
Schema Evolution and Gravitation to Rigidity: A
Tale of Calmness in the Lives of Structured Data

Panos Vassiliadis(B)

Department of Computer Science and Engineering,
University of Ioannina, Ioannina, Hellas

pvassil@cs.uoi.gr

Change is the essential process of all existence – Star Trek’s Spock

Evolving dependency magnets, i.e., software modules upon which a large number
of other modules depend, is always a hard task. As Robert C. Martin has nicely
summarized it (see http://www.oodesign.com/design-principles.html), funda-
mental problems of bad design that hinder evolution include immobility, i.e.,
difficulty in reuse, rigidity, i.e., the tendency for software to be difficult to change
and fragility, i.e., the tendency of the software to break in many places every
time it is changed. In such cases, developers are reluctant to evolve the software
to avoid facing the impact of change. How are these fundamentals related to
schema evolution? We know that changes in the schema of a database affect a
large (and not necessarily traced) number of surrounding applications, without
explicit identification of the impact. These affected applications can then suffer
from syntactic and semantic inconsistencies – with syntactic inconsistency lead-
ing to application crashes and semantic inconsistency leading to the retrieval
of data other than the ones originally intended. Thus, the puzzle of gracefully
facilitating the evolution of data-intensive information systems is evident, and
the desideratum of coming up with engineering methods that allow us to design
information systems with a view to minimizing the impact of evolution, a noble
goal for the research community.

Several research paths towards this goal are being pursued. A first path
involves works concerning an algebra of schema evolution operations, that can
allow the description of the history of schema changes in a semantically rich
sequence of operations [4,7]. Another path involves the management of the
impact of changes [1,9]. A fairly novel path involves the identification of pro-
files and patterns in the usage of relational database access technologies in open
source projects [5,6,10]. Moreover -and in particular, what interests us in the con-
text of this talk- as all engineering should be based on well-understood mechan-
ics and laws, the research community has also tried to uncover mechanics and
patterns that govern schema evolution. Knowing the underlying mechanisms of
schema evolution is fundamental in engineering solutions that gracefully handle
it: without this knowledge we can easily stray in solutions that have no relation-
ship to real-world problems. Although the body of work is rather small compared
to the importance of the matter, one cannot ignore that access to schema histo-
ries was practically impossible before the proliferation of Free and Open Source
Software (FOSS). Thus, apart from an original study in the early ’90s [12], it was
c© Springer International Publishing AG 2017
Y. Ouhammou et al. (Eds.): MEDI 2017, LNCS 10563, pp. 18–23, 2017.
DOI: 10.1007/978-3-319-66854-3 2

http://www.oodesign.com/design-principles.html


Schema Evolution: A Tale of Calmness 19

only in the late ’00s that the problem gained a certain momentum that continues
till today [2–4,8,11,19], basically due to the availability of FOSS projects that
contain DDL files in their history.

Since our team in the University of Ioannina started working on this topic,
in 2013, we have encountered several interesting patterns of schema evolution;
these findings will constitute the main body of this keynote talk.

In [13,14], we have studied how the schema of a database evolves in terms of
its size, growth and activity. Our findings indicate that schemata grow over time
in order to satisfy new requirements, albeit not in a continuous or linear fash-
ion, but rather, with bursts of concentrated effort of growth and/or maintenance
interrupting longer periods of calmness (Fig. 1).

Fig. 1. Summary of [14] with schema growth over time (red continuous line) along with
the heartbeat of changes (spikes) for two datasets. Overlayed darker green rectangles
highlight the calmness periods, and lighter blue rectangles highlight smooth expansions.
Arrows point at periods of abrupt expansion and circles highlight drops in size. (Color
figure online)

A different, innovative research path that we have ignited in [17,18] was to
study profiles and patterns of tables, rather than schemata. We have tried to
correlate static properties of tables, like the point of birth, or their schema size
at birth, with characteristics of activity, like the sum of changes the tables have
undergone, or their survival (we like to refer to tables removed as “dead” and
table that made it to the last known version of the history that we study as
“survivors”). We came up with four patterns (Fig. 2).

1. The Γ pattern pattern (albeit with several exceptions) suggests that tables
with large schemata tend to have long durations and avoid removal.

2. The Comet pattern suggests that the tables with most updates are frequently
the ones with medium schema size.

3. The Inverse Γ pattern, the one with the fewest exceptions, states that tables
with medium or small durations produce amounts of updates lower than
expected, whereas tables with long duration expose all sorts of update behav-
ior.

4. The Empty Triangle pattern indicates that the majority of removed tables
have mostly short lives, which in turn, implies a low probability of deletion
for old timers.



20 P. Vassiliadis

Fig. 2. The 4 patterns of [17,18]: Gamma (top left), inverse Gamma (top right), comet
(bottom left) and empty triangle (bottom right).

