
Chapter 1
Energy Band Structures of Semiconductors

Abstract Thephysical properties of semiconductors canbeunderstoodwith the help
of the energy band structures. This chapter is devoted to energy band calculations
and interpretation of the band structures. Bloch theorem is the starting point for
the energy band calculations. Bloch functions in periodic potentials is derived here
and a periodic function is shown to be expressed in terms of Fourier expansion by
means of reciprocal wave vectors. Brillouin zones are then introduced to understand
energy band structures of semiconductors. The basic results obtained here are used
throughout the text. Nearly free electron approximation is shown as the simplest
example to understand the energy band gap (forbidden gap) of semiconductors and
the overall features of the energy band structure. The energy band calculation is
carried out first by obtaining free-electron bands (empty lattice bands) which are
based on the assumption of vanishing magnitude of crystal potentials and of keeping
the crystal periodicity. Next we show that the energy band structures are calculated
with a good approximation by the local pseudopotential method with several Fourier
components of crystal potential. The nonlocal pseudopotential method, where the
nonlocal properties of core electrons are taken into account, is discussed with the
spin–orbit interaction. Also k · p perturbation method for energy band calculation
is described in detail. The method is extended to obtain the full band structures
of the elementary and compound semiconductors. Another method “tight binding
approximation” will be discussed in connection with the energy band calculation of
superlattices in Chap.8.

1.1 Free-Electron Model

It is well known that the physical properties of semiconductors are understood with
the help of energy band structures. The energy states or energy band structures
of electrons in crystals reflect the periodic potential of the crystals and they can be
calculated when we know the exact shape and themagnitude of the crystal potentials.
The shape and the magnitude of the potential are not determined directly from any
experimental methods, and thus we have to calculate or estimate the energy bands by
using the assumed potentials. Many different approaches to calculations of energy
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Fig. 1.1 One-dimensional crystal with periodic potential

bands have been reported, but in this textbook we will deal with several methods,
which are not so difficult to understand. We begin with the most simplified method
to calculate electronic states in a model crystal.

For simplicity we consider a one-dimensional crystal with a periodic potential as
shown in Fig. 1.1, and assume that each atom provides one free electron and that the
atom has a charge of +e, forming an ion.

The ion provides potential energy V (r) = −e2/4πε0r , where r is the distance
from the central position of the ion. Therefore, the one-dimensional crystal has a
potential energy consisting of the superposition of that of each atom, as shown in
Fig. 1.1. From the figure we find the potential energy of the walls is higher than the
inside potential and thus the electrons are confined between the walls. However, we
have to note that the above results are derived from a very simplified assumption
and the potential distribution is obtained without electrons. In a crystal there are
many electrons and thus electron–electron interactions play a very important role in
the potential energy distribution. Electron–electron interaction will be discussed in
the case of plasmon scattering in Chap.2 and in calculating the electronic states in
quantum dots in Sect. 8. In the discussion of the energy band structure we will not
deal with the electron–electron interactions and consider a simplified case where we
calculate the electronic states for a single electron and then put many electrons in
the energy states by taking the Pauli exclusion principle into account.

The large conductivity in metals is understood to arise from the fact that many
free electrons exist in the conduction band. Therefore such electrons have an energy
higher than the potential maxima and lower than the confining wall potentials. In
the extreme case we can make an approximation that the electrons are confined in a
square potential well, as shown in Fig. 1.2, where we assume the potential is infinite
at x = 0 and x = L . In such a case the electron energy may be obtained by solving
the one-dimensional Schrödinger equation

[
− �

2

2m

d2

dx2
+ V (x)

]
Ψ (x) = EΨ (x) , (1.1)

and the solutions are given by the following relations:
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Fig. 1.2 Simplified quantum
well model and electronic
states
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Eigenfunctions and their energy level for n = 1, 2, 3, . . . are shown in Fig. 1.2. It
is very easy to extend this one-dimensional model to the three-dimensional model,
which will not be given here. We have to note that energy band structures are well
understood by introducing periodic boundary conditions and the Bloch theorem.

1.2 Bloch Theorem

When we introduce a translational vector T , the crystal potential has the periodicity
V (r) = V (r + T ), and thus the squared wave function of the electron |Ψ (r)|2 has
the same periodicity. The amplitude of the wave function Ψ (r) has an ambiguity
of a phase factor exp(ik · r). The cyclic boundary condition in the case of a one-
dimensional crystal requires the condition that the wave function including the phase
factor is the same at x and at x + L , and thus Ψ (x) = Ψ (x + L), where L is the
length of the crystal. The results are summarized as follows [1]:

Ψ (r) = exp(ik · r)uk(r) , (1.3)

uk(r + T ) = uk(r) , (1.4)
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k = 2π

N
(nxa∗ + nyb

∗ + nzc∗) , (1.5)

where k is called the electron wave vector and T = n1a + n2b + n3c is the trans-
lational vector defined by using the fundamental vectors a, b, c with n1, n2, n3 =
0,±1,±2, . . .. The function Ψ (r) is called the Bloch function and the function u(r)
is the periodic function of the translational vector,

u(r + T ) = u(r) . (1.6)

The wave vector k is expressed in terms of the reciprocal lattice [1],

a∗ = b × c
a · (b × c)

, (1.7)

b∗ = c× a
a · (b × c)

, (1.8)

c∗ = a × b
a · (b × c)

, (1.9)

which satisfy the following relations [1]:

a∗ · a = b∗ · b = c∗ · c = 1 , (1.10)

a∗ · b = a∗ · c = · · · = c∗ · a = c∗ · b = 0 . (1.11)

The reciprocal lattice vector is defined by

Gn = 2π(n1a∗ + n2b
∗ + n3c∗) , where n1, n2, n3are integers. (1.12)

Periodic functions with the lattice vectors a, b, c are Fourier expanded with the
reciprocal lattice vectors,

uk(r) =
∑
m

A(Gm) exp(−iGm · r) , (1.13)

V (r) =
∑
n

V (Gn) exp(−iGn · r) , (1.14)

where A(Gm) and V (Gn) are Fourier coefficients. The coefficients are obtained by
the inverse Fourier transformation,

A(Gi ) = 1

Ω

∫
Ω

exp(+iGi · r)uk(r)d3r , (1.15)

V (G j ) = 1

Ω

∫
Ω

exp(+iG j · r)V (r)d3r , (1.16)
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where Ω is the volume of the unit cell of the crystal. From the definition of the
reciprocal lattice vector (1.12), we can easily prove the following important relation
(see Appendix A.2),

1

Ω

∫
Ω

exp [i (Gm − Gn) · r] d3r = δmn . (1.17)

Here we have used the Kronecker delta function defined by

δmn =
{
1 for m = n
0 for m �= n

. (1.18)

1.3 Nearly Free Electron Approximation

For simplicity we begin with the one-dimensional case. From (1.16) we obtain

V (Gn) = 1

a

∫ a

0
V (x) exp(iGnx)dx , (1.19)

which gives the following zeroth-order Fourier coefficient, V (0), when we put Gn =
0 in the above equation

V (0) = 1

a

∫ a

0
V (x)dx . (1.20)

The coefficient V (0) gives the average of the potential energy. In the case of three-
dimensional crystals, the coefficient

V (0) = 1

Ω

∫
Ω

V (r)d3r (1.21)

also gives the average value of the potential energy V (r) in the unit cell Ω . In
the following we measure the energy from V (0) and thus we put V (0) = 0. The
electronic states of an electron in the periodic potential V (r) are given by solving
the Schrödinder equation,

[
− �

2

2m
∇2 + V (r)

]
Ψ (r) = E(k)Ψ (r) . (1.22)

Putting (1.13) into (1.3), we obtain
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Ψ (r) = 1√
Ω

exp(ik · r)
∑
n

A(Gn) exp(−iGn · r) ,

= 1√
Ω

∑
n

A(Gn) exp [i (k − Gn) · r] , (1.23)

where the factor 1/
√

Ω is introduced to normalize the wave function Ψ (r) in the
unit cell. Putting (1.14) and (1.23) into (1.22), the following result is obtained:

