Customizable Web Services Matching
and Ranking Tool: Implementation
and Evaluation

Fatma Ezzahra Gmati', Nadia Yacoubi Ayadi', Afef Bahri?,
Salem Chakhar®®9 and Alessio Ishizaka®

L RIADI Research Laboratory, National School of Computer Sciences,
University of Manouba, Manouba, Tunisia
fatma.ezzahra.gmatiOgmail.com, nadia.yacoubi.ayadi@gmail.com
2 MIRACL Laboratory, High School of Computing and Multimedia,
University of Sfax, Sfax, Tunisia
afef.bahri@gmail.com
3 Portsmouth Business School and Centre for Operational Research and Logistics,
University of Portsmouth, Portsmouth, UK
{salem.chakhar,alessio.ishizaka}@port.ac.uk

Abstract. The matchmaking is a crucial operation in Web service dis-
covery and selection. The objective of the matchmaking is to discover
and select the most appropriate Web service among the different avail-
able candidates. Different matchmaking frameworks are now available in
the literature but most of them present at least one of the following short-
comings: (i) use of strict syntactic matching; (ii) use of capability-based
matching; (iii) lack of customization support; and (iv) lack of accurate
ranking of matching Web services. The objective of this paper is thus
to present the design, implementation and evaluation of the Parameter-
ized Matching-Ranking Framework (PMRF). The PMRF uses semantic
matchmaking, accepts capability and property attributes, supports dif-
ferent levels of customization and generates a ranked list of Web services.
Accordingly, it fully overcomes the first, third and fourth shortcomings
enumerated earlier and partially addresses the second one. The PMRF
is composed of two layers. The role of the first layer is to parse the input
data and parameters and then transfer it to the second layer, which
represents the matching and ranking engine. The comparison of PMRF
to iSeM-logic-based and SPARQLent, using the OWLS-TC4 datasets,
shows that the algorithms supported by PMRF outperform those pro-
posed in iSeM-logic-based and SPARQLent.

Keywords: Web service - Semantic similarity - Matchmaking - Rank-
ing - Implementation - Performance evaluation

1 Introduction

Service Oriented Computing (SOC) is a distributed computing paradigm that
utilizes services as the basic constructs to support the development of distributed

© Springer International Publishing AG 2017
V. Monfort et al. (Eds.): WEBIST 2016, LNBIP 292, pp. 15-36, 2017.
DOI: 10.1007/978-3-319-66468-2_2

16 F.E. Gmati et al.

applications, especially in heterogeneous environments. The Service-Oriented
Architecture (SOA) is an element of SOC that enables service discovery, integra-
tion and use. Web services are the most successful realization of SOA paradigm
[1] that are commonly used in the areas of business-to-business integration, dis-
tributed computing and enterprise application integration [2]. A fundamental
challenge of SOA paradigm, especially Web services, is service discovery, which
is the process of retrieving the service most similar to the user query based on
the description of functional and/or non-functional semantics [3]. An important
aspect of services discovery is service matchmaking. Web service matchmaking
is the method that is used to determine which of available services satisfy at
best the requirements of the user while taking into account the user request and
the capabilities of available services.

Web services are generally described only syntactically through WSDL and
UDDI for service discovery. The UDDI in combination with WDSL provides a
basic mechanism for service discovery, but lacks support for automated discov-
ery [1]. The most used automatic service discovery approach relies on the idea of
interface matching, which is based on defining the requested service through its
expected input-output interface and comparing this expected interface with the
input-output interfaces of available services to find matching services. However,
the matchmaking based only on service profile is not sufficient, especially in the
case of composite services [3]. A possible improvement to overcome such a prob-
lem is the use of the information about precondition and effects in order to capture
some constraints about the entry and exit points of a service [1].

To support automatic Web service discovery and composition, a number
of different semantic languages—such as OWL-S, WSMO and WSDL-S—that
allow describing the functionality of services in a machine interpretable form
have been proposed. The semantic Web service is a new technology and most
of existing Web services still use traditional matching approaches. Accordingly,
most of existing matching frameworks still suffer from at least one of the following
shortcomings: (i) use of strict syntactic matching, which generally leads to low
recall and precision rates [1,3,4]; (i) use of capability-based matching, which is
proven [3,5] to be inadequate in practice; (iii) lack of customization support [6,7];
and (iv) lack of accurate ranking of Web services, especially within semantic-
based matching [1,4].

The objective of this paper is hence to present the Parameterized Matching-
Ranking Framework (PMRF'), which uses semantic matchmaking, accepts capa-
bility and property attributes, supports different levels of customization and gen-
erates a ranked list of Web services. The PMRF fully overcomes the first, third
and fourth shortcomings enumerated earlier and partially addresses the second
one. The comparison of PMRF to iSeM-logic-based [8] and SPARQLent [9],
using the OWLS-TC4 datasets, shows that the algorithms supported by PMRF
behave globally well in comparison to iSeM-logic-based and SPARQLent.

The paper is organized as follows. Section2 discusses some related work.
Section 3 presents the architecture of the PMRF. Section4 deals with system

Customizable Web Services Matching and Ranking Tool 17

implementation. Section 5 studies the performance of the PMRF. Section 6 pro-
vides the comparative study. Section 7 concludes the paper.

2 Related Work

The first and traditional matchmaking frameworks are based on strict syntactic
matching. Such syntactic matching approaches only perform service discovery
and service matching based on particular interface or keyword queries from the
user, which generally leads to low recall and low precision of the retrieved ser-
vices [1,3,4]. In order to overcome the shortcomings of strict syntactic matching
approaches, some advanced techniques and algorithms have been used such as
genetic algorithmic and utility function. Alternatively, many authors propose to
include the concept of semantics to deal with these shortcomings. The semantic
Web service is a new and active research area. In the rest of this section, we
briefly discuss some recent semantic matchmaking frameworks. More detailed
reviews on semantic matchmaking approaches are available in, e.g., [10-14].

A matchmaking approach that uses the internal process models of services
as primary source of knowledge has been proposed in [1]. The basic idea of this
approach is to transform the service matchmaking into model checking in which
services are represented as system models and service request as set of formal
properties. By using the model checking as a reasoning mechanism, the authors
in [1] designed three methods supporting both exact and partial matching.