In [16] we have studied how survivors differ from dead tables with respect
to the combination of duration and activity profile. The resulting pattern was
named Electrolysis pattern due to the intense antithesis in the lives of dead and
survivor tables (Fig. 3):

1. Dead tables demonstrate short or medium lifetimes (much shorter than sur-
vivors), practically never at high durations. Moreover, with few exceptions,
the less active dead tables are, the higher the chance to reach shorter dura-
tions.

2. Oppositely to dead tables, survivors are mostly located at medium or high
durations. The more active survivors are, the stronger they are attracted
towards high durations, with a significant such inclination for the few active
ones that cluster in very high durations (which makes the antithesis with the
dead ones quite intense).

If time permits, this talk will also cover recent results in topics like foreign
key evolution [15] and evolution of Web Services [20].

A key message of this talk is that change is at much lower levels than one
would expect. We encounter this observation again and again, in several of the
aforementioned research explorations, and, we are quite confident to say that
the absence of evolution is clearly more evident that evolution itself. This has to
do both with survival and activity. In terms of survival, deletions of tables and
attributes are much more infrequent than additions. Calmness in the growth of
the schema is more frequent than schema growth; moreover, tables are rarely
resized. In terms of activity, quiet tables with low rates of change are the major-
ity; rigid tables outnumber the (really few) active ones, both in the survivor and,



Schema Evolution: A Tale of Calmness 21

Fig. 3. The Electrolysis pattern [16]: the left axis denotes durations in years; the right
axis denotes the level of activity (or, LifeAndDeath class) of tables (rigid have under-
gone zero change, active have an update rate of 10% or more, and quiet is the -majority
of- all the rest; the vertical axis denotes the percentage of tables with respect to their
activity class

in particular, in the dead class. Therefore, the presence of growth and occasional
maintenance actions should not eventually overshadow the absence of restruc-
turing and update that is a significant characteristic of the life of a schema in
the long term.

We attribute this phenomenon to what we have named as gravitation to
rigidity. Any change in the schema requires the maintenance of the surrounding
applications. Especially in the case of deletions, renames or type updates, the
result might be syntactic inconsistency (and therefore failure) of the application,
which is a grave consequence, especially if different developers are involved. The
plethora of concurring signs that point towards gravitation to rigidity is possibly
the single most important discovery of this line of research and a clear sign
of vulnerability in the way the relational model, queries and applications are
entangled.

We kindly refer the interested researchers to our website http://www.cs.
uoi.gr/∼pvassil/projects/schemaBiographies/index.html that contains pointers
to available data sets, the tools that we have built and material around our
published work.

Acknowledgements. The results of our team in the University of Ioannina on the
topic of studying and understanding the mechanics of schema evolution would have
never been possible without the collaboration and dedication of many colleagues and
students. The list of people who have contributed to this effort includes my colleague
and long-time collaborator Apostolos Zarras, as well as several of my students who
have worked on the topic, specifically Ioannis Skoulis, Fanis Giahos, Michael Kolozoff,

http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/index.html
http://www.cs.uoi.gr/~pvassil/projects/schemaBiographies/index.html


22 P. Vassiliadis

Athanasios Pappas, and Maria Zerva. Special mention also goes to my long-term col-
laborator George Papastefanatos and my PhD student Petros Manousis, with whom
we have collaborated for long on the topic of managing schema evolution, from its
engineering perspective.

References

1. Cleve, A., Brogneaux, A.-F., Hainaut, J.-L.: A conceptual approach to database
applications evolution. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y.
(eds.) ER 2010. LNCS, vol. 6412, pp. 132–145. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-16373-9 10

2. Cleve, A., Gobert, M., Meurice, L., Maes, J., Weber, J.H.: Understanding database
schema evolution: a case study. Sci. Comput. Program. 97, 113–121 (2015)

3. Curino, C., Moon, H.J., Tanca, L., Zaniolo, C.: Schema evolution in Wikipedia:
toward a web information system benchmark. In: Proceedings of ICEIS 2008. Cite-
seer (2008)

4. Curino, C., Moon, H.J., Deutsch, A., Zaniolo, C.: Automating the database schema
evolution process. VLDB J. 22(1), 73–98 (2013)

5. Decan, A., Goeminne, M., Mens, T.: On the interaction of relational database
access technologies in open source Java projects. CoRR abs/1701.00416

6. Decan, A., Goeminne, M., Mens, T.: On the interaction of relational database
access technologies in open source java projects. In: Post-proceedings of the 8th
Seminar on Advanced Techniques and Tools for Software Evolution, Mons, Bel-
gium, 6–8 July 2015, pp. 26–35 (2015)