1√
Ω

∑
n

[
�
2

2m
(k − Gn)

2 − E(k) +
∑
m

V (Gm) exp(−iGm · r)
]

×A(Gn) exp [i(k − Gn) · r] = 0 . (1.24)

Multiplying (1/
√

Ω) exp[−i(k−Gl) · r] to the both sides of the above equation and
integrating in the unit cell with the help of (1.17), we find that the first and the second
terms are not 0 for n = l, and that the third term is not 0 for −(Gm + Gn) = −Gl

(or Gl − Gn = Gm). Therefore, the integral is not 0 only in the case of m = l − n,
and we obtain the following result:

[
�
2

2m
(k − Gl)

2 − E(k)
]
A(Gl) +

∑
n

V (Gl − Gn)A(Gn) = 0 . (1.25)

In the free-electron approximation of Sect. 1.1, we assumed the potential is given by
the square well shown in Fig. 1.2, and thus the Fourier coefficients are V (Gm) = 0
(m �= 0). As stated above, we take the energy basis at V (0) and put V (r) = 0. Then
(1.22) gives the following solution:

E(k) = �
2k2

2m
, (1.26)

Ψ (r) = 1√
Ω

A(0) exp(ik · r) . (1.27)

In the nearly free electron approximation, the potential energy is assumed to be
very close to the square well shown in Fig. 1.2 and the Fourier coefficients V (Gl)

are assumed to be negligible except for V (0). Therefore, we replace the energy E(k)
by (1.26) in (1.25) and only the term including A(0) is kept in the second term. This
assumption results in

[
�
2

2m
(k − Gl)

2 − �
2k2

2m

]
A(Gl) + V (Gl)A(0) = 0 . (1.28)

From this equation we obtain
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A(Gl) = V (Gl)A(0)

(�2/2m)
[
k2 − (k − Gl)2

] . (1.29)

In the nearly free electron approximation, the electron wave function may be approx-
imated by (1.27). In other words, the terms A(Gl) are very small except Gl = 0.
From the result given by (1.29), however, we find that the term A(Gl) is very large
when (k − Gl)

2 ≈ k2. The condition is shown by the following equation:

(k − Gl)
2 = k2 , (1.30)

which gives rise to Bragg’s law (law of Bragg reflection) and determines the Brillouin
zones of crystals. When the electron wave vector ranges close to the value given by
(1.30), we keep the term A(Gl) in addition to the term A(0), and neglect the other
terms. Then we obtain the following relations from (1.25):[

�
2

2m
k2 − E(k)

]
A(0) + V (−Gl)A(Gl) = 0 , (1.31a)

[
�
2

2m
(k − Gl)

2 − E(k)
]
A(Gl) + V (Gl)A(0) = 0 . (1.31b)

The solutions of the above equations are obtained under the condition that the coef-
ficients A(0) and A(Gl) are both not equal to 0 at the same time. The condition is
satisfied when the determinant of (1.31a) and (1.31b) is 0, which is given by

[
(�2/2m)k2 − E(k) V (−Gl)

V (Gl) (�2/2m)(k − Gl)
2 − E(k)

]
= 0 . (1.32)

From this we obtain

E(k) = 1

2

[
�
2

2m

{
k2 + (k − Gl)

2
}

±
√(

�2

2m

)2 {
k2 − (k − Gl)2

}2 + 4|V (Gl)|2
]

, (1.33)

where the relation V (−Gl) = V ∗(Gl) is used. When k2 = (k − Gl)
2 and thus

2k · Gl = G2
l , we find

E(k) = �
2k2

2m
± |V (Gl)| , (1.34)

which means that there exists an energy gap of 2|V (Gl)|.
Here we will apply the results to a one-dimensional crystal. Replacing Gl by Gn

in (1.33) and using the relation Gn = 2πn/a(n = 0,±1,±2,±3, · · · ), we have the
following equation:
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E(k) = 1

2

[
�
2

2m

{
k2 +

(
k − 2πn

a

)2
}

±
√(

�2

2m

)2 {
k2 −

(
k − 2πn

a

)2}2

+ 4|V (Gn)|2
]

. (1.35)

Therefore, E(k) ∼= �
2k2/2m is satisfied, except in the region close to the condition

k2 = G2
n = (k − 2πn/a)2 or k = nπ/a. This result gives the choice of ± in (1.35).

Taking account of the sign of the square root, in the region k < (k −Gn)
2 we should

choose the minus sign and in the region k > (k − Gn)
2 we have to choose the

plus sign in (1.35). Therefore, in the region k ≈ nπ/a > 0, we find we obtain the
following relations:

k ≤ nπ

a
: E(k) = �

2k2

2m
− |V (Gn)| , (1.36)

k ≥ nπ

a
: E(k) = �

2k2

2m
+ |V (Gn)| . (1.37)

Using the above relations and plotting E(k) as a function of k, we obtain the results
shown in Fig. 1.3a. Such a plot of energy in the whole region of the k vector shown
in Fig. 1.3a is called the “extended zone representation”. In such a one-dimensional
crystal model with N atoms, however, the electron system has N degrees of freedom
and thus the wave vector of the electron may take N values in the range −π/a <

k ≤ π/a, corresponding to the first Brillouin zone. When we take this fact into
account, the energy can be shown in the first Brillouin zone −π/a < k ≤ π/a. This
may be understood from the fact that the wave vectors k and k + Gm are equivalent
because of the equivalence of the wave functions with these two wave vectors from

(a) (b) (c)

Fig. 1.3 Energy band structure of one-dimensional crystal obtained from the nearly free electron
approximation. a extended zone representation, b reduced zone representation, and c energy bands
in real space. Energy in units of (�2/2m)(π/a)2
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the result shown by (1.23) (see Sect. 1.4). Using this result we easily find that the
region −2π/a < k ≤ −π/a in Fig. 1.3a is moved in the region 0 ≤ k ≤ π/a of
the first Brillouin zone by adding G = 2π/a and that π/a ≤ k ≤ 2π/a is moved
into −π/a ≤ k ≤ 0 by adding G = −2π/a. The region −2π/a < k ≤ −π/a and
π/a ≤ k ≤ 2π/a is called the second Brillouin zone. The 3rd Brillouin zone, 4th
Brillouin zone, . . . are defined in the samemanner and they can be reduced to the first
Brillouin zone. The energy plotted in the first Brillouin zone is shown in Fig. 1.3b and
this is called the “reduced zone representation”. Usually the energy band structure is
shown in the reduced zone scheme. Figure1.3c shows the allowed energy regionwith
the shaded portion and the region is called the “allowed band”, while electrons cannot
occupy the region in between the allowed bands, which is called the “forbidden band”
or “energy band gap”, where the horizontal axis corresponds to the coordinate of real
space.

1.4 Reduced Zone Scheme

The Bloch function in a crystal is given by

ψ(r) = 1√
Ω

∑
l

A(Gl)e
i(k−Gl )·r . (1.38)

Let us examine the phase between two Bloch functions with k-vectors k − Gl and
k. The phase difference at r between exp[ik · r] and exp[i(k − Gl) · r] is Gl · r .
The phase difference of the Bloch functions at a point displaced by the translational
vector T , r +T , is easily obtained in the following way. Since we have the relations

T = n1a + n2b + n3c , (1.39)

Gl = 2π(m1a∗ + m2b
∗ + m3c∗) , (1.40)

Gl · T = 2π(m1n1 + m2n2 + m3n3) = 2πn , (1.41)

and we obtain

k · (r + T ) − (k − Gl) · (r + T ) = Gl · r + Gl · T
= Gl · r + 2πn, (1.42)

where n is an integer and the relation a∗ · a = 1 is used.
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From the above considerationswefind the following results. The phase differences
between the two functions exp[ik · r] and exp[i(k−Gl) · r] at two different positions
r and r + T differs by the amount 2πn and thus the Bloch function ψ(r) behaves in
the same way at the position displaced by the translational vector T . In other words,
we can conclude that electrons with k and k − Gl are equivalent. Therefore, we can
reduce the electronic state of an electron with wave vector k into the state k − Gl ,
and represent the electronic states in the first Brillouin zone. This procedure is called
the reduced zone scheme and the energy band representation in the reduced zone
scheme. On the other hand, the energy band representation over the whole k region
is called the extended zone scheme.

