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Abstract. We analyze the cluster structure in large networks by means
of clusters of exceedances regarding the influence characteristics of nodes.
As the latter characteristics we use PageRank and the Max-Linear model
and compare their distributions and dependence structure. Due to the
heaviness of tail and dependence of PageRank and Max-Linear model
observations, the influence indices appear by clusters or conglomerates
of nodes grouped around influential nodes. The mean size of such clusters
is determined by a so called extremal index. It is related to the tail index
that indicates the heaviness of the distribution tail. We consider graphs
of Web pages and partition them into clusters of nodes by their influence.

Keywords: Web graph · PageRank · Max-Linear model · Extremal
index · Tail index

1 Introduction

The evaluation of the influence of nodes in a Web graph G = (V,E) is an
important problem of Web identification. PageRank (PR) and in-degree are the
most popular indices of such influence. By Google’s definition [2] PR is the rank
of a Web page pi. It is determined by

R(pi) = c
∑

pj∈N(pi)

R(pj)
Dj

+ (1 − c) qi, i = 1, ..., n, (1)

where N(pi) is the set of pages that link to pi (in-degree), Dj is the number
of outgoing links of page pj (out-degree), and c ∈ (0, 1) is a damping factor.
q = (q1, q2, ..., qn) is a personalization probability vector such that qi ≥ 0 and∑n

i=1 qi = 1 holds, e.g. a uniform distribution qi = 1/n, and n is the total
number of pages pi or corresponding nodes i ∈ V of the Web graph G. The
definition is simplified omitting the term relating to dangling nodes.
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On the other hand, PR of a random page i ∈ V can be considered as a
weighted branching process

Ri =
Ni∑

j=1

Aj R
(j)
i + Qi, i = 1, ..., n, (2)

denoting Ri = R(pi), Aj =d c/Dj , Qi = (1 − c) qi, [8,17]. Here, {R
(j)
i , j =

1, . . . , Ni} denotes the ranks of Ni nodes j with links outgoing to the node i.
‘=d’ denotes the equality in distribution. Moreover, PR was considered in [14]
as an autoregressive process with random coefficients {Aj} and a random depth
Ni of dependence.

As an alternative to PR we use a Max-Linear Model (MLM), [5]. The MLM
may be determined by the substitution of sums in (2) by maxima

Ri =
Ni∨

j=1

AjR
(j)
i ∨ Qi, i = 1, ..., n.

Such a model is practically useful when a largest rank of the most influential
follower of a node is only available. In this case, (2) is not applicable.

Our first objective is to compare PR and the MLM by the tail and extremal
indices. The tail index shows the heaviness of the distribution tail of the rank
variable Ri. The reciprocal of the extremal index approximates the mean cluster
size of ranks. We determine the cluster around a node of interest as a con-
glomerate of nodes connected to this node such that at least one node in the
conglomerate has a rank that exceeds a sufficiently high threshold u.

Our second objective is a clustering of networks by evaluating the extremal
indices of nodes. A node i ∈ V = {1, ..., n} is considered as a root of a branching
tree and its extremal index θi is estimated by samples of ranks of its followers.
Since θi is the dependence measure around that node, the visualization of clusters
of the network may be done by circles with diameter 1/θi around each node. In
[4,10] the clustering of nodes or the associated graph partition is proposed in
terms of disconnected or weakly connected communities of nodes using samples
of node indices. In this paper we develop a corresponding stochastic approach.

Usually, in- and out-degrees of nodes, i.e. the number of incoming and out-
going links of a node, are measured. They can be modelled by regularly varying
distributions. The distribution function F (x) is called regularly varying of tail
index α > 0 if 1 − F (x) ∼ x−α�(x) as x → ∞, where �(x) is a slowly vary-
ing function, i.e. limx→∞ �(tx)/�(x) = 1, ∀t > 0, holds. In real-world networks
α ∈ (1, 3) is observed, [3].

