
BiDArch: BigData Architect,
Generator of Big Data Solution Architectures

Julio Sosa and Claudia Jiménez-Guaŕın(B)

Systems and Computing Engineering Department, School of Engineering,
Universidad de los Andes, Colombia Carrera 1 Este M◦19A-40 Oficina ML772,

111711 Bogotá, Colombia
{jm.sosa,cjimenez}@uniandes.edu.co

Abstract. The design of highly scalable architectures based on the
Hadoop ecosystem is highly complex due to the wide and dynamic port-
folio of available tools. The feasible solution generator for big data prob-
lems, BiDArch, allows to automatically establish a feasible architecture
from the characterization of a problem in terms of tools features. This
process enriches the solution proposed from semantic knowledge allow-
ing the architect to not require a thorough knowledge of the ecosystem,
getting him to focus mainly on the characterization of his problem or
design goal.

Keywords: Big Data solutions · Hadoop ecosystem · Feasible architec-
ture generator

1 Introduction

In the scenario in which man generates heterogeneous information that can be
structured or not, transmitted massively at high speed; new challenges and prob-
lems related to the discovery, storage, processing, and analysis of such informa-
tion arise. A new technological and scientific boom emerges around a concept
called big data and is interested transversely in this problematic [1, p. 3]. How-
ever, in treatable space of these problems, a set of requirements has been iden-
tified in terms of scalability, consistency and availability in information flows.

There is not only a high complexity around the problems, but also the
functional and non-functional requirements impact on the elaboration of com-
plex solution strategies that orchestrate some technology components and
tools from an overwhelming set of potential candidates—with several possible
configurations—to obtain a feasible solution architecture to the problem.

Hadoop represents the core of a vast tools ecosystem to build big data solu-
tions. This ecosystem, which initially was limited to a base of no more than a
dozen tools, today is made up of more than 60 tools [2] and plugins such as
distributed file systems, multi-facet distributed frameworks, NoSQL repositories
with different data models and specialized tools for activities like machine learn-
ing, deployment of distributed systems, service programming and workflows.
c© Springer International Publishing AG 2017
A. Solano and H. Ordoñez (Eds.): CCC 2017, CCIS 735, pp. 17–31, 2017.
DOI: 10.1007/978-3-319-66562-7 2

http://orcid.org/0000-0001-5382-4749
http://orcid.org/0000-0002-9854-9258


18 J. Sosa and C. Jiménez-Guaŕın

The existing difficulty in establishing a connection that bridges the gap
between the complex domain of big data problems and the related knowledge
to achieve an adequate tools selection to solve them, is the main motivator for
developing an artifact that provides feasible solution architectures for problems
using Hadoop ecosystem tools.

This problem is of great interest to any organization that intends to obtain
built-in big data solutions, in order to provide additional value in its business
processes. This problematic worries software architects who are directly faced
with deciding what tools should be used and how they should be deployed, and
finally, software developers who build these solutions.

The main contribution of this work is the construction of a feasible solution
architecture automatic generator for problems in the domain of big data using
Hadoop ecosystem tools. The requirements demanded by these problems are
defined in terms of the functionalities offered by the tools. Another significant
contribution is the development of an ontology that provides a description of a
set of ecosystem tools.

2 The Complexity of Dealing with Big Data Problems
and the Hadoop Ecosystem

Within the domain of big data, there are many use cases such as data explo-
ration, business operations analysis, real-time predictive analysis, datawarehous-
ing operations, fraud detection and risk management among many others [1,
p. 1]; They focus on different sectors of industry such as financial services, health
care, telecommunications and cybersecurity, among many others.

Naturally, each one of these use cases demands a high and dynamic amount
of functional requirements that are aligned with the particular interests of a
particular business sector, and unfortunately, are completely heterogeneous.
For this reason, the complexity of performing the characterization of all prob-
lem instances achieving the functional requirements integration for all busi-
ness processes is intractable. However, this whole heterogeneous set of func-
tional requirements needs to rely on some combination of information life cycle
activities in the big data. The above mentioned indicates that solutions will
always need to discover, collect, process, analyze and visualize information flows
that have enormous magnitude in dimensions of volume, speed, variety and
veracity [3].