1.5 Free–Electron Bands (Empty–Lattice Bands)

1.5.1 First Brillouin Zone

In order to calculate energy band structures of a semiconductor the following proce-
dures are required to carry out the calculations. These are

1. Calculate the first Brillouin zone.
2. Calculate the energy band structures in the limit of zero potential energy. This

procedure is to obtain the free-electron bands or empty-lattice bands and plot the
energy as a function of wave vector k in the reduced zone scheme.

3. Then calculate the energy bands using an appropriate method.

In the energy band calculation the most important procedure is to obtain the empty-
lattice bands, which are calculated by assuming zero lattice potential V (r) = 0
and keeping the lattice periodicity. In other words we assume the wave functions
are given by the free-electron model with the wave vectors of the electrons in the
periodic potential. Such an energy band structure is called empty-lattice bands or
free-electron bands and thus the band structure exhibits the characteristics of the
lattice periodicity.

Here we will show an example of empty-lattice bands in the case of the face-
centered cubic (fcc) lattice. First, we calculate the Brillouin zone of the fcc lattice.
Figure1.4a shows the fcc structure. The diamond structure is obtained by displac-
ing the lattice atoms by the amount (a/4, a/4, a/4), which is shown in Fig. 1.4b.
Therefore, the diamond structure belongs to the fcc structure. Diamond (C), Si and
Ge have this diamond structure. On the other hand, the displaced lattice atoms are
different from the original atoms, and the structure is called the zinc-blende structure,
which is shown in Fig. 1.4c. Crystals such as GaAs, GaP, AlAs, InAs, InSb belong
to the zinc-blende structure. The fundamental vectors and volume v of a fcc lattice
are defined by
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a a a

(a) (b) (c)

Fig. 1.4 a face-centered cubic lattice, b the diamond crystal lattice is obtained by displacing the
lattice atoms of a by (a/4, a/4, a/4), c when the displaced lattice atoms are different from the
original lattice atoms, the crystal structure is called the zinc-blende crystal structure

a = a

2
(ex + ey) , b = a

2
(ey + ez) , c = a

2
(ez + ex ) ,

v = a · (b × c)

=
(a
2

)3
(ex + ey) · [(ey + ez) × (ez + ex )] = 2

(a
2

)3 = 1

4
a3 , (1.43)

where e is the unit vector. The reciprocal vectors of the fcc structure are obtained as
follows:

a∗ = b × c
v

=
(a
2

)2 (ey + ez) × (ez + ex )
v

=
(a
2

)2 (ex − ez + ey)
a3/4

= 1

a
(ex + ey − ez) , (1.44)

b∗ = 1

a
(−ex + ey + ez) , (1.45)

c∗ = 1

a
(ex − ey + ez) . (1.46)

From these results we find that the reciprocal lattices of the fcc lattice form body-
centered cubic lattices. Therefore, the reciprocal lattice vectors G of the fcc lattice
are given by

G = 2π(n1a∗ + n2b
∗ + n3c∗) . (1.47)

The Brillouin zone of the fcc lattice is defined by

k2 = (k − Gl)
2 (1.48)

or

2k · Gl = G2
l . (1.49)
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(a) (b)

Fig. 1.5 The first Brillouin zone of a face-centered cubic lattice and b body-centered cubic lattice

Using the above equation the first Brillouin zone is easily calculated, as shown in
Fig. 1.5a. For comparison the first Brillouin zone of body-centered cubic lattices,
which form face-centered cubic lattices, is shown in Fig. 1.5b.

Since the lattice potential is 0 in the empty-lattice model, the energy of an electron
is given by the free-electron model:

E(k) = �
2

2m
k2 . (1.50)

We plot the energy E(k) versus wave vector k curves in the reduced zone scheme,
using the relation

k′ = k − G , (1.51)

and choose k′ in the first Brillouin zone. Then the empty lattice bands are given by

E(k′) = �
2

2m

(
k′ + G

)2
. (1.52)

1.5.2 Reciprocal Lattice Vectors of fcc Crystal

In the next Sect. 1.6, we discuss detailed treatment of pseudopotential method for
energy band calculations and show how to program the energy band calculation. For
this purpose we evaluate the matrix elements of the pseudopotential Hamiltonian
of a face centered cubic (fcc) crystal. First, we calculate the reciprocal lattice vec-
tors. Inserting (1.44) ∼ (1.46) into (1.47), we obtain the following relations for the
reciprocal vectors
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G = 2π

a

[
(n1 − n2 + n3)ex + (n1 + n2 − n3)ey

+ (−n1 + n2 + n3)ez
]

(1.53)

and thus the x , y, z components of G, and G2 are

Gx = 2π

a
(n1 − n2 + n3) , (1.54)

Gy = 2π

a
(n1 + n2 − n3) , (1.55)

Gz = 2π

a
(−n1 + n2 + n3) , (1.56)

G2 = [
G2

x + G2
y + G2

z

]
(1.57)

≡
(
2π

a

)2 [
(n1 − n2 + n3)

2 + (n1 + n2 − n3)
2

+ (−n1 + n2 + n3)
2
]

. (1.58)

Using these relations the reciprocal wave vectors of a face–centered cubic lattice
are easily evaluated, by putting n1, n2, n3 = ±0, ±1, ±2, ±4, ±5, . . .. It is very
convenient to introduce dimensionless lattice vectors K defined by,

K =
( a

2π

)
G . (1.59)

The calculated reciprocal lattice vectors K are listed in Table1.1, whereGx , Gy, Gz

are obtained by multiplying K by (2π/a) and they are tabulated for K 2 = K 2
x +

K 2
y + K 2

z = 0 ∼ 27.

1.5.3 Free Electron Bands

Free electron bands (empty lattice bands) are easily calculated using the results of
Table1.1, which are shown in Fig. 1.6 in the range of electron energy less than 200
in units of [�2/2ma2].

For better understanding we list several reciprocal lattice vectors from the lowest
orders, which are given by (see (1.53) and Table1.1)
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Table 1.1 Reciprocal lattice vectors of a face-centered cubic lattice calculated from (1.53), where
Kx = (a/2π)Gx , Ky = (a/2π)Gy , Kz = (a/2π)Gz . Here the vectors are obtained for K 2 =
K 2
x + K 2

y + K 2
z from 0 to 27

[K ] Permutations K 2

[000] [000] 0

[111] [1̄1̄1̄] [1̄1̄1] [11̄1̄] [1̄11̄] [11̄1] [1̄11] [111̄] [111] 3

[200] [02̄0] [2̄00] [002̄] [002] [200] [020] 4

[220] [2̄2̄0] [02̄2̄] [2̄02̄] [02̄2] [2̄02] [22̄0] [2̄20] [202̄] 8

[022̄] [202] [022] [220]
[311] [1̄3̄1̄] [3̄1̄1̄] [1̄3̄1] [3̄1̄1] [1̄1̄3̄] [13̄1̄] [13̄1] [3̄11̄] 11

[3̄11] [1̄1̄3] [11̄3̄] [1̄13̄] [11̄3] [1̄13] [113̄] [31̄1̄]
[31̄1] [1̄31̄] [1̄31] [113] [311̄] [131̄] [311] [131]

[222] [2̄2̄2̄] [2̄2̄2] [22̄2̄] [2̄22̄] [22̄2] [2̄22] [222̄] [222] 12

[400] [04̄0] [4̄00] [004̄] [004] [400] [040] 16

[331] [3̄3̄1̄] [3̄3̄1] [1̄3̄3̄] [3̄1̄3̄] [1̄3̄3] [3̄1̄3] [13̄3̄] [3̄13̄] 19

[13̄3] [3̄13] [33̄1̄] [33̄1] [3̄31̄] [3̄31] [31̄3̄] [1̄33̄]
[31̄3] [1̄33] [313̄] [133̄] [133] [331̄] [331] [313]