A term of the PR process that dominates its tail (i.e., one that has a smallest
tail index αmin) may determine the cluster structure of the network controlled
by the extremal index θ. We compare nonparametric estimates of αmin and θ
for PR and the MLM by a study of a real network.

The paper is organized as follows. In Sect. 2 a theoretical basis of our study
is given. We propose an adaptation of the blocks estimator of the extremal
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index to a Web graph modelled by Thorny Branching Trees. In Sect. 3 we then
compare the tail and extremal indices of PR and MLM by a study of a Web
graph sample. Finally, we present some conclusions on our new nonparametric
analysis approach.

2 Theoretical Foundation of Web Graph Modeling

We consider a Web graph G = (V,E) with a sample {Rn, n ≥ 1} of a random
rank variable, [8,13–15,17].

Definition 1 ([9], p. 53). The stationary sequence {Rn, n ≥ 1} is said to have
extremal index θ ∈ [0, 1] if for each 0 < τ < ∞ there is a sequence of real
numbers un = un(τ) such that it holds

lim
n→∞ n(1 − F (un)) = τ, lim

n→∞ P{Mn ≤ un} = e−τθ, (3)

where Mn = max{R1, ..., Rn} =
∨n

j=1 Rj is used.

For independent r.v.s Rj θ = 1 holds, but the converse is not true. θ ≈ 0 implies
a strong dependence. As 1/θ approximates the mean cluster size, θ = 0 implies
that the maximum Mn likely does not exceed a sufficiently high threshold u.

The practical significance of θ is that it determines the distribution of a first
hitting time. This is the minimal time required to reach a sufficiently important
node with a high rank [13]. The extremal index evaluates the mean first hitting
time to find a subset of nodes with highest ranks in a network. This result helps
to compare sampling random walks that are used to gather information about
nodes and ranking algorithms like PR and the MLM.

It is a problem to get analytical formulae for θ of a PR process when the
distributions of its components and their dependence are unknown.

For a given personalization vector qi = 1/n, 1 ≤ i ≤ n =| V |, the scale-free
PR R

(n)
i = nRi of a node i can be computed iteratively [17] by

R̂
(n,0)
i = 1, R̂

(n,k)
i =

∑

j→i

c

Dj
R̂

(n,k−1)
j + (1 − c), k > 0, (4)

until the difference between two consecutive iterations will be small enough.
Here, j → i implies that node j links to node i, i.e. (j, i) ∈ E. To calculate the
corresponding MLM values {Xi} one can insert ranks obtained by (4) into

Xi =
Ni∨

j=1

c

Dj
R

(j)
i ∨ (1 − c), i = 1, ..., n. (5)

The stationary regularly varying distribution of PR Ri is derived in [8,17] under
slightly different assumptions. Considering (2) and assuming that all r.v.s in
the triple (Ni, AjR

(j)
i , Qi) are mutually independent and that {Ni}, {AjR

(j)
i },

{Qi} are sequences of iid regularly varying r.v.s, it is derived that the stationary
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distribution of Ri is regularly varying with α = min{αN , αAR, αQ}, i.e. with the
minimal tail index among the tail indices of all components in the triple. The
same is proved in [14] under more relaxed conditions, i.e. {AjR

(j)
i } are assumed

to be iid regularly varying r.v.s. It is derived therein that PR and MLM have
the same tail and extremal indices.

An open question is whether the same tail and extremal indices are preserved
for PR and the MLM in case that the ranks of followers of a node are dependent
due to possible links among those followers. We check it for Web graphs by a
nonparametric estimation of the tail and extremal indices.

2.1 Tail Index Estimation

Let {Rn, n ≥ 1} be a stationary sequence of r.v.s. of node ranks. To estimate the
tail index α of these ranks, we use Hill’s estimator [7] and the SRCEN estimator
[16]. Hill’s estimator is determined by

α̂(n, k) =

(
1
k

k∑

i=1

ln R(n−i+1) − ln R(n−k)

)−1

, (6)

where k ∈ N, 1 ≤ k < n, is the number of largest order statistics of {Rn}. It is
the most popular estimator and it may be applied for α > 0 and iid data.