Considering that the implementation of these activities is effectively achieved
with a combination of ecosystem tools, there is an immediate need to describe
the tools ecosystem in terms of features that are useful to support the activities
demanded directly by the functional requirements of every use case.

The problem characterization is not the only one complex stuff. The ecosys-
tem itself also shows a high complexity, due to its constant and continuous evo-
lution [4]. This complexity hinders the process of selecting and characterizing
an initial subset of tools. This ecosystem is made up of a wide range of soft-
ware projects in two licensing flavors (free and open source) [2]. Because of this



BiDArch: BigData Architect, Generator of Big Data Solution Architectures 19

main characteristic, the elements of this ecosystem mutate with ease incubating
new tools, they present wide differences in the level of maturity of the same,
they produce frequent updates that impact both as an accelerated growth of the
wealth of offered functionalities as in compatibility issues with other tools. In
addition, the construction of specialized tools is enabled in a particular domain
(scientific or commercial), such as MLlib [5] and Mahout [6] in the context of
machine learning.

Furthermore, the identification and representation of the functionalities
offered by tools is also complex, in a way that they can be abstracted to represent
requirements that describe traditional problem instances.

To achieve the implementation of an effective solution, an in-depth analysis
of the factors and variables is required to allow that a large variety of problems
be represented and the tools selection process be measured. It is also necessary
to represent explicitly the useful and relevant knowledge for designing solution
architectures to these problems. These solution architectures must be built based
on requirements, factors and variables considered in the characterization of a
given problem and the benefits offered by the tools in the ecosystem.

BiDArch, the architecture generator presented in this work provides an
important support for software architects in small and medium-sized companies
that are interested in building in-house solutions, allowing them to characterize
problem instances and providing a feasible solution architecture that is justi-
fied and enriched with a list of configuration recommendations and a knowledge
related to the set of available interfaces for solution integration.

3 BiDArch: Automatic Generator of Feasible
Architectures from Big Data Problem Specifications

The wide variety of problem instances with different processes and business inter-
ests generates a huge and complex set of requirements related to the nature of
the activities carried out by each business sector that experiences these chal-
lenges. For instance, the functional requirements of an application to perform
fraud detection in the financial sector do not match the requirements of a plat-
form that wishes to integrate several data sources to provide a 360◦ view of a
company and eliminate information silos.

However, there is a set of common requirements that are related to the fea-
tures of a component or tool in a big data system and serve as input to support
the requirements of each challenge in a particular business sector. Within these
requirements, there are some aspects that are common to all tools such as scala-
bility, ease of use, cost of development, cost of maintenance and feature richness,
among many others. Also, there are specific requirements related to the activ-
ities that are managed by tools and contribute to orchestrate a solution to the
problem or challenge of interest. In this group, there are needs around the tasks
of storage, ingestion, extraction, processing and analysis of large datasets.

The purpose of BiDArch is to match the requirements of a problem instance
with the features supported by the selected tools that appear in Table 1 to con-
struct a feasible architecture with the more related tools.



20 J. Sosa and C. Jiménez-Guaŕın

Table 1. Hadoop ecosystem selected tools.

Context Tool

Data storage Apache Hadoop HDFS

Apache HBase

Data ingestion Apache Flume

Apache Kafka

Apache Sqoop

Data processing Apache Hadoop MapReduce

Apache Spark

Apache Pig

Apache Crunch

Apache Cascading

Apache Hive

Apache Impala

Orchestration Apache Oozie

The selection of these tools is performed considering aspects such as a high
degree of maturity, stability, coverage, verifiable effectiveness in cases of success
and integration with the ecosystem itself.

To achieve the goal, a phase-segmented solution strategy is planned as shown
in Fig. 1.

Fig. 1. BiDarch solution strategy phases.