A framework for content-based semantic Web service discovery that allows
users to submit unstructured free text as input has been proposed in [15]. In
this framework, a collection of nouns are extracted from the input text and
then used for service discovery, after a disambiguation process that makes use
of the WordNet lexical database for determining the meaning of the nouns. The
proposal of [15] focuses specifically on OWL-S and does not provide a means for
ranking the results.

In [16], the authors propose a fuzzy matchmaking approach for semantic Web
services to support an automated and veracious service discovery process in col-
laborative manufacturing environments. The authors first introduce a theoretical
framework for fuzzy matchmaking, and a semantic annotation specification of
how the needed information of web service attributes can be captured as seman-
tic annotation for WSDL interfaces, operations, faults, and XML Schema. Then,
they propose a fuzzy matchmaking algorithm for calculating the fuzzy similarity
degree of web services. The developed system has been used in material selection
services in the area of collaborative manufacturing.

The author in [6] presents a parameterized and highly customizable seman-
tic matchmaking framework that supports three types of matching: functional
attribute level, functional service-level and non-functional. However, the paper
addresses only functional matching where a series of algorithms that support a
customizable matching process have been proposed. The authors in [17] extend
the work of [6] by supporting non-functional matching.

The BAX-SET PLUS, proposed in [18], is a multi-agent taxonomy-based
method for categorization, search, and retrieval, of semantic Web services.

18 F.E. Gmati et al.

The taxonomic navigation model includes a knowledge module represented by
a taxonomic model, an OWL-S extension implemented and a semantic search
module for a semantic Web services repository. In this model, user-selected con-
cepts from a taxonomy are matched against concepts contained in OWL-S service
descriptions.

The Semantic Web service discovery framework (SWSD) proposed in [4] com-
prises a keyword-based discovery process for searching Web services that are
described using a semantic language. The framework relies on natural language
processing techniques in order to establish a match between a user search query
and a semantic Web service description. For matching keywords with semantic
Web service descriptions given in WSMO, techniques like part-of-speech tagging,
lemmatization, and word sense disambiguation are used. After determining the
senses of relevant words gathered from Web service descriptions and the user
query, a matching process takes place. In [4], the authors propose three methods
for matching sets of words or senses.

The authors in [19] design and develop a semantic framework capable of
matching security capabilities of providers and security requirements of cus-
tomers. The matching process is composed of two steps. The aim of the first
step is to assign a match level to each requirement-capability pair using the
well-known concepts of exact, subsume, plugin, and no match introduced by
[20]. In the second step, the overall match between the two policies is evaluated
in order to identify the capability that matches at best for each requirement. The
overall match is then defined to be the minimum among the individual match
levels evaluated in the first step for each requirement-capability pair.

The Tomaco [7] is a semantic web service matching algorithm for SAWSDL.
The system supports logic-based and syntactic strategies along with hybrid com-
posite strategy. The logic-based strategy in Tomaco considers four matching
cases (namely Exact, Desired, LessDesired and Fail) to determine the values of
matching degree. The authors in [7] also introduce the Tomaco web application,
which aims to promote wide-spread adoption of Semantic Web Services while
targeting the lack of user-friendly applications in this field through a variety of
configurable matching algorithms.

To improve matching effectiveness, the authors in [21] introduce first a new
semantic similarity measure combining functional and process similarities. Then,
a service discovery mechanism that utilises the new semantic similarity measure
for service matching is proposed. The matchmaking framework is composed of
two phases. The first phase uses functional attributes in order to group published
Web services into services clusters. The second phase looks to identify the best
matching Web services within these matching clusters.

3 System Architecture

In this section, we first introduce the conceptual and functional architectures
of the PMRF. Then, we present the different supported matching and ranking
algorithms.

Customizable Web Services Matching and Ranking Tool 19

3.1 Conceptual Architecture

Figure 1 provides the conceptual architecture of the PMRF. The inputs of the
system are the specifications of the requested Web service and the different
parameters. The output is a ranked list of Web services. The PMRF is composed
of two layers. The role of the first layer is to parse the input data and parameters
and then transfer it to the second layer, which represents the matching and
ranking engine. The Matching Module filters Web service offers that match with
the user specifications. The result is then passed to the Ranking Module that
produces a ranked list of Web services. The assembler guarantees a coherent
interaction between the different modules in the second layer.
The three main components of the second layer are:

— Matching Module: This component contains the different matching algo-
rithms: basic, partially parameterized and fully parameterized matching algo-
rithms (see Sect. 3.3).

— Similarity Computing Module: This component supports the different
similarity measure computing approaches: Efficient similarity with MinEdge,
Accurate similarity with MinEdge, Accurate similarity with MaxEdge and
Accurate similarity with MaxMinEdge (see Sect. 3.4).

— Ranking Module: This component is the repository of score computing and
ranking algorithms, namely score-based, rule-based and tree-based ranking
algorithms (see Sect. 3.5).

criteria X
Table/List Criteria Parser
Similarity Computing Module

N .
Matching Module Ranking Module
Service A
.Reg\srry’—b [Service Profile Parse
1 -s
Hor Assembler el Ranked
List of
1 Services
D User Basic Matching Efficient MinEdge Score Computing Technique
U .
Configu- P Configuration

Score-Based Ranking

Accurate MaxEdge Rule-Based Ranking

Y Y Y

Fully Parametrized Matching

i
faton Parser Partally Parametrized Matching [Accurate MinEdge J

Accurate MaxMinEdge Tree-Based Ranking

D Layert Matching Module Similarity computing Ranking Module
y instances module Instances Instances

DLayevZ Instances

Fig. 1. Conceptual architecture of PMRF.

20 F.E. Gmati et al.

3.2 Functional Architecture

The functional architecture of the PMRF is given in Fig. 2. It shows graphically
the different steps from receiving the user query (specifications of the requested
Web service and the different parameters) until the delivery of the final results
(ranked list of Web services) to the user.