The SRCEN estimator may be applied for 0 < α < 2. It is determined by

α̂(n, b) = 2[n/b2] ln(b)/
[n/b2]∑

i=1

ξi(b) (7)

where ξi(b) = ln
(∑ib2

j=(i−1)b2+1 R2
j

)
− 1/b

∑b
k=1 ln

(∑(k−1)b2+kb
j=(k−1)b2+(k−1)b+1 R2

j

)
,

and [·] denotes the integer part. We chop the data {R1, ..., Rn} into non-
overlapping blocks of size b2, e.g., b = [n1/3].

By a simulation it was shown that Hill is better than SRCEN for many cases
of iid series, whereas SRCEN overcomes Hill for dependent data, [16].

2.2 Extremal Index Estimation by the Blocks Estimator

Regarding a graph structure we will use the blocks estimator [1] as the most
appropriate one. Then a cluster is defined as a block of data {Ri}, where at
least one observation exceeds a threshold u. The estimator states as follows

θ̂ =
n

∑k
j=1 1

(
M(j−1)r,jr > u

)

rk
∑n

i=1 1 (Ri > u)
, (8)

where Mi,j = max {Ri+1, ..., Rj}, k is the number of blocks, r = [n/k] is the
number observations in the block, and 1 (·) is the indicator of an event.

In [15] a modification of the blocks estimator is proposed for Web graphs,
where generations of followers of a root node in the branching tree are considered
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(a) (b)

Fig. 1. Generations of followers of the root node in the branching tree used as blocks
(1(a)), and graph of the Berkeley-Stanford dataset (1(b)).

as blocks (see Fig. 1(a)). The intuition behind (8) is that the blocks should not
be overlapping. Typically, a node may be present in several generations due to
loops, see Fig. 1(b). As the blocks of the generations are not equal-sized, one can
use for a given threshold level u the ratio

θ̂(u) = C(u)/N(u) (9)

instead of (8), where N(u) is the number of exceedances over u and C(u) is the
number of clusters. u is the most sensitive parameter of (9). It may be found
visually corresponding to a stability interval of the plot (u, θ̂(u)). For big data
such as Web graphs we may select u by bootstrap methods, [12].

The same argument concerns the Hill’ and SRCEN tools, where we have to
select the number of the largest order statistics k and the block size b, respec-
tively. For this purpose one may also use bootstrap methods, [12].

2.3 Bootstrap Method

In the following we briefly describe the bootstrap method to evaluate k in (6),
[12].

Algorithm 1.

1. Generate B re-samples {R∗
1, ..., R

∗
n1

} of size n1 < n with replacement from
the original observations {Ri, 1 ≤ i ≤ n}, where n1 is defined as

n1 = nβb , 0 < βb < 1.

The number of the largest order statistics k1 ∈ {1, ..., n1 − 1} corresponding
to any re-sample relates to k and n by

k = k1

(
n

n1

)αb

, 0 < αb < 1. (10)
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2. Estimate B values α̂BS (n1, k1, b) of the tail index by each b ∈ {1, . . . , B} of
these B re-samples.

3. Calculate the mean squared error (MSE) by these re-samples,

MSE (n1, k1) = (bias (n1, k1))
2 + v̂ar (n1, k1) , (11)

where the bias and the variance are determined by the following terms

bias (n1, k1) = α̂BS (n1, k1) − α̂ (n, k) =
1
B

B∑

b=1

α̂BS (n1, k1, b) − α̂ (n, k) ,

v̂ar (n1, k1) =
1

B − 1

B∑

b=1

(
1
B

B∑

b=1

α̂BS (n1, k1, b) − α̂BS (n1, k1, b)

)2

,

for a tail index estimate α̂ (n, k) in (6) and find a minimal MSE (n1, k1)
among different k1 ∈ {1, ..., n1 − 1}.