The phases of the proposed strategy are based on the interaction of a series of
macro processes that are supported on several models. Each one of the strategy
phases is detailed below.

3.1 Phase 1: Tools Description Repository Generation

After a deep study and analysis of the official documentation of the list of tools
presented in Table 1, the process of generating an ontology that encapsulates the
tool description repository is supported by a tool model designed with the aim
of representing a set of features that defines properly every single tool contained
into the repository.

The selection of these tools is not intended to be extensive in relation with
the huge and growing number of existing free software tools around the Hadoop



BiDArch: BigData Architect, Generator of Big Data Solution Architectures 21

ecosystem, but prioritizes the depth in the study of more relevant tools. It is
important to note that all of these tools are projects of the ASF (Apache Software
Foundation) community.

3.2 Phase 2: Problem Instances Specification

The main objective of this phase is to describe any problem that a BiDArch
user can define in terms of the features supported by the tools. In this phase,
the problem specification process uses the problem model (which is based
on the generic requirement model) and the tools description repository gen-
erated in the previous phase, to build a problem instance.

The main elements on this phase are set out below.

Generic Requirement Model: A generic requirement is modeled as a triple
composed of: a feature rf , a value to satisfy rv and a weight rw that allows
to establish an order relationship between the problem requirements relevance.
This can be represented as follows.

r = (rf , rv, rw) (1)

The required feature rf belongs to the set of tool features contained in the
description repository. The domain of rv can be boolean or categorical and
it is in function of a particular feature rf . On the other hand, the value of rw
satisfies the constraint rw ∈ {1, 2, 3...10} and allows to set up the relevance of a
requirement with respect to others during the tools selection process.

For instance, considering for a problem p, the need to highlight richness of
functionalities and high scalability features in contrast to encryption support
and support level features for the selected tools; this scenario can be modeled as
presented in Table 2.

Problem Model: Let P be the space of treatable problems with the Hadoop
ecosystem tools, AG a set of generic attributes of the problem, RG a set of
general requirements and AR a set of the required activities. A problem instance
is modeled as follows:

P = {p|p = (AG,RG,AR)} (2)

Table 2. Problem requirements example.

ri rf rv rw

r1 Scalability High 8

r2 Support level Medium 3

r3 Feature richness High 9

r4 Encryption support True 4



22 J. Sosa and C. Jiménez-Guaŕın

AG = {ag1, ag2, ag3, ..., agl−1, agl} (3)

RG = {rg1, rg2, rg3, ..., rgm−1, rgm} (4)

AR = {ar1, ar2, ar3, ..., arn−1, arn} (5)

The collection of generic attributes, AG, is nothing more than a set of descrip-
tors that contains metadata and relevant information of the problem. This infor-
mation facilitates the problems identification and quering.

The set of general requirements, RG, contains the requirements rgi that are
common and independent of the particularity of a specific problem. These types
of requirements are built on needs that are transversal to all problem instances
and are finally based on features of any tool in the repository.

The problem required activities suggest special and specific requirements.
These are framed within the tasks that are normally managed by ecosystem tools
such as storage, movement (ingestion and extraction) and scalable processing —
in its several facets— of large datasets.

Any required activity ari from the collection of activities AR can be rep-
resented as an ordered pair composed of an activity ai directly related to the
traditional tasks managed by the Hadoop ecosystem tools and a set of special
requirements REi related to a particular activity ai as shown below:

ari = (ai, REi) (6)

REi = {rej} (7)

Problem Specification Process: This process consists of a sequence of stages
developed under the problem model previously raised. These stages seek to char-
acterize the problem in terms of generic attributes, a series of general require-
ments, and a list of required activities that are subject to particular requirements.
Figure 2 illustrates the various stages of this process.

Fig. 2. Stages of the problem specification process.

3.3 Phase 3: Feasible Architectures Generation

The phase of feasible architectures generation corresponds to the final stage
of the strategy and its purpose is to instantiate a feasible solution architecture
diagram. To reach that goal, the previously described tool description repository
and a proposed reference architecture model are used as inputs.