We can distinguish the following main operations:

— The PMRF (1) receives the user query including the specifications of the
desired Web service and the required parameters;

— The Matching Module (2) scans the Registry in order to identify the Web
services matching the user query;

— During the matching process, the Matching Module (3) uses the Similarity
Computing Module to calculate the similarity degrees;

— The Matching Module (4) delivers the Web services matching the user query
to the Ranking Module;

— The Ranking Module (5) receives the matching Web services and processes
them for ranking;

— During the ranking operation, the Ranking Module (6) uses the Scoring Tech-
nique to compute the scores of the Web services;

— The Ranking Module (7) generates a ranked list of Web services, which is
then delivered by the PMRF to the user.

. o .

[User query + parameters] 3) Cs\
5 < 7
/ N\
=
@ services
o
')
¢ Regi 7

Ranked web services

Fig. 2. Functional architecture of PMRF.

3.3 Matching Algorithms

The PMRF contains three matching algorithms (basic, partially parameter-
ized and fully parameterized) that support different levels of customization (see
Table1). The basic matching algorithm supports no customization. The par-
tially parameterized matching algorithm allows the user to specify the set of
attributes to be used in the matching. Within the fully parameterized matching
algorithm, three customizations are taken into account. A first customization

Customizable Web Services Matching and Ranking Tool 21

consists in allowing the user to specify the list of attributes to consider. A sec-
ond customization consists in allowing the user to specify the order in which the
attributes are considered. A third customization is to allow the user to specify
a desired similarity measure for each attribute. In the rest of this section, we
present the third algorithm.

Table 1. Customization levels for matching algorithms.

Matching algorithm List of attributes | Order of attributes | Desired similarity

Basic

Partially parameterized | v/

Fully parameterized v v v

In order to support all the above-cited customizations of the fully parame-
terized matching, we used the concept of Criteria Table (see [6]) that serves as
a parameter to the matching process. A Criteria Table, C, is a relation consist-
ing of two attributes, C.T and C.M. The C.T describes the service attribute
to be compared, and C.M gives the least preferred similarity measure for that
attribute. Let C.T; and C.M; denote the service attribute value and the desired
measure in the ith tuple of the relation. The C.N denotes the number of tuples
in C.

Let R be the service that is requested, A be the service that is advertised
and C a criteria table. A sufficient match exists between R and A if for every
attribute in C.T there exists an identical attribute of R and A and the values of
the attributes satisfy the desired similarity measure specified in C'. M. Formally,

V,Elj7k(C'T, = RT] = ATk) A [L(RT], ATk) i OMz (1)
= SuffMatch(R,A) 1<i<C.N.

The computing of the similarity degrees p(-,-) is addressed in Sect.3.4. The
fully parameterized matching process is formalized in Algorithm 1, which follows
directly from Sentence (1). Algorithm 1 proceeds as follows. First, it loops over
the attributes in the Criteria Table C' and for each attribute it identifies the
corresponding attribute in the requested service R and the potentially advisable
service under consideration A. The corresponding attributes are appended into
two different lists rAttrSet (requested Web service) and aAttrSet (advisable Web
service). This operation is implemented by sentences 1 to 10 in Algorithm 1.
Second, it loops over the Criteria Table and for each attribute it computes the
similarity degree between the corresponding attributes in rAttrSet and aAttrSet.
This operation is implemented by sentences 11 to 14 in Algorithm 1. The output
of Algorithm 1 is either success (if for every attribute in C' there is a similar
attribute in the advertised service A with a sufficient similarity degree) or fail
(otherwise).

The Criteria Table C' used as parameter to Algorithm 1 permits the user
to control the matched attributes, the order in which attributes are compared,

22 F.E. Gmati et al.

as well as the minimal desired similarity for each attribute. The structure of
partially matching algorithm is similar to Algorithm 1 but it takes as input an
unordered collection of attributes with no desired similarities. The basic match-
ing algorithm do no support any customization and the only possible inputs are
the specification of the requested R and advertised A services. Different versions
and extensions of this algorithm are available in [6,17,22].

Algorithm 1. Fully Parameterized Matching.

Input : R, // Requested service.
A, // Advertised service.
C, // Criteria Table.

Output: Boolean, // fail/success.

1 while (1 < C.N) do

2 while (j < R.N) do

3 if (R.T; = C.T;) then

a | Append R.T} to rAttrSet;
5 je—J+1L

6 while (k < A.N) do

7 if (ATk = CT,,) then

8 L Append A. Ty to aAttrSet;
9 k—Fk+1;

10 | i i+ 1

11 while (¢t < C.N) do

12 if (u(rAttrSet[t], aAttrSet[t]) < C.M;) then
13 L return fail;

14 | te—t+ 1;

15 return success;

3.4 Computing Similarity Degrees

To compute the similarity degree, we extended the solution of [23] where the
authors define four degrees of match, namely Exact, Plugin, Subsumes and Fail
as default. During the matching process, the inputs and outputs of the requested
Web service are matched with the inputs and outputs of the advertised Web ser-
vice by constructing a bipartite graph where: (i) the vertices in the left side
correspond to advertised services; (ii) the vertices in the right side correspond
to the requested service; and (iii) the edges correspond to the semantic relation-
ships between the concepts in left and right sides of the graph. Then, they assign
weights to each edge as follows: Exact: wy, Plugin: wy, Subsumes: ws, Fail: wy;
with wg > w3 > wy > w;. Finally, they apply the Hungarian algorithm to iden-
tify the complete matching that minimizes the maximum weight in the graph.
The final returned similarity degree is the one corresponding to the maximum
weight in the graph. Then, the selected assignment is the one representing a
strict injective mapping such that the maximal weight is minimized.

The algorithms used in PMRF to compute the similarity degree between ser-
vices extend the works of [23] with respect to two aspects: (i) the way the degree
of match between two concepts is computed, and (ii) the optimality criterion

Customizable Web Services Matching and Ranking Tool 23

used to compute the overall similarity degree. Concerning the computation of
the degree of match, two versions are included in PMRF: efficient and accu-
rate. In the efficient version, the degree of match is computed as in Algorithm 2
where: (i) =: equivalence relationship; (ii) Cy: direct child/parent relationship;
(iii) and T: direct parent/child relationship. In this first version, only direct
related concepts are considered for Plugin and Subsume similarity measures.
This will affect the precision of the algorithm since it uses a small set of possi-
ble concepts but necessarily improves the query response time (since there is no
need to use inference).

