combining semi-supervised learning with
active learning — an idea which has been considered early on in general machine
learning [66], but only more recently in Computational Paralinguistics [63]. Like-
wise, rather than to harvest energy from us human beings — a sinister view on
future Artificial Intelligence (AI) exploiting mankind taken in Hollywood’s “The
Matrix” trilogy at the last turn of millennium — AI will indeed profit from
human labels.

Active learning, i. e., pre-selecting most informative instances for labelling by
humans, has thereby mostly been shown to work well in simulations with ‘oracle’
labels. This means, experiments were carried out on fully labelled databases
blinding part of the labels and revealing them only if the data has been selected
for active learning. This may be overly optimistic, as the data likewise has been
labelled under comparably controlled conditions, i.e., by the same individuals
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on a small dataset in a short time window. However, recently it has been shown
that the idea also works well in a crowdsourcing framework for Computational
Paralinguistics tasks [17]. In future solutions, learning the labellers, i.e., ‘being
careful whom to trust when’ [48] can play an increasingly important role when it
comes to crowdsourcing-based annotation in an active learning manner [58]. This
can also help increase efficiency when learning profiles of cross-labeller reliability
to get to know optimal patterns of which combination of crowd-workers best to
ask to reduce labelling efforts required.

3 Deep Learning, Broad Tasks — Holism Matters

A state-of-the-art (group of) approach(es) to best exploit ‘big’ data is given by
the family of deep learning algorithms that provide a sufficient number of free
parameters to be learnt to model complex arbitrary functions for classification
or regression of highly non-linear problems [6] in efficient ways. Further, going
‘broad’ in the sense of widening up of the speaker characteristics targeted —
ideally in full parallel — becomes possible with sufficient data. Below, it is argued
that this will be beneficial even if interested in only one aspect of the speaker to
reduce confusion with effects that other characteristics of the speaker may have
on speech acoustics or the choice of words.

3.1 Deep Learning in Computational Paralinguistics

Deep learning has a long tradition in the field of Computational Paralinguistics:
the first paper using long-short term memory (LSTM) recurrent neural networks
(RNNs) for speech emotion recognition dates back some almost ten years [54],
the first to use a deep architecture based on restricted Boltzmann machines —
again for speech emotion recognition — appeared some three years later [45].
More recently appeared first works on convolutional neural networks (CNNs)
for — speech emotion recognition [26]. However, only last year, the first true end-
to-end Computational Paralinguistics system using convolutional layers ahead
of LSTM layers [50] appeared. Also there, the task was emotion recognition from
speech, making emotion recognition the pioneering task when it comes to deep
learning in Computational Paralinguistics. This seems to hold also for one of the
latest trends in deep learning — the use of generative adversarial networks [4].

In fact, largely independent of this development in deep learning exploiting
acoustic information in Computational Paralinguistics, deep learning is increas-
ingly used in the analysis of textual cues.

LSTM RNNs are for example used in sentiment analysis from textual cues
[38,65]. Alternatively, gated recurrent units have been considered to the same
task in [47].

CNNs are for example applied for personality analysis [25,35], computa-
tion of sentiment [35,46,65], and emotion features [35], or dialect and variety
recognition [15].

Adversarial network inspirations can be found on sentiment tasks as well in
[22,28].
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3.2 Learning End-to-End

The learning of feature representations from the data seems attractive in a field
that has been coined by huge efforts put into the design of acoustic features
over the years. Indeed, as outlined above, last year first efforts in doing so were
successfully reported [50]. In the work, the authors train an emotion recogniser
to learn directly from the raw audio signal waveform. Furthermore, via corre-
lation analysis, they show that the network seems to learn features that relate
to the ‘traditional’ ones extracted by experts such as functionals of the funda-
mental frequency or energy contours. In [39], this is broadened up to three more
paralinguistic tasks providing a benchmark of a challenge event by end-to-end
learning among other ways of establishing a benchmark. While the approach is
not always superior to traditional methods in these works, it shows that indeed,
meaningful feature representations can be learnt from the data. One can assume
that given the above named small size of corpora is the major bottleneck when
it comes to reaching much more competitive results.