4. Using the obtained k1, find the optimal k by (10) and then the corresponding
estimate α̂ (n, k) by (6).

Replacing k and k1 in Algorithm 1 by b and b1, respectively, one can estimate the
parameter b in (7) in the same way as the parameter k. In [6] it is recommended
to choose αb = 2/3 and βb = 1/2 for Hill’s estimator. This selection leads to a
bootstrap estimate of the MSE that is asymptotically close to the real MSE. To
our best knowledge, the optimal values of the bootstrap parameters αb and βb

are not obtained yet regarding SRCEN. But in this case we shall use the same
values, too.

The same bootstrap algorithm can be applied to estimate u in (9), where k
and k1 in (10) may be interpreted as the total numbers of exceedances in the
sample and in the re-sample, respectively. Then one can find u corresponding
to the selected k and determine the estimate of the extremal index θ̂(u). In this
case the values αb and βb are not precisely known due to the lack of theory and
we may take αb = 2/3 and βb = 1/2 as well. It is a subject of our future research
to derive these values αb and βb by theoretical arguments.

3 Comparison of PageRank and the Max-Linear Model

We study the Web graph of the Berkeley-Stanford dataset in which nodes rep-
resent Web pages and edges represent hyperlinks between those pages, [11]. The
graph contains 685230 nodes and 7600595 edges, [10]. We calculate PR and the
MLM of each node by (4) and (5) with c = 0.85. The scatter plot in Fig. 2(a)
shows the presence of outliers and, hence, the heavy-tailed distributions of PR
and MLM.
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Fig. 2. Scatter plots of the MLM versus PR for 150000 nodes (2(a)) and extremal
indices of PR versus the MLM for 685230 nodes (2(b)).

3.1 Tail Index Estimation

We estimate the tail index by PR and the MLM values that are obtained from the
underlying datasets by the estimators (6) and (7) (see Fig. 3). Usually, the tail
index value is taken according to a stability interval of the Hill’s plot (k, α̂(n, k))
regarding k. In the same way one can find the stability interval of the plot
(b, α̂(n, b)) of the SCREN estimator regarding b. Since the plots may have several
stability intervals, we apply the bootstrap method with the number of bootstrap
re-samples B = 300 and obtain the Hill’s estimate equal to 1.081 and 1.052, and
the SRCEN estimate equal to 1.3 and 1 for PR and MLM, respectively. Similar
values can be obtained considering the first stability intervals from the left of
the plots. Regarding the MLM, the values are closer for both estimators since
the block-maxima used for the estimation in this case belong to the distribution
tail in the same way as for the Hill’ estimator that uses only the largest order
statistics. As the tail index of PR and MLM are close to 1, this outcome implies
that their distributions are likely regularly varying with infinite variance.

Fig. 3. Tail index estimation by Hill’s estimator (3(a)), and the SRCEN estimator
(3(b)): PR (solid line), MLM (dashed line).
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Fig. 4. Tail index estimation of the in- and out-degrees by Hill’s estimator (4(a)), and
the SRCEN estimator (4(b)): in-degree (solid line), out-degree (dashed line).

Fig. 5. Extremal index estimates by (9) for PR (5(a)) and the MLM (5(b)).

Moreover, we estimate the tail indices of the in- and out-degrees (see Fig. 4)
and calculate their bootstrap values 1.026 and 2.730 for Hill’s estimate and
2.2373 and 2.2650 for the SCREN estimate, respectively. The tail index of the
in-degree is close to one which is a similarity regarding the tail index of PR and
the MLM. This result implies that the distribution of the in-degree has a heavier
tail than the distribution of the out-degree. Hence, the in-degree determines the
heaviness of tail of PR and the MLM. This outcome is in the agreement with
the results of [14,17].