Algorithm 2. Degree of Match (Efficient Version).

Input : Kpg, // first concept.
Ka, // second concept.
Output: degree of match
1 if (Kr = Ka) then
2 L return Exact;

3 else

4 if (KR C1 KA) then

5 | return Plugin ;

6 else

7 if (KR 1 KA) then
8 L return Subsumes;
9 else

10 | return Fail ;

Algorithm 3. Degree of Match (Accurate Version).

Input : Kpg, // first concept.
K4, // second concept.
Output: degree of match//
1 if (Kr = Ka) then
2 | return Exact;

3 else
if (KR C1 KA) then
5 L return Plugin;
6 else
7 if (KR i f KA) then
8 L return Subsume;
9 else
10 if (KR C KA) then
11 L return Extended-Plugin;
12 else
13 if (Kr O Ka) then
14 L return Extended-Subsume;
15 else
16 L return Fail;

24 F.E. Gmati et al.

In the accurate version, we defined six similarity degrees: Exact, Plugin,
Subsume, Extended-Plugin, Extended-Subsume and Fail. The degree of match
in this version is calculated according to Algorithm 3 where: (i) =: equivalence
relationship; (ii) C;: direct child/parent relationship; (iii) 71 : direct parent/child
relationship; (iv) C: indirect child/parent relationship; and (v) J: indirect par-
ent/child relationship. In Algorithm 3, indirect concepts are considered through
Extended-Plugin and Extended-Subsume similarity measures.

The second extension of [23]’s work concerns the the optimality criterion
used to compute the overall similarity value. The optimality criterion used in
[23] is designed to minimize the false positives and the false negatives. In fact,
minimizing the maximal weight would minimize the edges labeled Fail. However,
the choice of max(w;) as a final return value is restrictive and the risk of false
negatives in the final result is higher. To avoid this problem, we propose to con-
sider both max(w;) and min(w;) as pertinent values in the matching. A further
discussion of similarity degree computing is available in [24].

3.5 Ranking Algorithms

The PMRF supports three ranking algorithms: score-based, rule-based and tree-
based. The first algorithm relies on the scores only. The second algorithm defines
and uses a series of rules to rank Web services. It permits to solve the ties prob-
lem encountered by the score-based ranking algorithm. The tree-based algorithm,
which is based on the use of a tree data structure, permits to solve the problem
of ties of the first algorithm. In addition, it is computationally better than the
rule-based ranking algorithm. The score-based ranking is given in Algorithm 4.
The rule-based and tree-based ranking algorithms are available in [22,24], respec-
tively. The main input of the score-based ranking algorithm is a list mServices of
matching Web services. The function ComputeNormScores in Algorithm 4 permits
to calculate the normalized scores of Web services. It implements the idea we
proposed in [22]. The score-based ranking algorithm uses then an insertion sort
procedure (implemented by lines 3-7 in Algorithm4) to rank the Web services
based on their normalized scores.

The list mServices used as input to Algorithm 4 has the following generic
definition:

(Ag, u(A T, RTy), -+, u(Ai Ty, R1TN)),

where: A; is an advertised service, R is the requested service, N the total number
of attributes and for j € {1,---, N}, u(A;.T;, R.T;) is the similarity measure
between the requested Web service and the advertised Web service on the jth
attribute A;.

The list mServices will be first updated by function ComputeNormScores and
it will have the following new generic definition:

(A, (A Ty, RTh), -, (A T, R TN), p' (As)),

Customizable Web Services Matching and Ranking Tool 25

where: A;, R, N and p(A;.T;,RT;) (j =1,---,N) are as above; and p'(4;) is
the normalized score of advertised Web service A;.

Algorithm 4. Score-Based Ranking.

Input : mServices,// List of matching Web services.
N,// Number of attributes.

Output: mServices,// Ranked list of Web services.
mServices «— ComputeNormScores(mServices,N);
r «— length(mServices);
for (i =1tor—1)do

J o=

while (j > 0 AmServices[j — 1, N + 2] > mServices[j, N + 2]) do

L swap mServices[j, N + 2] and mServices[j — 1, N + 2];

N O s W e

Jj—=i-1

8 return mServices ;

Based on the discussion in Sect. 3.4, we designed two versions for computing
similarity degrees. Accordingly, two versions can be distinguished for the defin-
ition of the list mServices at the input level, along with the way the similarity
degrees are computed. The first version is as follows:

(Ai7 ,Ufmax(Ai'Tlv R.Tl), T Nmax(Ai~TN7 RTN));

where: A;, R and N are as above; and pmax(4;.7;, RT;) (j = 1,--- ,N) is
the similarity measure between the requested Web service and the advertised
Web service on the jth attribute A; computed by selecting the edge with the
maximum weight in the matching graph.

The second version of mServices is as follows:

(A, pmnin (A3 T1, RTh), - pimin (A T, RTN)),

where A;, R and N are as above; and pimin(A4;.7;, RTj) (j = 1,--- ,N) is the
similarity measure between the requested Web service and the advertised Web
service on the jth attribute A; computed by selecting the edge with the mini-
mum weight in the matching graph.

To obtain the final rank, we need to use these two versions separately and
then combine the obtained rankings. However, a problem of ties may occur since
several Web services may have the same scores with both versions. The tree-
based ranking algorithm [24] permits to solve this problem.

4 System Implementation

In this section, we first present the different tools and the strategy used to
develop PMRF. Then, we present the customization support interface. Finally,
we comment on the user/provider acceptability issues.