7. Herrmann, K., Voigt, H., Behrend, A., Lehner, W.: CoDEL – a relationally com-
plete language for database evolution. In: Morzy, T., Valduriez, P., Bellatreche, L.
(eds.) ADBIS 2015. LNCS, vol. 9282, pp. 63–76. Springer, Cham (2015). doi:10.
1007/978-3-319-23135-8 5

8. Lin, D.Y., Neamtiu, I.: Collateral evolution of applications and databases. In: Pro-
ceedings of the Joint International and Annual ERCIM Workshops on Principles of
Software Evolution (IWPSE) and Software Evolution (Evol) Workshops, IWPSE-
Evol 2009, pp. 31–40 (2009)

9. Manousis, P., Vassiliadis, P., Papastefanatos, G.: Automating the adaptation of
evolving data-intensive ecosystems. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.)
ER 2013. LNCS, vol. 8217, pp. 182–196. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-41924-9 17

10. Meurice, L., Nagy, C., Cleve, A.: Static analysis of dynamic database usage in Java
systems. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS,
vol. 9694, pp. 491–506. Springer, Cham (2016). doi:10.1007/978-3-319-39696-5 30

11. Qiu, D., Li, B., Su, Z.: An empirical analysis of the co-evolution of schema and
code in database applications. In: Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2013, pp. 125–135 (2013)

12. Sjøberg, D.: Quantifying schema evolution. Inf. Softw. Technol. 35(1), 35–44 (1993)
13. Skoulis, I., Vassiliadis, P., Zarras, A.: Open-source databases: within, outside,

or beyond Lehman’s laws of software evolution? In: Jarke, M., Mylopoulos,
J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.)
CAiSE 2014. LNCS, vol. 8484, pp. 379–393. Springer, Cham (2014). doi:10.1007/
978-3-319-07881-6 26

14. Skoulis, I., Vassiliadis, P., Zarras, A.V.: Growing up with stability: how open-source
relational databases evolve. Inf. Syst. 53, 363–385 (2015)

http://dx.doi.org/10.1007/978-3-642-16373-9_10
http://dx.doi.org/10.1007/978-3-642-16373-9_10
http://dx.doi.org/10.1007/978-3-319-23135-8_5
http://dx.doi.org/10.1007/978-3-319-23135-8_5
http://dx.doi.org/10.1007/978-3-642-41924-9_17
http://dx.doi.org/10.1007/978-3-642-41924-9_17
http://dx.doi.org/10.1007/978-3-319-39696-5_30
http://dx.doi.org/10.1007/978-3-319-07881-6_26
http://dx.doi.org/10.1007/978-3-319-07881-6_26


Schema Evolution: A Tale of Calmness 23

15. Vassiliadis, P., Kolozoff, M.R., Zerva, M., Zarras, A.V.: Schema evolution and
foreign keys: birth, eviction, change and absence. In: 36th International Conference
on Conceptual Modeling (ER 2017), Valencia, Spain, 6–9 November 2017 (2017)

16. Vassiliadis, P., Zarras, A.V.: Survival in schema evolution: putting the lives
of survivor and dead tables in counterpoint. In: Dubois, E., Pohl, K. (eds.)
CAiSE 2017. LNCS, vol. 10253, pp. 333–347. Springer, Cham (2017). doi:10.1007/
978-3-319-59536-8 21

17. Vassiliadis, P., Zarras, A.V., Skoulis, I.: How is life for a table in an evolving
relational schema? Birth, death and everything in between. In: Johannesson, P.,
Lee, M.L., Liddle, S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol.
9381, pp. 453–466. Springer, Cham (2015). doi:10.1007/978-3-319-25264-3 34

18. Vassiliadis, P., Zarras, A.V., Skoulis, I.: Gravitating to rigidity: patterns of schema
evolution - and its absence - in the lives of tables. Inf. Syst. 63, 24–46 (2017)

19. Wu, S., Neamtiu, I.: Schema evolution analysis for embedded databases. In: Pro-
ceedings of the 2011 IEEE 27th International Conference on Data Engineering
Workshops, ICDEW 2011, pp. 151–156 (2011)

20. Zarras, A.V., Vassiliadis, P., Dinos, I.: Keep calm and wait for the spike! insights
on the evolution of Amazon services. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J.
(eds.) CAiSE 2016. LNCS, vol. 9694, pp. 444–458. Springer, Cham (2016). doi:10.
1007/978-3-319-39696-5 27

http://dx.doi.org/10.1007/978-3-319-59536-8_21
http://dx.doi.org/10.1007/978-3-319-59536-8_21
http://dx.doi.org/10.1007/978-3-319-25264-3_34
http://dx.doi.org/10.1007/978-3-319-39696-5_27
http://dx.doi.org/10.1007/978-3-319-39696-5_27


http://www.springer.com/978-3-319-66853-6


	Schema Evolution and Gravitation to Rigidity: A Tale of Calmness in the Lives of Structured Data
	References