3.2 Extremal Index Estimation of All Nodes in a Graph

To estimate the extremal index θ of the whole dataset, (then 1/θ implies the
mean cluster size over the whole network,) we select first generations of followers
of each node as blocks. To avoid the overlapping of blocks, we copy the same
sample 300 times and select blocks in such a way that each node belongs to only
one generation. In Fig. 5 the blocks estimates of PR and the MLM averaged over
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Fig. 6. Example of the truncation of the branching tree of a Web graph for a given ε.

300 samples are shown with the standard deviations. From the stability intervals
we select an extremal index of about θ̂ ∈ [0.85, 0.9] for PR and θ̂ ∈ [0.8, 0.85] for
MLM.

3.3 Extremal Index Estimation of an Individual Node

We estimate also the extremal index θ of each node. We consider a node as a root
of the corresponding branching tree and generations of its followers as blocks. As
the branching tree of a node can be very large, we propose the following trun-
cation of the tree, see Fig. 6. Starting from the root, we take into consideration
only a limited number of descendants using the following rule. If

ck−1R̂jk∏k−1
m=1 DjmR̂i

< ε, 0 < ε < 1, (12)

then the kth node will be included in the truncated graph but not its descen-
dants. As a node may belong to different generations due to loops, some descen-
dants may be preserved in the truncated graph as a member of the generations
nearest to the root. The term on the left-hand side of (12) is arising by recursive
replacements in (4) instead of R̂

(n,k−1)
j :

R̂i =
∑

j1→i

∑

j2→j1

. . .
∑

jk→jk−1

c

Djk

· ck−1

Djk−1 · . . . · Dj1

R̂jk

+ (1 − c)
∑

j2→j1

...
∑

jk−1→jk−2

ck−1

Djk−1 · . . . · Dj1

+ . . . + (1 − c)
∑

j1→i

c

Dj1

+ (1 − c).

Hereby, it is the intuition of this rule to exclude those nodes from the tree whose
influence on PR of the root is weaker in the sense of (12). Then the extremal
index is estimated by (9) using only generations of nodes of the truncated tree.
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Fig. 7. Average, minimum and maximum of extremal indices of PR of nodes from two
classes with MLM equal to 0.22 and 52.15 and colored by black - (1) and green - (2).
(Color figure online)

To detect clusters we fix the values of u corresponding to the stability inter-
vals of the plots in Fig. 5, i.e. uPR ≈ 600 and uML ≈ 75 for PR and MLM,
respectively. The scatter plot of the extremal indices of PR versus MLM is built
for ε = 0.01. It shows diagonal trends which mean a similarity of the extremal
indices of PR and MLM, see Fig. 2(b).

Figure 7 shows θ of PR for two classes with equal values of the MLM. Branch-
ing trees of depth equal to 7 associated with a node used to estimate θ may
contain nodes lying outside these classes. The minimal index equal to zero is
caused by the lack of exceedances over u w.r.t. PR of some nodes. The most
valuable class with MLM ≈ 52.15 has on average a mean cluster size approx-
imately equal to 1/θ = 1/0.313 ≈ 3.195, i.e. it includes at least 3 nodes with
PR exceeding u = 600, and the class with MLM ≈ 0.22 has a mean cluster size
equal to 5.78.

In order to investigate the impact of ε we estimate the extremal index of PR
of a triple of individual nodes for different values of ε by the blocks estimator (9)
in Table 1. The threshold u corresponding to each estimate θ̂(u) is calculated by

Table 1. Blocks estimates of the extremal index of PR regarding three nodes in a Web
graph with corresponding bootstrap estimates of u for different values of ε.