26 F.E. Gmati et al.

4.1 Implementation Tools and Strategy

To develop the PMRF, we have used the following tools: (i) Eclipse IDE as the
developing platform, (ii) OWLS-API to parse the OWLS service descriptions,
and (iii) OWL-API and the Pellet-reasoner to perform the inference for comput-
ing the similarity degrees. In order to minimize resources consumption (especially
memory), we used the following procedure for implementing the inference oper-
ation: (1) A local Ontology is created at the start of the matchmaking process.
The incremental classifier class, taken from the Pellet reasoner library, is associ-
ated to this Ontology. (2) The service parser based on the OWLs-API retrieves
the Uniform Resource Identifier (URI) of the attributes values of each service and
the concepts related to these URIs are added incrementally to the local Ontol-
ogy and the classifier is updated accordingly. (3) In order to infer the semantic
relations between concepts, the similarity measure module uses the knowledge
base constructed by the incremental classifier. Figure 3 provides an extract from
the class Matchmaker. In this figure, we can see the input and output functions.
The latter contains the call for the matching and ranking operations.

27 public class Matchmaker implements IMatchmakerPlugin {

29 PelletReasoner reasoner=new PelletReasoner();

3e ServiceTuple query;

31 Arraylist<ServiceTuple> offers=new ArraylList<ServiceTuple>();

3

3

34= public Matchmaker()

35 5}

36

37¢ @0verride

38 public void input(URL arge) {

39 try {

40 ServiceTuple service=new ServiceTuple(arg®,reasoner);

41 offers.add(service);

42 System.out.println(“hellocoo™);

43 } catch (Exception e) {

44 e.printStackTrace();

45 }

46

47= @override

48 public Hashtable<URL, Vector<URL>> query(URL arg®@)

49

50 Hashtable<URL,Vector<URL>> finalOutput=new Hashtable<URL,Vector<URL>>();
51 try

52 {

53 query=new ServiceTuple(arg@,reascner);

54 /¥

55 RS E SRR E SRR S AR LR RERKEERTEEEERREES
56 b m the matching

§7 ok e R R R
58 /

59 Group initialGroup=new Group();

60 for(ServiceTuple serviceAd:offers)

61

62 match(query,serviceAd,reasoner);

63 initialGroup.addAService(serviceAd);

64 }

65

P "
67 We secondly perform the ranking

D - S
s

70 Node<Group> root= new Node<Group>();

71 root.setData(initialGroup);

Fig. 3. Extract from the Class Matchmaker.

Customizable Web Services Matching and Ranking Tool 27

.
& PMRF e
General Parameters
Algorithm Type Criteria Table
Maiching Input Exact -
2 B Output Plugin -
© Both
Category Subsume -
Matching Parameters Ranking Parameters
Matching Algorithm Aggregation Level Ranking Algorithm
©) Basic Service Level @ Score Based
Partially Parametrized © ([;onjunctive) Rule Based
isjunctive -
@ Fully Parametrized ~) Tree Based

Similarity Degree Parameters
Computing Procedure
") Efficient MinEdge
") Accurate MinEdge
©) Accurate MaxEdge
© Accurate MaxMinEdge

Close

Fig. 4. Parametrization interface.

4.2 Customization Support

The parametrization interface of the PMRF is given in Fig. 4. The PMRF permits
the user to choose the type of algorithm to use and to specify the criteria table
to consider during the matching. The PMRF offers three matching algorithms
(basic, partially parameterized and fully parameterized) and three ranking algo-
rithms (score-based, rule-base and tree-based). In addition, the PMRF supports
different aggregation levels: attribute level and service level. The attribute-level
matching involves capability and property attributes and consider each attribute
independently of the others. In this type of matching, the PMRF offers two
types of aggregation, namely conjunctive and disjunctive, where the individual
(for each attribute) similarity degrees are combined using either AND or OR
logical operators. The service-level matching considers capability and property
attributes but the matching operation involves attributes both independently
and jointly.

The PMRF also allows the user to select the procedure to use for computing
the similarity degrees. Four procedures are supported by the system: efficient
similarity with MinEdge, accurate similarity with MinEdge, accurate similarity
with MaxEdge and accurate similarity with MaxMinEdge.

28 F.E. Gmati et al.

CostAndHealingPlan

® Accidentinformation

Healthinsurance
Number
Diagnosis X
TelephoneNumber
4 Number
4
/
4
/ ¢
//:] S 7 \
/ e S ¥ ® PhysicianiD
// ¢ XN \
// O \,
/ / \
/ / (oo
// T
N/ , X
) 4 \
/) B \
¥ P Hospital PersonName \
/ - 7 N
Y/ \
(+ \\

f

7 \
4 —
. e @ Disease]I Symptom |
~_|*® PublicOrganisation _——

Fig. 5. Ontology example about Health Insurance.

4.3 User/Provider Acceptability Issues

One important characteristic of the proposed framework is its configurability by
allowing the user to specify a set of parameters and apply different algorithms
supporting different levels of customization. This, however, leads to the problem
of user/provider acceptability and ability to specify the required parameters,
especially the criteria Table. Indeed, the specification of these parameters may
require some cognitive effort from the user/provider.

A possible solution to reduce this effort is to use a predefined Criteria Table.
This solution can be further enhanced by including in the framework some appro-
priate Artificial Intelligence techniques to learn from the previous choices of the
user.

Another possible solution to reduce the cognitive effort consists in exploiting
the context of the user queries. First, the description of elementary services can
be textually analysed and based on the query domain, the system uses either the
efficient or the accurate versions of the similarity measure computing algorithm.
Second, a global time limit to the matchmaking process can be used to orient the
system towards the version that should be used. Third, the context of the query
in the workflow can be used to determine the level of customization needed and
also in the generation of a suitable Criteria Table.

A more advanced solution consists in combining all the idea cited above.

Customizable Web Services Matching and Ranking Tool 29

5 Performance Evaluation

In this section, we evaluate the performance of the different algorithms supported
by the PMRF.

5.1 Evaluation Framework

To evaluate the performance of the PMRF, we used the Semantic Matchmaker
Evaluation Environment (SME2) [25], which is an open source tool for testing
different semantic matchmakers in a consistent way. The SME2 uses OWLS-TC
collections to provide the matchmakers with Web service descriptions, and to
compare their answers to the relevance sets of the various queries. The SME2
provides several metrics to evaluate the performance and effectiveness of a Web
service matchmaker. The metrics that have been considered in this paper are:
precision and recall, average precision, query response time and memory con-
sumption. The definitions of these metrics are given in [25].