The most important components of this phase of the strategy are detailed
below:



BiDArch: BigData Architect, Generator of Big Data Solution Architectures 23

Reference Architecture Model: Any feasible architecture can be modeled
as a non-empty set of tools that intercommunicate or share services through
interfaces. In addition, a set of configuration recommendations are added that
generate an important contribution in the solution implementation, as well as
in solution effectiveness and efficiency.

A feasible architecture is modeled as a graph AF which has the Hadoop
ecosystem tools as nodes and the connections between the compatible interfaces
of such tools as edges. Formally a feasible architecture is be modeled as follows.

Let ECO be the set of tools described in the tools description repository,
C = {c|c ∈ ECO} the subset of tools required by a feasible architecture, and
I = {(ci, cj)|ci, cj ∈ C} the set of interfaces that connect the required tools. The
feasible architecture AF is defined as:

AF = (C, I) (8)

subject to:

∀(ci, cj) ∈ I : ci �= cj (9)

∀u, v ∈ C : ∃μ = 〈u, v〉 (10)

The constraint in Formula (9) denotes the non-existence of loops or interfaces
that connect a tool to itself. For its part, Formula (10) specifies that the graph
AF is connected.

Notion of Affinity Between the Hadoop Ecosystem Tools and Problem
Instances: Let p ∈ P be a problem instance and h ∈ ECO be a tool described
in the tools description repository, where P = {p|p = (AG,RG,AR)}, RG is
the set of general requirements of a problem p, AR = {ari} the set of required
activities by p. And RE =

⋃
REi the union of every special requirement for

each required activity ari.
Let R∗ = RG ∪ RE be the set of all requirements of a problem instance,

r = (rf , rv, rw) with r ∈ R∗ be any requirement.
Let H = {(hf , hv)} be the set of ordered pairs made up with a tool feature

hf and its respective value hv.
The measure of affinity between a problem instance requirement r and a tool

h described in the repository is defined as the function f : R ∗ ×ECO → Z, as
follows:

f(r, h) =

{
rw ∗ [

(hv − rv) + 1
]

si hv ≥ rv ∧ rf = hf

rw ∗ [
hv − rv

]
si hv < rv ∧ rf = hf

(11)

Based on the definition given in Formula 11, a measure of affinity between
a problem p—in terms of its requirements R∗—and a given tool h such as the
function F : P × ECO → Z presented below:

F (p, h) =
∑

r∈R∗
f(r, h) (12)



24 J. Sosa and C. Jiménez-Guaŕın

Feasible Architecture Generation Process: The process of generating fea-
sible architectures aims to identify and interconnect a set of tools described in
the repository that meet the requirements of a given problem with the highest
possible affinity value.

Below are developed each one of the most relevant stages of this process:

Required Layers Identification: This first stage of the process aims to deter-
mine which layers are required to build a feasible architecture. This identifica-
tion is done in function of the required activities that are described in the set
AR = {ari} defined in Formula (5) of the previously presented problem model.
Formally, the set of required layers L is defined as:

L =
⋃

ari∈AR

λ(ari) (13)

where λ(ari) = {li} and li is a required layer by the required activity ari.

Tools Base Initialization for a Layer: In this phase, a base set of tools belonging
to a layer is determined and the existence of at least one connection interface
with the tools in the previously instantiated lower layers is validated. Formally,
this set is defined as Hlj = {h} and it is subject to the following constraints:

Let Hli be the set of tools in the previously instantiated low level layer li, it
is satisfied that:

∀h∃h′|h ∈ Hlj , h
′ ∈ Hli : ∃〈h, h′〉 (14)

Tools Weighting and Selection: For each one of the elements h inside the candi-
date tool base Hli , the measure of affinity with the requirements of the related
problem F (p,H) is computed. Then a selection of these tools that maximize the
measure of affinity with the problem is performed, generating the subset of tools
H∗ ⊆ H with an optimal affinity value. Formally, this set is defined as follows:

H∗ =
{

hi|hi = arg max
h∈Hli

F (p, h)
}

(15)

Feasible Architecture Instance Deployment and Evaluation: After determining
the set of tools H∗ for each required architectural layer, the following sequence
of actions is performed:

1. Necessary connections are established between required interfaces.
2. Tools are enriched with the configuration recommendations and the related

knowledge around its usage and implementation.
3. The affinity of the feasible architecture with the problem instance is evaluated.