[420] [2̄4̄0] [4̄2̄0] [04̄2̄] [4̄02̄] [04̄2] [4̄02] [02̄4̄] [2̄04̄] 20

[24̄0] [4̄20] [02̄4] [2̄04] [204̄] [024̄] [42̄0] [2̄40]
[204] [024] [402̄] [042̄] [402] [042] [420] [240]

[422] [2̄4̄2̄] [422] [2̄4̄2] [4̄2̄2] [2̄2̄4̄] [2̄2̄4] [24̄2̄] [24̄2] 24

[4̄22̄] [4̄22] [22̄4̄] [2̄24̄] [22̄4] [2̄24] [42̄2̄] [42̄2]
[2̄42̄] [2̄42] [224̄] [224] [422̄] [242̄] [422] [242]

[511] [511̄] [1̄5̄1̄] [1̄5̄1] [5̄1̄1̄] [5̄1̄1] [115] [15̄1̄] [15̄1] 27

[5̄11̄] [5̄11] [1̄1̄5̄] [1̄1̄5] [11̄5̄] [51̄1̄] [1̄15̄] [51̄1]
[11̄5] [1̄15] [115̄] [1̄51̄] [1̄51] [511] [151̄] [151]

[333] [333] [3̄3̄3] [33̄3̄] [3̄33̄] [3̄33] [33̄3] [333̄] [3̄3̄3̄] 27

Fig. 1.6 Free electron bands
(empty lattice bands) of a
face-centered lattice are
plotted as a function of
electron wave vector along
the direction shown in
Fig. 1.22, where the energy
range is 0 ∼ 200 in units of
[�2/2ma2]

0

50

100

150

200

Wave Vector
L  X U K  W

E  
/ (
ħ2

/2
m
a2

)



1.5 Free–Electron Bands (Empty–Lattice Bands) 15

G0 = 2π

a
[0, 0, 0] , (1.60a)

G3 = 2π

a
[±1,±1,±1] , (1.60b)

G4 = 2π

a
[±2, 0, 0] , (1.60c)

G8 = 2π

a
[±2,±2, 0] , (1.60d)

G11 = 2π

a
(±3,±1,±1) . (1.60e)

Putting these values in (1.52), the empty-lattice bands (free-electron bands) are easily
calculated. In the following we use k instead of k′ and take account of k in the first
Brillouin zone. As an example we calculate the energy bands along the direction
〈100〉 in the k-space shown in Fig. 1.5. In other words, we calculate the energy band
structures E versus k from the Γ point to the X point. Since ky = kz = 0 in this
direction, putting the reciprocal lattice vectors into (1.50), the energy is given by the
following equations:

G0 : E = k2x , (1.61a)

G3 : E = (kx ± 1)2 + (±1)2 + (±1)2 ,

=
{

(kx − 1)2 + 2 (4-fold degeneracy)
(kx + 1)2 + 2 (4-fold degeneracy)

, (1.61b)

G4 : E =
⎧⎨
⎩
k2x + 4 (4-fold degeneracy)
(kx − 2)2 (single state)
(kx + 2)2 (single state)

, (1.61c)

where the energy is measured in the units �
2(2π/a)2/2m and the wave vector k in

the units 2π/a. When we plot these relations, we obtain the curves shown in Fig. 1.7.
Next we calculate the E versus k curves in the 〈111〉 direction of k-space, or along

the direction from the Γ point to the L point. The results are

Fig. 1.7 Empty–lattice
bands (free-electron bands)
of a face-centered cubic
lattice. 〈000〉, 〈111〉, 〈200〉,
and 〈220〉 represent the
reciprocal lattice vectors G0,
G3, G4, and G8,
respectively, and the
numbers in ( ) show the
degeneracy of the wave
functions
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G0 : E = k2x + k2y + k2z ≡ k2111 , (1.62a)

G3 : E = (kx ± 1)2 + (ky ± 1)2 + (kz ± 1)2 , (1.62b)

G4 : E =

⎧⎪⎨
⎪⎩

(kx ± 2)2 + k2y + k2z (2-fold degeneracy)
k2x + (ky ± 2)2 + k2z (2-fold degeneracy)

k2x + k2y + (kz ± 2)2 (2-fold degeneracy)
, (1.62c)

where k2x + k2y + k2z = k2111 and kx = ky = kz = k111/
√
3. Using these results we

obtain the energy bands, E − −k curves in the direction 〈111〉, which are shown in
the left half of Fig. 1.7. In Fig. 1.7, the notation of the point group for Oh is used
to represent the symmetry properties of the Brillouin zone edge. Note here that the
energy E is expressed in units of �

2(2π/a)2/2m.

1.6 Pseudopotential Method

In this section we will concern with the energy band calculations based on the
pseudopotential method. First we introduce local pseudopotential theory in which
the nonlocality of the core states are ignored, and we will show how to calculate
the energy band structures of the diamond and zinc blende semiconductors by using
small number of the pseudopotentials. In the later section we will discuss the nonlo-
cal pseudopotential theory in which the core potential of the occupied states is taken
into account.

1.6.1 Local Pseudopotential Theory

The electronic states in a crystal are obtained by solving the following non-relativistic
Schrödinger equation in the one-electron approximation:

[
− �

2

2m
∇2 + V (r)

]
Ψn(r) = En(k)Ψn(r) . (1.63)

However, it is possible onlywhenweknow the crystal potentialV (r). In the following
we will express the wavefunction Ψn(r) by the ket vector as |Ψn(r)〉 and show how
the Schrödinger equation is solved to a good approximation by using empirical
parameters, known as pseudopotentials, and the orthogonality of the wave functions
[2–7]. The idea of the pseudopotential method is based on the assumption that the real
crystal potential V (r) is given by the sum of the attractive core potential and theweak
repulsive potential (to keep the valence electrons out of the core). The addition of the
repulsive potential to the core potential cancels the real potential, resulting in a weak
net potential (pseudopotential). The introduction of the pseudopotential enables us to
treat valence electrons as nearly free electron approximation or to solve Schödinger
equation with a small number of Fourier components of the pseudopotential.
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First, we assume the electron wave functions of the core states and their energies
are given by |φ j 〉 and E j , respectively. We then have

H |φ j 〉 = [H0 + Vc(r)] |φ j 〉 = E j |φ j 〉 , (1.64)

where Vc(r) is the attractive core potential, and

H0 = − �
2

2m
∇2 . (1.65)

The true wave function |Ψ 〉 of an electron is then expressed as the sum of a smooth
wave function |χn(r)〉 of a valence electron (subscript n is the band index) and a sum
over occupied core states |φ j 〉;

|Ψ 〉 = |χn〉 +
∑
j

b j |φ j 〉 . (1.66)

Since the truewave function is orthogonal to the core states, the expansion coefficient
b j ′ is determined by the orthogonality 〈φ j |Ψ 〉 = 0 as follows.

〈φ j ′ |Ψ 〉 = 〈φ j ′ |χn〉 +
∑
j

〈φ j ′ |b jφ j 〉

= 〈φ j ′ |χn〉 + b j ′ = 0 , (1.67)

which gives b j ′ = −〈φ j ′ |χn〉 and thus we obtain

|Ψ (k, r)〉 = |χn(k, r)〉 −
∑
j

〈φ j |χn〉|φ j 〉 . (1.68)

We have to note here that |χn〉 is defined as a smooth wave function for a valence
electron and called as the pseudo-wave-function. As in the case of nearly free elec-
tron approximation, we calculate energy band structures by using plane waves for
|χn(k, r)〉 and in this scheme (1.68) is called the OPW (orthogonalized plane wave).
Substituting (1.68) into (1.63) we find

H |χn〉 −
∑
j

〈φ j |χn〉H |φ j 〉 = En(k)
{
|χn〉 −

∑
j

〈φ j |χn〉|φ j 〉
}

, (1.69)

and then we obtain the following relation:

H |χn〉 +
∑
j

[En(k) − E j ]|φ j 〉〈φ j |χn〉 = En(k)|χn〉 . (1.70)

We introduce a new parameter according to the definition of Cohen and Chelikowsky
[2]
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Vr(r) =
∑
j

[En(k) − E j ]|φ j 〉〈φ j | , (1.71)

or

Vr(r)|χn〉 =
∑
j

[En(k) − E j ]|φ j 〉〈φ j |χn〉 . (1.72)

This term acts like a short-ranged non-Hermitian repulsive potential. Using this
definition we obtain the following equation.