Experimentations have been conducted on a Dell Inspiron 15 3735 Laptop
with an Intel Core i5 processor (1.6 GHz) and 2 GB of memory. The test collec-
tion OWLS-TC4 that has been used consists of 1083 Web service offers described
in OWL-S 1.1 and 42 queries. Figure 5 provides an Ontology example (concerning
health insurance) that has been used for the experimentations.

5.2 Performance Evaluation Analysis

To study the performance of the different modules supported by the PMRF, we
implemented seven plugins (see Table2) to be used with the SME2 tool. Each
of these plugins represents a different combination of the matching, similarity
computing and ranking algorithms. Figure6 shows the main function of the
SME2 plugin associated with Configuration 5.

The difference between configurations 1 and 2 is the similarity measure mod-
ule instance: configuration 1 employs the Accurate MinEdge instance while
the second employs the Efficient MinEdge instance. Figure7(a) shows the

Table 2. Configurations used for comparison.

Configuration Similarity measure Matching algorithm | Ranking algorithm
number

1 Accurate MinEdge Basic Basic

2 Efficient MinEdge Basic Basic

3 Accurate MaxEdge Basic Basic

4 Accurate MinEdge Fully parameterized | Basic

5 Accurate MaxMinEdge | Basic RankMinMax

6 Accurate MinEdge Basic Rule based

7 Efficient MinEdge Basic Rule based

30 F.E. Gmati et al.

public Hashtable<URL, Vector<URL»» query{URL argo)

Hashtable«<URL,Vector<URL»> finalOutput=new Hashtable«<URL,Vector<URL»>(};
try

guery=new ServiceTuple(arg0,reasoner);

/*

IR R L R R L S R R Ty
4 We first perform the matching

+ In the same time we create the initial group

+ the initial group represents the data of the root node

% It contains all services

R S R R R R R L T T
#f

Group initialGroup=new Group({};

for(ServiceTuple serwiceAd:offers)

match (query, servicerd, reasoner} ;
initialGroup.addAService (servicead);

/b

R L L R R L R T Ts
+ We secondly perform the ranking

R LR L Ty I es
#f

/*

4 We Create the node we £ill it with the initial group and set it as a root for
the tree

#f

Node«<Group» root= new Node<Group>();

root.setData{initialGroup) ;

Tree tree=new Tree() ;

tree.setRootElement (root) ;

ey

+ We instantiate a sorting instance, it is the class that will perform all the
ranking procedures

#f

Sorting sort=new Sorting();

/#

% We generate the tree

*,/
ArrayList<Node<Group»> firstLevelChildren= sort.rankMinMaxArb(root,2);
root.getChildren{firstLevelChildren) ;

for (lode<Group> firstLevelChild: firstlevelChildren)
if (1firetLevelcChild.getData() .hasSingleService(}}

ArrayList«<Node<Group»> secondLevelChildren=
sort.rankMinMaxarb(first LevelChild, 1) ;
firstLevelChild.setChildren{secondLevelChildren) ;

for (Node<Group> secondLevelChild: secondLevelChildren)
{

if (!secondLevelChild.getData(}.hassSinglesService ())

ArrayList<Node<Group»> thirdLevelChildren =
gort .rankMinMaxArb({secondLevelChild, 2} ;
gecondLevelChild.setChildren(thirdLevelChildren) ;

}
S
+ We generate the final ranked list of services
*/
Liste<Node<Group»> rankedServices=new ArrayList<Node<Group»>();
tree.walk{root, rankedServiceg);
/41
+ We asgsign the ranked services into the final data structure
w)
Vector«URL» output=new Vector<URL>();
for (lNode<Group» node:rankedServices)

output.add({node.getData().getSingleService (}.gerviceDocument) ;
finaloutput .put (argo, output};
catch (Exception e) {
e.printStackTrace (};

return finalOutput;

Fig. 6. Main function of the SME plugin associated with configuration 5.

Customizable Web Services Matching and Ranking Tool 31

1 -[[Recall/Precision

Configuration 1 Configuration 2 000

average precision

ation_1 — Break-Even line

(@) (b)

75
so
2s
o

Configuration 1 [

Configuration 2

Query response time

()

Fig. 7. Config. 1 vs. Config. 2: (a) Average precision, (b) Recall/precision and (c) Query
response time.

Average Precision and Fig. 7(b) illustrates the Recall/Precision plot of configu-
rations 1 and 2.

We can see that configuration 1 outperforms configuration 2 for these two
metrics. This is due to the use of logical inference, that obviously enhances the
precision of the first configuration. In Fig. 7(¢), however, configuration 2 is shown
to be remarkably faster than configuration 1. This is due to the inference process
used in configuration 1 that consumes considerable resources.

The configurations 1 and 4 use different matching module instances. The
first configuration is based on the basic matching algorithm while the second
uses the fully parameterized matching. Figure 8(a) shows the Average Precision
metric results. It is easy to see that configuration 4 outperforms configuration 1.
This is due to the fact that the Criteria Table restricts the results to the most
relevant Web services, which will have the best ranking leading to a higher
Average Precision. Figure 8(b) illustrates the Recall /Precision plot. It shows that
configuration 4 has a low recall rate. The overly restrictive Criteria Table explains
these results, since it fails to return some relevant services.

The difference between configurations 5 and 6 is the ranking module instance
and the similarity computing procedure. The first uses the tree-based rank-
ing algorithm while the second employs the rule-based ranking algorithm.
Figure9(a) shows that configuration 5 has a slightly better Average Precision

32 F.E. Gmati et al.

. #: T

Configuration 1 Configuration 4

Recall/Precision

R precision
— Configuration_1 — BreakEven iine Coniguration_de

(a) (b)

Fig. 8. Config. 1 vs Config. 4: (a) Average precision and (b) Recall/precision.

Configuration S Configuration 6 Configuration 5 Configuration 6

average precision Query response time

(@) (b)

Fig. 9. Config. 5 vs Config. 6: (a) Average precision and (b) Query response time.

than configuration 6 while Fig. 9(b) shows that configuration 6 is obviously faster
than configuration 5.