3.3 Borrowing Pre-trained Models from Computer Vision

This bottleneck of little data for pre-training is yet overcome in computer vision,
where large pre-trained netowrks such as AlexNet [20] or VGG19 [43] exist. In [2],
these are for the first time exploited for Computational Paralinguistics showing
the power of the approach on the Interspeech 2017 Computational Paralinguistic
Challenge’s [39] snoring sub-challenge: image classification CNN descriptors are
extracted from audio spectrograms called “deep spectrum features” in the paper.
They are extracted by forwarding the audio spectrograms through the very deep
task-independent pre-trained CNNs named previously to build up feature vec-
tors. In this first paper, the authors evaluate the use of different spectrogram
colour maps and different CNN topologies. They beat the conventionally estab-
lished baseline in the challenge by a large margin, which the authors can further
increase by suited feature selection by competitive swarm optimisation in [13],
rendering this approach highly promising and likely supporting the claim that
it is mostly about the amounts of data needed to fully exploit deep learning in
Computational Paralinguistics.

3.4 Going Broad — Holistic Speaker Analysis

As the characteristics of a speaker are usually ‘all present’ or ‘all on’ more or less
at the same time, it appears crucial to address them in parallel rather than one
by one in isolation ignorant to potential other ones. This seems relevant even if
one is only interested in one speaker characteristic, e. g., emotion of the speaker,
to avoid confusion by interfering other speaker states or traits such as being
tired, intoxicated by alcohol, being under a certain cognitive load, or simply
with one’s personality type. There are only a few approaches, yet, considering
this mutual dependency of speaker characteristics, mostly based on multi-task
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learning with neural networks. Examples in acoustic speech information exploita-
tion include simultaneous assessment of age, gender, height, and race recognition
[41], age, height, weight, and smoking habits recognition at the same time [34],
emotion, likability, and personality assessment in one pass [62], commonly target-
ing deception and sincerity [60] or drowsiness and alcohol intoxication [61] in the
recognition, as well as assessment of several emotion dimensions or representa-
tions in parallel [12,55,56,59], and aiming at speaker verification [5] co-learning
other aspects.

Similar approaches can be found in text-based information exploitation [22].

4 Where Are We on Automatic Speaker Analysis?

The above sections laid out options for future improvement of Computational
Paralinguistics, mainly by collection of more data and training deeper and
‘broader’ models to best exploit these data. But what are current performances?
To provide an impression of what today’s speaker analysis systems can reach in
a nutshell, Table 1 shows the baseline results of the Interspeech challenges cen-
tred on Computational Paralinguistics. Since 2013, these are running under the
unified name of Interspeech Computational Paralinguistics Challenge or INTER-
SPEECH COMPARE for short. Previous events were the 2009 Emotion Challenge,
the 2010 Paralinguistic Challenge, and the 2011 and 2012 Speaker State and
Speaker Trait Challenges?.

In these challenges, weight is put on realism in the sense of assessing the
speaker from a short snippet of audio only (usually around one to a few seconds),
independent of the speaker, in mostly real-world conditions such as telephone or
broadcast speech. Different measures were used over the different tasks in the
‘sub-challenges’ per year respecting the different type of representation or task
such as classification, regression, or detection. Explanations on these are given
in the caption.

The baselines have been established under somewhat similar conditions over
the years based on the openSMILE toolkit® for large-scale acoustic feature space
brute forcing with standardised feature sets (which, however, grew over the years
from 384 features (2009) over 1582 (2010), 3996 (2011), 6125 (2012), to 6373
(since 2013) features on ‘functional’ level — partially, however, also directly (lower
numbers of ) low-level-descriptors on frame level were used), and WEKA* (mostly
using Support Vector Machines). In 2017, openXBOW?® and end-to-end learning
based on TensorFlow®, were used in addition in a fusion of methods.

From the table, one can mainly see two things: an astonishing range of speaker
characteristics can be automatically extracted significantly above chance level —

2 See http://compare.openaudio.cu/ for details on these events.
3 http://audeering.com /technology /opensmile/.

* http://www.cs.waikato.ac.nz/ml/weka, .

5 http://github.com/openXBOW /openXBOW/.

5 http://www.tensorflow.org/.
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Table 1. Interspeech Computational Paralinguistics Challange series (ComParE) base-
line results over the years following similar brute-force open-source focussed computa-
tion by openSMILE and WEKA (in 2017, openXBOW and end-to-end deep learning
have been used in addition) as seen in the challenge by sub-challenge. Given are the year
the challenge was held, the name of the sub-challenge usually clearly representing the
task targeted (“Pathology”, however, deals with intelligibility of head and neck cancer
patients before and after chemo-radiation treatment), the modelling (column “Model”)
of the task either naming the number of distinct classes to recognise, or the interval
(marked by [---]) in case of a regression task, or “x” in case several (classification) tasks
had to be addressed, and the baseline results (column “Base”). Different evaluation mea-
sures were used for competition depending on the type of task and modelling of it as
classification (result given in terms of percentage of unweighted accuracy (% UA), i.e.,
added recall per class divided by the number of classes to cope with imbalance across
classes in the sense of chance-normalisation), regression (shown is the correlation coef-
ficient (CC (2010)/p (else)) — marked by T) or detection task (given is the percentage of
unweighted average area under the curve (% UAAUC) — marked by *)