[H + Vr(r)]|χn〉 = En(k)|χn〉 . (1.73)

If H is separated into a kinetic energy H0 = −(�2/2m)∇2 and attractive core
potential Vc(r), then (1.73) becomes

[
− �

2

2m
∇2 + Vc(r) + Vr(r)

]
|χn〉 = En(k)|χn〉 , (1.74)

where En(k) is the energy of the band we are interested in. There exists the following
inequality between the energies of the core states, E j , and the energies of the valence
and conduction bands, En(k):

En(k) > E j , (1.75)

and thus we find from (1.72) that

Vr(r) > 0 . (1.76)

We may rewrite (1.74) as

[H0 + Vps(r)]|χn〉 = En(k)|χn〉 , (1.77)

Vps(r) = Vc(r) + Vr(r) , (1.78)

and it may be possible to make Vps small enough, since the attractive core potential
Vc(r) < 0 and the repulsive potential Vr(r) > 0 cancel each other. The new potential
Vps(r) is called the pseudopotential. Since the pseudopotential Vps is the sum of
the attractive long–range potential Vc and a short–range repulsive potential Vr , Vps

becomesweak long–range attractive regions away from the core andweakly repulsive
or attractive regions near the core (see Fig. 1.8 [2]).

The pseudopotential Vps(r) is also periodic, and we can expand it as the Fourier
series

Vps(r) =
∑
j

Vps(G j )e
−iG j ·r , (1.79)
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Fig. 1.8 Schematic plot of
pseudopotential in real space
(after Cohen and
Chelikowsky [2])

where the Fourier coefficients Vps(G j ) are given by

Vps(G j ) = 1√
Ω

∫
Ω

Vps(r)eiG j ·rd3r . (1.80)

For the reason stated above the potentialVps(r)maybe chosen as small as possible,
and thus we choose Vps(G j ) so that the potential Vps(G j ) is expressed with a small
number of the Fourier coefficients Vps(G j ); in other words, we may keep several
values of Vps(G j ) and neglect the other values because of their smallness. We should
note that |Vps(r)| is smaller than |V (r)|, but it does not mean that V (r) converges
with only a small number of its Fourier coefficients. The empirical pseudopotential
method is based on the approximation that the Fourier coefficients of Vps(r) are
empirically chosen so that the shape of the critical points and their energies show
good agreement with experimental observation.

Energy band calculations based on the empirical pseudopotential method take into
account as few the pseudopotentials Vps(G j ) as possible and use the Bloch functions
of the free-electron bands for the wave functions |χn〉. The energy bands are obtained
by solving

[
− �

2

2m
∇2 + Vps(r)

]
|χn(r)〉 = En|χn〉(r) , (1.81)

|χn(r)〉 = 1√
Ω

∑
j

ei(k+G j )·r , (1.82)

Vps(r) =
∑
j ′

Vps(G j ′)e
iG j ′ ·r . (1.83)
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Then the energy band structures are calculated by solving the following equation,
where the j-th component is given by dropping the factor (1/

√
Ω)

∑
j :

[
− �

2

2m
∇2 +

∑
j ′

Vps(G j ′)e
iG j ′ ·r

]
ei(k+G j )·r = En(k)ei(k+G j )·r . (1.84)

The eigenvalues and eigen functions of the above equation are easily obtained by
solving the following matrix equation. First, we introduce pseudopotential Hamil-
tonian by

Hps = − �
2

2m
∇2 + Vps(r) , (1.85)

and rewrite (1.84) as

Hps|k + G j 〉 = En(k)|k + G j 〉 , (1.86)

|k + G j 〉 = 1√
Ω

ei(k+G j )·r . (1.87)

Then the solutions are equivalently obtained by solving the determinant

||〈|k + Gi |Hps|k + G j 〉 − E(k)δi, j || = 0 , (1.88)

where the matrix elements of the Hamiltonian Hps are written as

〈k + Gi |Hps|k + G j 〉 = �
2

2m
(k + Gi )

2δGi ,G j + Vps(G j − Gi ) . (1.89)

When we know the pseudopotential form factors Vps(G j − Gi ), the energy band
calculations are straightforward by solving the eigen equation (1.88). In the next
subsection we will deal with the evaluation of non–vanishing pseudopotential form
factors.

1.6.2 Pseudopotential Form Factors

Once we know the Fourier coefficients Vps(G j ), the solutions of (1.88) are easily
calculated with a personal computer. It is very interesting to point out that the cal-
culated energy bands using the reciprocal wave vectors given by (1.60a)–(1.60e)
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Table 1.2 Pseudopotentials for several semiconductors in units of Rydberg [Ry] and lattice con-
stants a in [Å] (from [5])

a[Å] V S
3 V S

8 V S
11 VA

3 VA
4 VA

11

Si 5.43 −0.21 +0.04 +0.08 0 0 0

Ge 5.66 −0.23 +0.01 +0.06 0 0 0

Sn 6.49 −0.20 0.00 +0.04 0 0 0

GaP 5.44 −0.22 +0.03 +0.07 +0.12 +0.07 +0.02

GaAs 5.64 −0.23 +0.01 +0.06 +0.07 +0.05 +0.01

AlAs 5.66 −0.221 0.025 0.07 0.08 0.05 −0.004

AlSb 6.13 −0.21 +0.02 +0.06 +0.06 +0.04 +0.02

InP 5.86 −0.23 +0.01 +0.06 +0.07 +0.05 +0.01

GaSb 6.12 −0.22 0.00 +0.05 +0.06 +0.05 +0.01

InAs 6.04 −0.22 0.00 +0.05 +0.08 +0.05 +0.03

InSb 6.48 −0.20 0.00 +0.04 +0.06 +0.05 +0.01

ZnS 5.41 −0.22 +0.03 +0.07 +0.24 +0.14 +0.04

ZnSe 5.65 −0.23 +0.03 +0.06 +0.18 +0.12 +0.03

ZnTe 6.07 −0.22 0.00 +0.05 +0.13 +0.10 +0.01

CdTe 6.41 −0.20 0.00 +0.04 +0.15 +0.09 +0.04

and the free-electron Bloch functions show very reasonable results, where only sev-
eral pseudopotential parameters derived by Cohen and Bergstresser [5] shown in
Table1.2 are taken into account.