This evaluation is computed based on the affinities of the selected tools with
the problem instance.



BiDArch: BigData Architect, Generator of Big Data Solution Architectures 25

4 BiDArch: Design and Implementation

4.1 BiDArch Ontologies

BiDArch relies on a pair of ontologies to describe two domains of knowledge. In
the first one, the Hadoop ecosystem toolkit repository is defined in terms of the
features offered by tools. In the second one, the related knowledge to build a
solution architecture is represented.

Figures 3 and 4 present the two ontologies previously mentioned. A high level
abstraction model is shown with main classes and relationships for each of them.

Fig. 3. Hadoop ecosystem toolkit repository ontology fragment.

Fig. 4. Proposed reference model architecture ontology fragment.



26 J. Sosa and C. Jiménez-Guaŕın

4.2 BiDArch Architecture

The BiDArch Web application has a client/server architecture based on a three-
layer model (data, process and presentation) as shown in Fig. 5. This application
publishes a set of microservices that provides decoupled functionality and inte-
grates information from various sources.

Fig. 5. BiDArch architecture.

BiDArch’s user-defined problems instances are stored in a document-oriented
database server instance, MongoDB [7]. Apache Jena Fuseki [8], a well-known
SPARQL [9] endpoint stores the two application ontologies. Additionally, this
server allows to set an inference engine or reasoner that is attached to the ontol-
ogy, and in this way, triples that represent the additional knowledge are pro-
duced.

The application’s business logic is deployed in Web services using the Web
microframework, Flask [10]. It’s done conceiving a future interoperability with
external applications. In this Web application, many requests are received and
attended to define a problem and build a solution feasible architecture.

The BiDArch application’s frontend is intended to facilitate explicitly how
an end user handles the characterization of a problem and dynamically supports
his interaction with generated feasible solution architectures. To do this, the
tool ExtJS 6.2 [11] is selected. This tool offers a large collection of graphics
components with a high level of maturity. The problem specification process is
supported by a wizard using a reversible sequence of steps. The visualization of
the automatic built architectures is done using the open-source library, JointJS
[12], taking advantage of the ease of use that it offers to model them as a graph.



BiDArch: BigData Architect, Generator of Big Data Solution Architectures 27

5 Results

To show the obtained results in this paper, the following use case is presented:
The company NayroMan S.A.S, dedicated to the online marketing of bikes

and spare parts, is interested in a software solution that allows to analyze its
visitors’ behavior while they are navigating on its concurrent website to browse
product catalogs, compare bike parts and hopefully make a purchase. To do this,
the company needs to ingest the web log activity during a long time, and then
process and analyze the huge dataset obtained. Finally, the results need to be
extracted to a traditional relational database management system to be used in
its website.

This use case is based on the need for any architect to ingest and process
data in a cluster and then extract the results to a relational database as Oracle.
It was selected because it provides a composition of several required activities
and represents a traditional scenario that can be associated with many problem
instances.

BiDArch allowed to specify and build a feasible solution architecture for a
real complete use case fully decomposed into several subproblems [13, pp. 74–84].
Each one of these five summarized problem instances are referenced below:

1. Data ingestion in a cluster [13, p. 75].
2. Batch processing after a previous data ingestion [13, p. 77].
3. Processed data extraction [13, p. 79].
4. ETL operations in a large dataset [13, p. 81].
5. Real time data querying in a large dataset [13, p. 83].

Tables 3 and 4 summarize the general requirements and specific required
activities for a problem instance related to the presented use case respectively.