6 Comparative Study

We compared the results of the PMRF matchmaker with SPARQLent [9] and
iSeM [8] frameworks. Configuration 7 Table2 was chosen to perform this com-
parison. The SPARQLent is a logic-based matchmaker based on the OWL-DL
reasoner Pellet to provide exact and relaxed Web services matchmaking. The
iSeM is an hybrid matchmaker offering different filter matchings: logic-based,
approximate reasoning based on logical concept abduction for matching Inputs
and Outputs. We considered only the I-O logic-based in this comparative study.
We note that SPARQLent and iSeM consider preconditions and effects of Web
services, which are not considered in our work.

The Average Precision is given in Fig.10(a). This figure shows that the
PMRF has a more accurate Average Precision than iSeM logic-based and SPAR-
QLent, leading to a better ranking precision than the two other frameworks.
In addition, the generated ranking is more fine-grained than SPARQLent and
iSeM. This is due to the score-based ranking that gives a more coarse evaluation
than a degree aggregation. Indeed, SPARQLent and iSeM approaches adopt

Customizable Web Services Matching and Ranking Tool 33

| } [

06 - £ oss >
o%0

go-te
04 | =
02 4 o0
1

o
PMRF Isem logic based Sparglent G e e

Average precision

(a) (b)

Memory usage

Fig.10. Comparative study: (a) Average precision, (b) Recall/precision, (¢) Query
response time and (d) Memory usage.

a subsumption-based ranking strategy as described in [20], which gives equal
weights to all similarity degrees.

Figure 10(b) presents the Recall/Precision of the PMRF, iSeM logic-based
and SPARQLent. This figure shows that PMRF recall is significantly better
than both iSeM logic-based and SPARQLent. This means that our approach is
able to reduce the amount of false positives (see [23] for a discussion on the false
positives problem).

The comparison of the Query Response Time of the PMRF, logic-based iSeM
and SPARQLent is shown in Fig. 10(c¢). The experimental results show that the
PMREF is faster than SPARQLent (760 ms for SPARQLent versus 128 ms for
PMRF) and slightly less faster than logic-based iSeM (65ms for iSeM). We
note that SPARQLent has especially high query response time if the query
include preconditions/effects. The SPARQLent is also based on an OWL DL
reasoner, which has an expensive processing. PMRF and iSeM have close query
response time because both consider direct parent/child relations in a subsump-
tion graph, which reduces significantly the query processing. The PMRF highest
query response time limit is 248 ms.

Figure 10(d) shows the Memory Usage for PMRF, iSeM logic-based and
SPARQLent. It is easy to see that PMRF consumes less memory than iSeM
logic-based and SPARQLent. This can be explained by the fact that the PMRF
does not require a reasoner (in the case of Configuration 7) neither a SPARQL
queries in order to compute similarities between concepts. We note, however,

34 F.E. Gmati et al.

that the memory usage of the PMRF increases monotonically in contrast to
SPARQLent.

7 Conclusion and Future Work

In this paper, we presented a highly customizable framework, called PMRF, for
matching and ranking Web services. The conceptual and algorithmic solutions
on which PMRF relies permit to fully overcome the first, third and fourth short-
comings of existing matchmaking frameworks. The second shortcoming is par-
tially addressed in this paper. All the algorithms have been evaluated using the
OWLS-TC4 datasets. The evaluation has been conducted employing the SME2
tool. The results show that the algorithms behave globally well in comparison
to iSeM-logic-based and SPARQLent.

There are several topics that need to be addressed in the future. The first
topic concerns the support of non-functional matching. In this respect, several
existing approaches consider attributes related to the Quality of Service (QoS) in
the matching process (e.g. [5]). In the future, we intend to enhance the framework
to support QoS attributes for matching and ranking of Web services. The work
of [17] could be a start point.

The second topic focuses on the use of multicriteria evaluation. Indeed, there
are few proposals that explicitly use multicriteria evaluation to support matching
and ranking of Web services (e.g. [26]). In the future, we intend to use a well-
known and more advanced multicriteria method, namely the Dominance-based
Rough Set Approach (DRSA), which is particularity suitable for including the
QoS attributes in the matching process.

The last topic relates to the support of the imprecision and uncertainty in
matching and ranking of Web services. In this paper, we assumed that the data
and user parameters are crisply defined. In the future, we intend to enhance
the proposed framework by conceiving and developing algorithms and tools that
support the imprecision and uncertainty aspects in Web services matching and
ranking.

References

1. Giinay, A., Yolum, P.: Service matchmaking revisited: an approach based on model
checking. Web Semant. Sci. Serv. Agents World Wide Web 8, 292-309 (2010)

2. Narock, T., Yoon, V., March, S.: A provenance-based approach to semantic web
service description and discovery. Decis. Support Syst. 64, 90-99 (2014)

3. Khater, M., Habibeche, S., Malki, M.: Behaviour approach for composite OWL-S
services discovery. Int. J. Bus. Inf. Syst. 25, 55-70 (2017)

4. Sangers, J., Frasincar, F., Hogenboom, F., Chepegin, V.: Semantic web service
discovery using natural language processing techniques. Expert Syst. Appl. 40,
4660-4671 (2013)

5. Alnahdi, A.; Liu, S.H., Melton, A.: Enhanced web service matchmaking: a quality
of service approach. In: 2015 IEEE World Congress on Services, New York, USA,
pp. 341-348 (2015)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Customizable Web Services Matching and Ranking Tool 35

Chakhar, S.: Parameterized attribute and service levels semantic matchmaking
framework for service composition. In: Fifth International Conference on Advances
in Databases, Knowledge, and Data Applications (DBKDA 2013), Seville, Spain,
pp. 159-165 (2013)

Stavropoulos, T., Andreadis, S., Bassiliades, N., Vrakas, D., Vlahavas, I.: The
tomaco hybrid matching framework for SAWSDL semantic web services. IEEE
Trans. Serv. Comput. 9, 954-967 (2016)

Klusch, M., Kapahnke, P.: The iSeM matchmaker: a flexible approach for adaptive
hybrid semantic service selection. Web Semant. Sci. Serv. Agents World Wide Web
15, 1-14 (2012)

Sbodio, M., Martin, D., Moulin, C.: Discovering semantic web services using
SPARQL and intelligent agents. Web Semant. Sci. Serv. Agents World Wide Web
8, 310-328 (2010)