First we explain the pseudopotential parameters. In general a unit cell of a crystal
contains a single atom or multi–atoms and thus the pseudopotential is expressed as
[6]

Vps(r) =
∑
j

V (G j )e
−iG j ·r , (1.90a)

V (G j ) =
∑

α

Sα(G j )Vα(G j ) , (1.90b)

Sα(G j ) = 1

Nα

∑
cellm

e−iG j ·Rα
m , (1.90c)

Vα(G j ) = 1

Ωα

∫
eiG j ·rV α

ps(r)d
3r . (1.90d)

Derivation of the above relations is understood by taking account of multi–atoms in
the unit cell

∑
j

V (G j )e
−iG j ·r →

∑
j

∑
α

∑
cellm

Vα(G j )e
−iG j ·(r+Rα

m) ,
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where Sα(G) is called a structure factor, Nα is the number of atomic species α
present, Rα

m is the position of the m–th atom of the α–th species, and Ωα is the
atomic volume. Here the crystalline potential is assumed to be a sum of local atomic
pseudopotential V α

ps(r).
The diamond-type crystal structure such as Ge and Si contains two atoms A and B

(A = B) in the unit cell (Nα = 2), and the zinc-blende-type crystal structure has two
different atoms A and B (A �= B) (Nα = 2). When a new vector τ = (a/8)(111)
is defined, the atomic positions of A and B are given by RA = −τ and RB = +τ ,
respectively. Taking the origin of coordinates to be the center of those two atoms,
the structure factors are written as

SA(G j ) = 1

2
eiG j ·τ , SB(G j ) = 1

2
e−iG j ·τ (1.91)

and thus the pseudopotential form factor V (G) is given by

V (G j ) = 1

2

[
VA(G j )e

iG j ·τ + VB(G j )e
−iG j ·τ ]

= V S(G j ) cos(G j · τ ) + iVA(G j ) sin(G j · τ ) . (1.92)

Here we introduce following new parameters

V S(G j ) = [VA(G j ) + VB(G j )]/2 , (1.93a)

V A(G j ) = [VA(G j ) − VB(G j )]/2 , (1.93b)

where V S and VA are called the symmetric and antisymmetric form factors, respec-
tively. The structure factor plays an important role in electronic properties such as
energy band structure, diffraction effect and so on. SS(G j ) = cos(G j · τ ) and
SA(G j ) = sin(G j · τ ) are the real part and imaginary part of the structure factor.
From the definition of diamond-type crystal we have VA(G j ) = 0 and the structure
factor reduces to cos(G j · τ ). In Table1.2 the pseudopotentials are defined by using
the relations V S(G j ) = V A

j and V A(G j ) = V A
j , where G j is defined by (1.60a)–

(1.60e). As shown in Table1.2 some of the pseudopotentials V S(G j ) and VA(G j )

vanish. This may be understood from the following considerations. The symmetric
component of the pseudopotential is written as

V S(G j ) cos
(
G j · τ

) = V S(G j ) cos
(a
8

[
G jx + G jy + G jz

])
. (1.94)

Let’s examine the pseudopotentials for the reciprocal vectors (1.60a)–(1.60e). The
pseudopotentials for smaller values of G j are evaluated as
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V S(G0) cos (G0 · τ ) = V S(G0) ,

V S(G3) cos (G3 · τ ) = V S(G3) cos
(π

4
[±1 ± 1 ± 1]

)
�= 0 ,

V S(G4) cos (G4 · τ ) = V S(G4) cos
(π

4
[±2]

)
= 0 ,

V S(G8) cos (G8 · τ ) = V S(G8) cos
(π

4
[±2 ± 2]

)
�= 0 ,

V S(G11) cos (G11 · τ ) = V S(G11) cos
(π

4
[±3 ± 1 ± 1]

)
�= 0 .

Therefore the symmetric components of the pseudopotentials V S(G0) = V S
0 ,

V S(G3) = V S
3 , V

S(G8) = V S
8 , V

S(G11) = V S
11 remain and V S(G4) = V S

4 will
not contribute. In a similar fashion, there is no contribution from the antisymmetric
components of the pseudopotential V A(G0) = V A

0 and V A(G8) = V A
8 . These results

give the pseudopotentials for smaller values of |G j | in Table1.2, where we find that
pseudopotentials of large |G j | are diminished. Since the energy bands calculatedwith
these pseudopotentials given in Table1.2 show good agreement with experimental
observation, higher order components of the pseudopotentials are usually neglected.
The term V S(G0) = V S

0 results in a shift of the energy reference and thus we put
V S
0 = 0.

1.6.3 Nonlocal Pseudopotential Theory

Here we will be concerned with the energy band calculations by the pseudopoten-
tial method where the nonlocality of the core potential is considered. The method
described above is called local pseudopotential method, where the core potential is
assumed to be uniform neglecting the angular orbitals of the core electrons.

The nonlocal pseudopotential method takes account of nonlocal properties of the
core electrons. The core potential Vc(r) consists of a sum over the occupied core
states φ j , and it consists of the various states with the respective angular momentum
symmetry as discussed by Cohen and Chelikowsky [2, 6, 7] (see also the references
listed there). Therefore the core potential is given by the sum of s–, p–, and d–
components of the respective angular momentum quantum number l = 0, 1, 2, . . .

Vc(r) = Vs + Vp + Vd + . . . . (1.95)

As an example we consider carbon atom C. Its core states are (1s)2 and thus carbon
has no p–repulsive potential. The (2p) electrons of the valence states (2s)2)(2p)2

are affected by the core potential. This repulsive core potential is expected to be
stronger because of its closer distance to the core than in Si and Ge. In general, the
core potential is energy dependent and the nonlocal (NL) correction term to the local
atomic potential term is expressed as the following [2, 4, 7]
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V α
NL(r, E) =

∞∑
l=0

Aα
l (E) fl(r)Pl , (1.96)

and

f α
l (r) =

{
1, r ≤ Rm

0, r ≥ Rm
, (1.97)

where Aα
l (E) is an energy-dependent well depth of the α species, Rm is the model

radius, which is taken to be the same for all l, and Pl is projects out the l-th angular
momentum component of the wave function.

When we assume a square well for the model potential defined by (1.97), the
matrix element of the nonlocal potential is given by

VNL(K , K ′) = 4π

Ωα

∑
l,α

Aα
l (E)(2l + 1)

×Pl
(
cos

(
θK ,K ′

))
Sα(K − K ′)Fα

l (K , K ′) , (1.98)

where Sα(K ) is the structure factor defined by (1.90c) with K = k + G and K ′ =
k + G′, θK ,K ′ is the angle between K and K ′, and the sum of α is carried out over
the atomic species present.

Fl(K , K ′) =⎧⎪⎨
⎪⎩

R3
m

2

{[ jl(K Rm)]2 − jl−1(K Rm) jl+1(K Rm)
}
, K = K ′ ,

R2
m

K 2 − K ′2
[
K jl+1(K Rm) jl(K ′Rm) − K ′ jl+1(K ′Rm) jl(K Rm)

]
, K �= K ′ .

Pl(x) is a Legendre polynomial and jl(x) is a spherical Bessel function, which are
given for smaller values of the subscript l:

P0(x) = 1, P1(x) = x, P2(x) = (1/2)(3x2 − 1) ,

j0(x) = x−1 sin x , J1(x) = x−2 sin x − x−1 cos x ,

j2(x) = (3x−3 − x−1) sin x − 3x−2 cos x , j3(x) = 5x−1 j2(x) − j1(x) .

Energy band calculations require the estimation of energy dependent term Aα
l (E)

and radii Rm = R0, which are reported by Cohen and Chelikowsky [7]. They make
the approximation for A0(E) for the s state as

A0(E) = α0 + β0
{[E0(K )E0(K ′)]1/2 − E0(KF)

}
, (1.99)

where E0(K ) = �
2K 2/2m, KF = (6π2Z/Ω)1/3 and Z is the valence of the atomic

species of interest [6, 7].
Now the energy band calculations with local and nonlocal pseudopotentials are

straight forward.The eigenvalues and eigenvectors are obtainedby solving the secular
equation
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det
∣∣HG,G′(k) − E(k)δG,G′

∣∣ = 0 . (1.100)

For the local pseudopotential approximation, we have

HL
G,G′ = �

2

2m
(k + G)2 + Vps(|G − G′|) . (1.101)

When we include the nonlocal pseudopotential term we obtain

HG,G′ = HL
G,G′ + VNL(K , K ′)

= HL
G,G′ + 4π

Ωα

∑
l,α

Aα
l (E)(2l + 1)Pl

(
cos

(
θK ,K ′

))

×Sα(G − G′)Fα
l (K , K ′) , (1.102)

where the sum is carried out over the atomic species α.
Nonlocal pseudopotential parameters reported by Chelikowsky and Cohen [7] are

listed in Table1.3. In their calculations, the model radius of the Rl for the pseudopo-
tential is taken to be the same for all l and α0 = 0 for the cations. Energy band
calculations based on the nonlocal pseudopotentials require many parameters, but
the calculated results differ only a little compared to the simple local pseudopoten-
tial method. We will present only the energy band structure of GaAs calculated by
the nonlocal pseudopotential method in Sect. 1.6.6. Before dealing with the energy
band calculations by nonlocal pseudopotential, we present energy band structures
calculated by th local pseudopotential method for diamond and zinc blende semi-
conductors without spin–orbit interaction in Sect. 1.6.4. Later in Sect. 1.6.6 we