Table 3. General requirements for this problem instance.

Requirement Weight Value

Multilanguage 6 True

Fault tolerant 6 True

Security 7 True

Disk I/O usage 7 Low

Feature richness 7 High

Support level 5 High

Usability 7 Medium

BiDArch simplifies the definition of the problem model. The user is guided to
select the main activities required to set a problem instance and the dependent
related tasks are added automatically until Column 1 on Table 4 is complete.



28 J. Sosa and C. Jiménez-Guaŕın

Table 4. Requirements per activity for this problem instance.

Activity Requirement Weight Value

Persistence Data compression 5 True

Strictly consistent writes 3 True

Ingestion Filtering data to import 7 True

Timeliness of data ingestion 5 Micro-batch

Batch processing Job submission 5 True

Automatic task execution optimization 7 True

Resource manager independence 5 True

Shared variables 3 True

Data extraction Support for Oracle JDBC specific connectors 7 True

Exporting with All-or-Nothing semantics 7 True

Data copy validation 5 True

Support for insertion and updates 5 True

Then, for each required activity, BiDArch suggests an indexed list of features
that can be required, allowing to complete the requirements listed on Column
2. For each one of these requirements, the user is able to set up the importance
updating the related requirement weight according to its particular problem’s
knowledge. Finally, a value of satisfaction for every feature is suggested and can
be changed from a list of possible values in a specific domain.

Naturally, the richer a problem model is, the more effective the resulting
selection of tools is. Therefore, the problem must be sufficiently well-defined
regarding the general requirements and specific required activities to produce
optimal feasible architectures. On the other hand, the definition of enough con-
ditions to determine if every problem instance is well defined, is a very difficult
task that can be done as future work.

BiDArch selects the tools highlighted on Table 5 that have the maximum
value of affinity with the requirements of this problem instance.

Table 5. Selected tools with maximum affinity.

Layer Activity Tool Affinity (units)

Persistence layer Data storage HDFS 45

Apache HBase 18

Data movement layer Data ingestion Apache Flume 57

Apache Kafka 15

Apache Sqoop 35

Processing layer Batch processing Apache Spark 58

Apache Hadoop MapReduce 5

Data movement layer Data extraction Apache Sqoop 35



BiDArch: BigData Architect, Generator of Big Data Solution Architectures 29

The affinity calculations—presented on Table 5—are made using the notion
of affinity expressed in Formula 11 and consuming the knowledge stored into
the Hadoop ecosystem ontology. Additionally, the definition of more complex
heuristics and processes to compute the affinity between tools and a problem
instance can be very interesting. For example, a heuristic that considers the
global impact of a group of features supplied by a particular tool, instead of the
benefit obtained by individual features, can extremely reduce the complexity of
generated feasible architectures.

Fig. 6. Generated feasible solution architecture.

BiDArch automatically builds the feasible solution architecture shown in
Fig. 6. Additionally, it provides an explanation to the question of why these
tools were selected and evidences the notion of affinity they hold with the prob-
lem definition. It also enriches the architect’s knowledge related to tools, showing
him some parameters configuration suggestions and the available interfaces for
integration with external tools.

6 Related Work

Big data players represent a set of large companies with the ability to over-
come all the drawbacks and challenges facing many organizations interested in
resolving big data problems. Among these companies are: Amazon AWS1, IBM2,
HortonWorks3, Cloudera4, MapR5. The solutions provided by these companies
focus in various use cases such as real-time analysis of security, risk detection
and management in financial services, information flow processing, large datasets
storage optimization, among many others. To do this, they use many ecosystem

1 Amazon AWS, Inc. - Website: https://aws.amazon.com/.
2 IBM, Inc. - Website: http://www.ibm.com/.
3 Hortonworks, Inc. - Website: http://hortonworks.com/.
4 Cloudera, Inc. - Website: https://www.cloudera.com/.
5 MapR, Inc. - Website: https://www.mapr.com/.

https://aws.amazon.com/
http://www.ibm.com/
http://hortonworks.com/
https://www.cloudera.com/
https://www.mapr.com/


30 J. Sosa and C. Jiménez-Guaŕın

tools such as Apache HBase [14], Apache Storm [15], Apache Hive [16], Apache
Kafka [17] and obviously Apache Spark [18] among many others.