Year | Sub-challenge Model | Base
2017 | Addressee 2 70.2
Cold 2 71.0
Snoring 4 58.5
2016 | Deception 2 68.3
Sincerity [0,1] |.602"
Native Language 11 47.5
2015 | Degree of Nativeness |[0,1] | .4257
Parkinson’s Condition | [0,100] | .390"
Eating Condition 7 65.9
2014 | Cognitive Load 3 61.6
Physical Load 2 71.9
2013 | Social Signals 2x2 |83.3"
Conflict 2 80.8
Emotion 12 40.9
Autism 4 67.1
2012 | Personality 5x2 |68.3
Likability 2 59.0
Pathology 2 68.9
2011 | Intoxication 2 65.9
Sleepiness 2 70.3
2010 | Age 4 48.91
Gender 3 81.21
Interest [-1,1] | 421"
2009 | Emotion 5 38.2
2 67.7
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sometimes already at super-human level such as in the case of intoxication or some
pathologies —, yet leaving head room for improvement for several others if not all.

Note that in this series, both, acoustic and textual cues can mostly be
exploited unless — in rare cases — the data of a sub-challenge features prompted
speech. However, other challenges exist focussing on textual cues such as the
annual author profiling task at PAN within the CLEF framework (cf. e.g., [37]
for the latest edition), or the affective text [44], sentiment analysis [31], and other
tasks in SemEval.

5 Conclusions and Perspectives

Concluding this contribution, a short summary is given followed by some per-
spectives.

5.1 Conclusions

Current-state performances based on the Interspeech challenge series on Compu-
tational Paralinguistics over nine years have been shown that demonstrated the
richness of speaker characteristics that can be automatically accessed already
by today. At the same time, these results showed the room left over for future
improvements. To address this issue, an argument was made to go ‘broader’ in
automatic speaker analysis in terms of assessment of multiple characteristics of
a speaker in full parallel to avoid confusion due to co-influence of these. Further,
deep learning has been named as current promising solution for modelling in
terms of machine learning. As particular advantage, this allows the learning of
the feature representation directly from the data — an interesting and valuable
aspect in a field that is ever-since marked by major efforts going into the design
of optimal feature representations. As such going ‘deep and broad’ requires ‘big’
training data, avenues towards efficient exploitation of ‘big’ social multimedia
data in combination with gamified crowd-sourcing were shown. These included
efficiency-optimising measures by smart pre-selection of instances and combined
active and semi-supervised learning mechanisms to avoid human involvement in
labelling as much as possible. Alternatively, exploitation of pre-trained networks
on ‘big’ image data was named to analyse speech data based on image-related
representations such as spectograms or scalograms and alike in potential future
efforts. However, for some under-resourced special types of data, such as of vul-
nerable parts of the population [24], ‘conventional’ collection of data will still be
required.

5.2 Some Crystal-Ball Gazing

Putting the above together in a ‘life-long learning’ [42] Computational Paralin-
guistics system supported by the crowd during 24/7 learning efforts based on
big social media and contributed data, we may soon witness passing the ‘edge’
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of ‘x-ray speaker analysis’, i.e., soon see super-human level automatic speaker
analysis for an astonishingly broad range of speaker characteristics.

Further supporting approaches not mentioned here include transfer learning
[23], reinforcement learning [49], and tighter coupling of generative and discrim-
inative approaches [51] or synthesis and analysis of speaker states and traits, to
name but three of the most promising aspects.

Once reaching such abilities, ethical, legal, and societal implications (ELSI)
will play an important role [8] if such technology is increasingly used in human-
decision support such as in automatic job interviews, tele-diagnosis in health
care, or monitoring of customers, and employees, to name again but three use-
cases. It will be of crucial importance to invest efforts into privacy protection,
reliable and meaningful automatic confidence measure provision to explain the
certainty and trust one should have in the automatic assessments, and account-
able communication of the ‘possible’ to the general public such as in down-toning
trust in deception recognition, if it only works at — say — some 70 % accuracy as
shown in the table above. This will require organisation of future challenges in
the research community as well as ensuring widest possible spread of the word.

May we soon experience powerful and reliable automatic speaker analysis and
Computational Paralinguistics applied in the best possible ways only to benefit
society at large in everyday problem solving and increase of wellbeing.
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