Table 1.3 Nonlocal pseodopotential parameters for the diamond and zinc blende semiconductors
(after Chelikowsky and Cohen [7])

Materials Pseudopotential form factors [Ry] Lattice constant [Å]

V S
3 V S

8 V S
11 VA

3 VA
4 VA

11

Si −0.257 −0.040 0.033 5.43

Ge −0.221 0.019 0.056 5.65

GaP −0.230 0.020 0.057 0.100 0.070 0.025 5.45

GaAs −0.254∗ 0.014 0.067 0.055 0.038 0.010∗ 5.65

GaSb −0.220 0.005 0.045 0.040 0.030 0.000 6.10

InP −0.235 0.000 0.053 0.080 0.060 0.030 5.86

InAs −0.230 0.000 0.045 0.055 0.045 0.010 6.05

InSb −0.200 −0.010 0.044 0.044 0.030 0.015 6.47

The pseudopotential values of GaAs with asterisk differ from the values V S
3 = −0.214 and VA

11 =
0.001 of Chelikowsky and Cohen [7]
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Nonlocal parameters for Si and Ge
Material α0 [Ry] β0 A2 [Ry] R0 [Å] R2 [Å]

Si 0.55 0.32 0 1.06 0
Ge 0 0 0.275 0 1.22

Nonlocal parameters for zinc blende semiconductors
(R0 = 1.27 for the cation and 1.06 Åfor the anion)

(α0 = 0 for the cation)
Cation Anion

Material α0 [Ry] β0 A2 [Ry] α0 [Ry] β0 A2 [Ry]
GaP 0 0.30 0.40 0.32 0.05 0.45
GaAs 0 0 0.125 0 0 0.625
GaSb 0 0.20 0.20 0 0.30 0.60
InP 0 0.25 0.55 0.30 0.05 0.35
InAs 0 0.35 0.50 0 0.25 1.00
InSb 0 0.45 0.55 0 0.48 0.70

will show calculated results for Ge and GaAs with the spin–orbit interaction for
comparison, and finally we present the energy band calculation of GaAs by the
nonlocal pseudopotential method.

1.6.4 Energy Band Calculation by Local Pseudopotential
Method

In this section we show the calculated results of the energy band structures with
the local pseudopotential method by neglecting the spin–orbit interaction. After the
discussion of the spin–orbit interaction in Sect. 1.6.5 wewill present energy band cal-
culations with the spin–orbit interaction in Sect. 1.6.6. As discussed by Chelikowsky
andCohen [6, 7], the overall feature of the calculated results by the local pseudopoten-
tial method shows a good agreement with the results by the nonlocal pseudopotential
method, except a small change in the region near some critical points. Instead, the
spin–orbit interaction plays a more important role in the energy regions near the criti-
cal points. In order to understand the energy band calculation by the pseudopotential,
first we will concern with the energy band calculation by the local pseudopotential
method.

Since we have only few numbers of the pseudopotential form factors, the energy
band calculations are straight forward.However, the accuracyof the calculated energy
band structures depends on the number of plane waves used for the pseudopotential
Hamiltonian matrix. When the number of plane waves are increased, a large com-
putation time is required to diagonalize the matrix. Therefore we have to limit the



1.6 Pseudopotential Method 27

number of the plane waves. One of the most popular method is to limit the number of
plane waves to form the matrix elements in a reasonable size and the higher energy
states are taken into account by using the perturbation method proposed by Löwdin
[8] as reported by Brust [9] and Cohen and Bergstresser [5]. Now high performance
PC’s such as Windows 7 with Intel core i–7 are available and 200 × 200 matrix is
solved to give the eigen energies and eigenstates in a reasonable time. In the next
section we will deal with k · p perturbation method to calculate energy bands, where
15 eigenstates are used. In this textbook the energy band structures are calculated
by the empirical pseudopotential method with 113 plane waves and thus 226 plane
waves with spin–up and –down states, and higher energy states up to 169 are treated
by Löwdin’s perturbation which are believed to be enough number to get accurate
energy band structures. The energy bands without the spin–orbit interaction with 59
plane waves and Löwdin’s perturbation for the higher states exhibit no noticeable
difference with the present results and thus we recommend the readers to use 59
plane waves for the purpose of time saving.

It is very interesting to compare two different results with 15 plane waves and 169
plane waves because these results provide an information of the convergence of the
energy band calculation by the pseudopotential method. A beginner for the energy
band calculations is recommended to calculate the energy bands of Si for example
using 15 plane waves [000], [111] and [200] (K 2 ≤ 4 in Table1.1) and disregarding
the spin–orbit interaction. The overall features of the calculated energy band structure
of Si are quite similar to the result obtained by 169 plane waves as shown in Fig. 1.9,

(a) (b)

Fig. 1.9 Energy bands of Si calculated by the local empirical pseudopotential method with 15
plane waves (a) and 169 plane waves (b). The curves of (b) are obtained by diagonalizing 113
plane waves 0 ≤ E(K ) ≤ E(K ) = 20 (where E(K ) = (�2/2m)(2π/a)2)K 2) exactly and 56 higher
energy states of 20 < E(K ) ≤ E(K ) = 27 by Löwdin’s perturbation method. Note the curves of
(a) exhibit discontinuity at U, K points and a curve of higher conduction band in the region K1 to
Γ is missing
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where energy band structures calculated by 15 plane waves are shown by the curves
in (a) and the curves in (b) are calculated by 169 plane waves. We find here that
overall features are in good agreement but some disagreement exists as follows. The
curves obtained by 169 plane waves show smooth continuity at the points U and
K (at K2). The points U and K in the Brillouin zone are equivalent because of
the symmetry of the representation as seen in Figs. 1.5 and 1.22 and thus obtained
bands are expected to be continuous through the points U and K . In addition to the
discontinuity, a higher conduction band obtained by 169 plane waves is missing in
the bands of 15 plane waves calculation in the region K1 to Γ and the conduction
bands of Γ15 and Γ2′ are almost degenerate in Fig. 1.9a. This will be discussed in
Sect. 1.7, where energy band calculations by k · p perturbation method of 15 states
will be discussed.

The energy band calculations carried out byCohen andBergstresser [5] reveal that
the choice of appropriate values for the pseudopotentials V S

3 , V
S
8 , V

S
11, V

A
3 , V A

8 , VA
11

and the neglect of higher-order values give the band structures in good agreement
with experimental results. The pseudopotential values determined by Cohen and
Bergstresser [5] for typical semiconductors are given in Table1.2. As discussed by
Brust [9], and Cohen and Bergstresser [5], the energy bands are obtained by limited
number of plane waves to form pseudopotential Hamiltonian matrix and plane waves
with higher free electron energies are taken into account by the perturbation method
proposed by Löwdin [8]. Energy band structures calculated by (1.84) with 169 plane
waves are shown for Ge and Si in Fig. 1.10, for GaAs, GaP, AlAs and AlSb in
Fig. 1.11, for InP, InAs, GaSb and InSb in Fig. 1.12, and for ZnS, ZnSe, ZnTe and
CdTe in Fig. 1.13. In the calculations, the pseudopotential matrix of the 113 free-
electron states of 0 ≤ E(K ) ≤ E(K ) = 20 (where E(K ) = (�2/2m)(2π/a)2)K 2)
are exactly diagonalized. For example, the calculated band gap of GaAs is 1.42 [eV]