Some of these companies have their own Hadoop distributions with a range
of additional features that represent differentiating values to their customers.
Within these distributions of Hadoop stand out: HDP (Hortonworks Data Plat-
form) [19], CDH (Cloudera Data Hub) [20] and MapR Data Platform [21].

Some experts on this area have made important publications to transmit
their experience in the use of these tools and the lessons learned related to
scenarios in which they are useful, as well as the way of how they should be
used. For instance, the work [22] made by a group of Cloudera’s members serves
as a recommendation guide for the design Hadoop applications architectures and
shows the implementation of some real use cases.

The project [2] presents an extensive list of tools that have some relation-
ship with Hadoop ecosystem. The tools included in this repository are classified
in several categories such as distributed file systems, multi-purpose distributed
and scalable processing frameworks, NoSQL repositories and NewSQL reposito-
ries that aim to provide the same scalable performance of NoSQL systems for
traditional relational database systems, among others.

As for reference architecture models, the Lambda architecture repository
[23] consolidates a large number of electronic resources related to Lambda archi-
tecture real applications. This architecture was designed by Nathan Marz as
a scalable and fault tolerant model for big data applications design. On the
other hand, J. Kreps questions the Lambda architecture model in his article
[24], exposing the weaknesses around the previous model and creating a new one
that focuses on the possibility of offering the ability to develop, test, debug and
operate solutions built on top of a simple processing framework.

7 Conclusions

This work presents the design and implementation of BiDArch, a feasible solution
architectures generator for problem instances in big data domain. Based on a
study and analysis of the documentation related to Hadoop ecosystem tools, we
developed an ontology that describes the knowledge related to the tools’ features.

The architectural requirements description process is performed according
to the tools’ features set on the previous ontology. This process is implemented
using a three-step wizard that allows to represent three elements: a list of generic
attributes, a set of general requirements that are related to transversal tools
features and a set of requested activities. The particular requirements for any
requested activity are defined in function of a specific set of features provided by a
sub set of Hadoop ecosystem tools. This process is defined on top of two abstrac-
tion models: the general requirement model and the problem model. The
first model encapsulates the definition of any requirement using the tool fea-
tures and sets an order relationship between problem requirements. On the other
hand, the problem model abstracts the three elements used to describe a problem
instance.



BiDArch: BigData Architect, Generator of Big Data Solution Architectures 31

With the tool presented in this work, we build feasible solution architectures
for big data problems that require some traditional activities. These activities
include: storage, ingestion, extraction, batch processing, ETL operations and
querying on huge datasets. However, there are some specialized activities that
need to be added, such as scalable processing on graphs and machine learning,
which comprise an important domain of problem instances and enable high value
solutions for some business targets.

References

1. Achari, S.: Hadoop Essentials - Tackling the Challenges of Big Data with Hadoop.
Packt Publishing (2015)

2. Roman, J.: The Hadoop ecosystem table. https://hadoopecosystemtable.github.
io/

3. IBM, Inc.: The four V’s of big data. http://www.ibmbigdatahub.com/infographic/
four-vs-big-data

4. Scott, J.: 7 key technologies in the evolving hadoop ecosystem. http://
www.dbta.com/BigDataQuarterly/Articles/7-Key-Technologies-in-the-Evolving-
Hadoop-Ecosystem-111505.aspx

5. Apache Spark MLlib. http://spark.apache.org/mllib/
6. Apache Mahout. https://mahout.apache.org/
7. MongoDB for giant ideas. https://www.mongodb.com/
8. Apache Jena Fuseki. https://jena.apache.org/documentation/fuseki2/index.html
9. W3C. SPARQL Query Language for RDF. https://www.w3.org/TR/

rdf-sparql-query/
10. Flask (A Python Microframework). http://flask.pocoo.org/
11. Ext JS 6.2.0. http://docs.sencha.com/extjs/6.2.0/
12. JointJS: Visualize and interact with diagrams and graphs. https://www.jointjs.