Elsayed, D., Salah, A.: Semantic web service discovery: a systematic survey. In:
The 11th International Computer Engineering Conference (ICENCO 2015), pp.
131-136 (2015)

Nacer, H., Aissani, D.: Semantic web services: standards, applications, challenges
and solutions. J. Netw. Comput. Appl. 44, 134-151 (2014)

Priyadharshini, G., Gunasri, R., Saravana, B.: A survey on semantic web service
discovery methods. Int. J. Comput. Appl. 82, 8-11 (2013)

Toch, E., Reinhartz-Berger, 1., Dori, D.: Humans, semantic services and similarity:
a user study of semantic web services matching and composition. Web Semant.
Sci. Serv. Agents World Wide Web 9, 16-28 (2011)

Tosi, D., Morasca, S.: Supporting the semi-automatic semantic annotation of web
services: a systematic literature review. Inf. Softw. Technol. 61, 16-32 (2015)
Paulraj, D., Swamynathan, S.: Content based service discovery in semantic web
services using wordnet. In: Thilagam, P.S., Pais, A.R., Chandrasekaran, K.,
Balakrishnan, N. (eds.) ADCONS 2011. LNCS, vol. 7135, pp. 48-56. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29280-4_6

Liu, M., Shen, W., Hao, Q., Yan, J., Bai, L.: A fuzzy matchmaking approach for
semantic web services with application to collaborative material selection. Comput.
Ind. 63, 193209 (2012)

Chakhar, S., Ishizaka, A., Labib, A.: Semantic matching-based selection and
qos-aware classification of web services. In: Monfort, V., Krempels, K.-H. (eds.)
WEBIST 2014. LNBIP, vol. 226, pp. 96-112. Springer, Cham (2015). do0i:10.1007/
978-3-319-27030-2_7

Luna, J.A.G., Pardo, I.D.T., Builes, J.A.J.: BAX-SET PLUS: a taxonomic nav-
igation model to categorize, search and retrieve semantic web services. In: Gaol,
F. (ed.) Recent Progress in Data Engineering and Internet Technology. Lecture
Notes in Electrical Engineering, vol. 156. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-28807-4_50

Di Modica, G., Tomarchio, O.: Matchmaking semantic security policies in hetero-
geneous clouds. Future Gener. Comput. Syst. 55, 176-185 (2016)

Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of web
services capabilities. In: Horrocks, 1., Hendler, J. (eds.) ISWC 2002. LNCS, vol.
2342, pp. 333-347. Springer, Heidelberg (2002). doi:10.1007/3-540-48005-6_26
Chen, F., Li, M., Wu, H., Xie, L.: Web service discovery among large service pools
utilising semantic similarity and clustering. Enterpr. Inf. Syst. 11, 452-469 (2017)

http://dx.doi.org/10.1007/978-3-642-29280-4_6
http://dx.doi.org/10.1007/978-3-319-27030-2_7
http://dx.doi.org/10.1007/978-3-319-27030-2_7
http://dx.doi.org/10.1007/978-3-642-28807-4_50
http://dx.doi.org/10.1007/978-3-642-28807-4_50
http://dx.doi.org/10.1007/3-540-48005-6_26

36

22.

23.

24.

25.

26.

F.E. Gmati et al.

Gmati, F.E., Yacoubi-Ayadi, N., Chakhar, S.: Parameterized algorithms for match-
ing and ranking web services. In: Meersman, R., Panetto, H., Dillon, T., Missikoff,
M., Liu, L., Pastor, O., Cuzzocrea, A., Sellis, T. (eds.) OTM 2014. LNCS, vol.
8841, pp. 784-791. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45563-0_50
Bellur, U., Kulkarni, R.: Improved matchmaking algorithm for semantic Web ser-
vices based on bipartite graph matching. In: IEEE International Conference on
Web Services, Salt Lake City, Utah, USA, pp. 86-93 (2007)

Gmati, F.E., Yacoubi Ayadi, N., Bahri, A., Chakhar, S., Ishizaka, A.: A tree-based
algorithm for ranking web services. In: Monfort, V., Krempels, K.H. (eds.) The 11th
International Conference on Web Information Systems and Technologies (WEBIST
2015), Lisbon, Portugal, 20-22 May 2015, pp. 170-178. SciTePress (2015)
Klusch, M., Dudev, M., Misutka, J., Kapahnke, P., Vasileski, M.: SME? Version
2.2. User Manual. The German Research Center for Artificial Intelligence (DFKI),
Germany (2010)

Chakhar, S., Haddad, S., Mokdad, L., Mousseau, V., Youcef, S.: Multicriteria
evaluation-based framework for composite web service selection. In: Bisdorff, R.,
Dias, L.C., Meyer, P., Mousseau, V., Pirlot, M. (eds.) Evaluation and Decision
Models with Multiple Criteria. IHIS, pp. 167-200. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46816-6_6

http://dx.doi.org/10.1007/978-3-662-45563-0_50
http://dx.doi.org/10.1007/978-3-662-46816-6_6

2 Springer
http://www.springer.com/978-3-319-66467-5

Web Information Systems and Technologies

12th International Conference, WEBIST 2015, Rome,
ltaly, April 23-25, 2016, Revised Selected Papers
Monfort, V.; Krempels, K.-H.; Majchrzak, T.A.; Traverso,
P. (Eds.)

2017, XIIl, 185 p. 48 illus., Softcover

ISBM: 978-3-319-66467-5

	Customizable Web Services Matching and Ranking Tool: Implementation and Evaluation
	1 Introduction
	2 Related Work
	3 System Architecture
	3.1 Conceptual Architecture
	3.2 Functional Architecture
	3.3 Matching Algorithms
	3.4 Computing Similarity Degrees
	3.5 Ranking Algorithms

	4 System Implementation
	4.1 Implementation Tools and Strategy
	4.2 Customization Support
	4.3 User/Provider Acceptability Issues

	5 Performance Evaluation
	5.1 Evaluation Framework
	5.2 Performance Evaluation Analysis

	6 Comparative Study
	7 Conclusion and Future Work
	References