ε “Black” node PR = 6.48 “Green” node PR = 201.72 “Grey” node PR = 5031.31

N ̂θ(u) u N ̂θ u N ̂θ u

0.01 20931 0.5 45 296146 0.86 1150 154449 0.77 1460

0.05 589 1 6.5 84372 0.65 1460 105386 0.68 1460
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Fig. 8. Extremal index estimates by (9) for PR of the node from the black class (8(a)),
of the node from the grey class (8(b)) and of the green node (8(c)) for ε = 0.01 (solid
line) and ε = 0.05 (dashed line). (Color figure online)

the bootstrap algorithm described in Sect. 2.3. We select three nodes in Fig. 7:
one is taken from the “black” class, one from the “green” class and one is a
“grey” node located in the middle of the “green” class that has a large PR. The
latter node does not belong to the “green” class but it has links to almost all
nodes from the underlying network. The corresponding blocks estimates of the
PRs of these nodes against the threshold u are shown in Fig. 8 for different values
of ε. One may observe that the smaller the value of ε is the larger is the number
N of the selected nodes in the truncated graph. This strongly impacts on the
estimation of the extremal index. In order to calculate the blocks estimate well
enough, we select a value u corresponding to the minimum of the bootstrap MSE
(11), see Fig. 9. Then one can see in Fig. 9 the following tendency: the smaller ε
corresponds to the larger optimal value of u. This outcome is achieved because
the truncated branching tree contains a larger number of nodes in this case.
Moreover, the “grey” node with the largest PR among all three nodes has the
highest optimal u. One can select the following u ≈ 45, 1460, 1150 from Fig. 9(a),
(b) and (c) for ε = 0.01, respectively, for “black”, “grey” and “green” nodes.
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Fig. 9. The bootstrap estimate of the MSE against threshold u for three selected nodes
and ε equal to 0.01 and 0.05, respectively: “black” node (9(a)), “grey” node (9(b)) and
“green” node (9(c)) for ε = 0.01 (solid line) and ε = 0.05 (dashed line). (Color figure
online)

This value u is the smallest threshold corresponding to the stability interval of
smaller MSE. Hence, we obtain θ ≈ 0.5, 0.86, 0.77 for these nodes from Fig. 8 for
ε = 0.01. Despite the PR of the “grey” node is the largest among all considered
three nodes, its extremal index is the closest to one. This result implies that
connections of this node are all arbitrary and independent. In other words, this
node does not belong to a stable community with highly dependent links.

4 Conclusions

The paper is devoted to the stochastic analysis of a Web graph. Two character-
istics of the node influence are considered, namely PageRank and a Max-Linear
model. They are compared with regard to features of their underlying distribu-
tions and dependence structure. The latter dependence measure is represented
by the extremal index of samples of the page rank variable.
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Considering a Web graph, we propose a new clustering procedure of nodes
by means of their extremal index values. Such clustering reflects the changes
with regard to the extremal dependence structure of the Web graph. It may be
an alternative to the clustering of nodes by the most distinct communities of
nodes with a small number of edges between them. In our stochastic analysis
approach we partition a real Web graph into clusters according to the extremal
index values of the PageRank for equal MLM classes of nodes.

From the statistical point of view, the well-known nonparametric blocks esti-
mator of the extremal index is modified in our paper with respect to random
graphs. Considering the PageRank process corresponding to each node as an
individual Thorny Branching Tree, we propose to utilize the new generations in
such a tree as data blocks that are used by the blocks estimator. Due to loops
in the graph such blocks may have common nodes. As the critical parameter
of the blocks estimator is a threshold level, our next theoretical achievement is
given by the proposal and the empirical study of a new bootstrap method to
estimate this level. Due to the complexity of Web graphs several proposals to
simplify the calculations of the extremal indices have been made. They include
the truncation of the individual branching tree to calculate the extremal index
of an individual node and replicating the same sample to select non-overlapping
first generations as blocks to calculate the extremal index by the whole dataset
of the node characteristics like PageRank or the Max-Linear model.

Our study of real Web graph data shows that PR and the MLM have similar
tail and extremal indices. This result is in the agreement with our theoretical
results [14]. It demonstrates the negligible impact of the dependence among
generations of the branching trees associated with the nodes. The PR and MLM
distributions are shown to be heavy tailed with an infinite variance.

Our future investigations will concern a theoretical study of the bootstrap
procedure regarding the extremal index and a further study on the clustering of
random graphs.
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