com/opensource
13. Sosa, J.: Generador de arquitecturas de solución sobre el ecosistema Hadoop para

problemas de Big Data. https://webcat.uniandes.edu.co/uhtbin/webcat
14. Apache HBase. http://hbase.apache.org/
15. Apache Storm. http://storm.apache.org/
16. Apache Hive. https://hive.apache.org/
17. Apache Kafka. https://kafka.apache.org/
18. Apache Spark. https://spark.apache.org/
19. Hortonworks, Inc.: Hortonworks data platform. https://hortonworks.com/

products/data-center/hdp/
20. Cloudera, Inc.: CDH is Cloudera’s 100% open source platform distri-

bution. https://www.cloudera.com/products/open-source/apache-hadoop/
key-cdh-components.html

21. MapR, Inc.: The MapR converged data platorm. https://mapr.com/products/
mapr-converged-data-platform/

22. Grover, M., Malaska, T., Seidman, J., Saphira, G.: Hadoop Application Architec-
tures, 1st edn. O’Reilly Media Inc., Sebastopol (2015)

23. Bijnens, N., Hausenblas, M.: Lambda Architecture. A repository dedicated to the
Lambda Architecture (LA). http://lambda-architecture.net/

24. Kreps, J.: Questioning the Lambda Architecture. https://www.oreilly.com/ideas/
questioning-the-lambda-architecture

https://hadoopecosystemtable.github.io/
https://hadoopecosystemtable.github.io/
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.dbta.com/BigDataQuarterly/Articles/7-Key-Technologies-in-the-Evolving-Hadoop-Ecosystem-111505.aspx
http://www.dbta.com/BigDataQuarterly/Articles/7-Key-Technologies-in-the-Evolving-Hadoop-Ecosystem-111505.aspx
http://www.dbta.com/BigDataQuarterly/Articles/7-Key-Technologies-in-the-Evolving-Hadoop-Ecosystem-111505.aspx
http://spark.apache.org/mllib/
https://mahout.apache.org/
https://www.mongodb.com/
https://jena.apache.org/documentation/fuseki2/index.html
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
http://flask.pocoo.org/
http://docs.sencha.com/extjs/6.2.0/
https://www.jointjs.com/opensource
https://www.jointjs.com/opensource
https://webcat.uniandes.edu.co/uhtbin/webcat
http://hbase.apache.org/
http://storm.apache.org/
https://hive.apache.org/
https://kafka.apache.org/
https://spark.apache.org/
https://hortonworks.com/products/data-center/hdp/
https://hortonworks.com/products/data-center/hdp/
https://www.cloudera.com/products/open-source/apache-hadoop/key-cdh-components.html
https://www.cloudera.com/products/open-source/apache-hadoop/key-cdh-components.html
https://mapr.com/products/mapr-converged-data-platform/
https://mapr.com/products/mapr-converged-data-platform/
http://lambda-architecture.net/
https://www.oreilly.com/ideas/questioning-the-lambda-architecture
https://www.oreilly.com/ideas/questioning-the-lambda-architecture


http://www.springer.com/978-3-319-66561-0


	BiDArch: BigData Architect, Generator of Big Data Solution Architectures
	1 Introduction
	2 The Complexity of Dealing with Big Data Problems and the Hadoop Ecosystem
	3 BiDArch: Automatic Generator of Feasible Architectures from Big Data Problem Specifications
	3.1 Phase 1: Tools Description Repository Generation
	3.2 Phase 2: Problem Instances Specification
	3.3 Phase 3: Feasible Architectures Generation

	4 BiDArch: Design and Implementation
	4.1 BiDArch Ontologies
	4.2 BiDArch Architecture

	5 Results
	6 Related Work
	7 Conclusions
	References