Fig. 1.10 Energy band structures calculated by the empirical pseudopotential method for Si and
Ge. The spin–orbit interaction is not included
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Fig. 1.11 Energy band structures calculated by the empirical pseudopotential method for a GaAs,
b GaP, c AlAs, and d AlSb. The spin–orbit interaction is not included

which is obtained without spin–orbit interaction (compare the results with spin–
orbit interaction shown in Fig. 1.21, where we obtain 1.52eV for the direct band
gap). We have to note here that energy band calculations with 59 plane waves of
0 ≤ E(K ) ≤ E(K ) = 12 give quite reasonable results. This is understood from the
fact that the next higher levels of the free electron states are E(K ) = 16 and well
high compared with E(K ) = 12. The energy band calculations mentioned above
is sometimes called the “local pseudopotential method”, and later Chelikowsky and
Cohen reported the “nonlocal pseudopotential method” as described in Sect. 1.6.3 in
which the spin–orbit interaction is taken into account [6, 7].
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Fig. 1.12 Energy band structures calculated by the empirical pseudopotential method for a InP,
b InAs, c GaSb, and d InSb. The spin–orbit interaction is not included

1.6.5 Spin–Orbit Interaction

Once the reciprocal vectors are calculated, the free-electron wave functions (1.87)
(called as plane waves in this textbook) are easily formulated. Then putting the wave
functions into (1.84) we obtain (1.88) which is called eigen-value equation and easily
diagonalized to give eigenvalues and eigen functions. The matrix element in (1.84)
is written as

〈(k + Gi )|Hps|(k + G j )〉 = T (k)Gi ,G j + VGi ,G j + Δ(k)Gi ,G j , (1.103)
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Fig. 1.13 Energy band structures calculated by the empirical pseudopotential method for a ZnS,
b ZnSe, c ZnTe, and d CdTe. The spin–orbit interaction is not included

where we included spin–orbit interaction by introducing the term Δ(k)Gi ,G j . The
derivation of spin–orbit interaction term is shown in Appendix H. The three terms
of (1.103) are given by
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T (k)Gi ,G j = �
2

2m
(k + Gi )

2δGi ,G j , (1.104)

VGi ,G j = [
V S(Q) cos(Q · τ ) + iVA(Q) sin(Q · τ )

]
Q=Gi−G j

, (1.105)

Δ(k)Gi ,G j = iσ · [
Gi × G j − k × (Gi − G j )

]
× [

λS cos(Q · τ ) + iλA sin(Q · τ )
]

, (1.106)

where

Q = Gi − G j ≡ 2π

a
K . (1.107)

The term T (k)Gi ,G j has diagonal elements only and is easily formulated by using
the reciprocal wave vectors listed in Table1.1. The pseudopotential term VGi ,G j is
separated in symmetric parts and antisymmetric parts (for zinc blende crystal) and
theirmatrix elements are evaluated as follows.Using K = (a/2π)Q = (a/2π)(G j−
Gi ), and τ = (a/8)[111], the symmetric parts of the pseudopotentials are

V S(Q) cos(Q · τ ) = V S
3 cos

[π

4
(Kx + Ky + Kz)

]
if |K |2 = 3 (1.108a)

= V S
8 cos

[π

4
(Kx + Ky + Kz)

]
if |K |2 = 8 (1.108b)

= V S
11 cos

[π

4
(Kx + Ky + Kz)

]
if |K |2 = 11 (1.108c)

= 0 if |K |2 > 11 , (1.108d)

and in a similar fashion we obtain the antisymmetric parts of the pseudopotentials
for a zinc blende crystal

V A(Q) sin(Q · τ ) = V A
3 sin

[π

4
(Kx + Ky + Kz)

]
if |K |2 = 3 (1.109a)

= V A
4 sin

[π

4
(Kx + Ky + Kz)

]
if |K |2 = 4 (1.109b)

= V A
11 sin

[π

4
(Kx + Ky + Kz)

]
if |K |2 = 11 (1.109c)

= 0 if |K |2 > 11 . (1.109d)

The matrix elements of the spin–orbit Hamiltonian are easily evaluated by using the
results shown in Appendix H (see also Sect. 1.7.5 for the evaluation of the matrix ele-
ments of the spin–orbit Hamiltonian), and the manipulation similar to the pseudopo-
tential term leads to the following relations

λS cos(Q · τ ) = λS cos
[π

4
(Kx + Ky + Kz)

]
, (1.110)

λA sin(Q · τ ) = λA sin
[π

4
(Kx + Ky + Kz)

]
. (1.111)

The expression of spin–orbit interaction shown here is based on the derivation by
Melz [10] and known to bemathematically equivalent to the long-wavelength limit of
the OPW formulation due to Weisz [11], but the formalism is based on the empirical
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pseudopotential (local pseudopotential) method. See the paper by Chelikowsky and
Cohen [7] for more detailed treatment. Since we are interested in the valence bands
and lower lying conduction bands, we may restrict the number of plane waves to
calculate the spin–orbit interaction term.

It is well known that the atomic spin–orbit splittings are larger for the heavier
elements. Therefore we expect that the spin–orbit splitting at the valence band max-
imum increases with the heavier elements. For example the spin–orbit splitting of
Ge is larger than Si, and it increases in order of the mass for GaP, GaAs, GaSb, InP,
InAs, and InSb.

1.6.6 Energy Band Calculations by Nonlocal
Pseudopotential Method with Spin–Orbit Interaction

First, we show the calculated results by the local pseudopotential method with spin–
orbit interaction for Ge in Fig. 1.14(a) and GaAs in Fig. 1.14(b) with 118 plane
waves of spin–up and spin–down with the spin–orbit interaction. The pseudopoten-
tial values used in the calculations are local pseudopotentials reported by Cohen
and Bergstresser [5] (see Table1.2), and the spin–orbit interaction parameters are
(2π/a)2λS = 0.0008, (2π/a)2λA = 0.0002, where λS and λA are given by the units
(2π/a)2λS and (2π/a)2λA and used as fitting parameters for simplicity throughout
the textbook. These parameters are not best fitted but give the spin–orbit splitting
energy about 0.340 [eV] for GaAs. There exists only a slight difference in the ener-
gies at X , L and other critical points between the present calculations and the results
calculated by the nonlocal pseudopotential methods of Chelikowsky and Cohen [7]
(the results of the nonlocal pseudopotential method obtained by the present authors’
are shown in Fig. 1.15).

Finally we will show the energy band structure of GaAs calculated by using the
nonlocal pseudopotential method with the spin–orbit interaction. In the calculation
the plane waves for 0 ≤ K 2 ≤ E1 = 20 (113 plane waves and thus 226 plane waves
with spin–up and –down states) are exactly diagonalized, and 56(= 169−113) spin–
degenerate states for E1 < K 2 ≤ 27 are treated by Löwdin’s perturbation method
[8]. The results are shown in Fig. 1.15, where we used the pseudopotentials V S

3 =
−0.254 (−0.214) and V A

11 = 0.010 (0.001) instead of the parameters shown in the
parentheses reported by Chelikowsky and Cohen [7], and the spin–orbit parameters
is λS = 0.00081 and λA = 0.000245. The results are shown in Fig. 1.15 which
give the energy gap EG = 1.5055 [eV] and the spin–orbit splitting at the Γ point
0.34018 [eV]. We have to note here that the calculated results depend on the energy
cut values E1 and E2. When we choose a smaller value for E1, the convergence is very
fast, but the results strongly depend on the value of E2 and the obtained result is not
enough to explain the existing experimental data. On the other hand the results for
E1 = 20 exhibit no recognizable difference between the results with and without the
perturbation terms of the plane waves for E1 < K 2 ≤ 27.
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Fig. 1.14 Energy band structures of a Ge and b GaAs calculated by the local pseudopotential
method with the spin–orbit interaction, where 118 plane waves with spin–up and spin–down and the
spin–orbit interaction parameters are (2π/a)2λS = 0.0008, (2π/a)2λA = 0.0002. The pseudopo-
tential parameters given in Table1.2 are used ((2π/a)2λS = 0.00097 for Ge)

Fig. 1.15 Energy bands of GaAs calculated by the nonlocal pseudopotential method, where the
spin–orbit interaction is taken into account. The states for 0 ≤ K 2 ≤ E1 = 20 (113 plane waves
and thus 226 plane waves with spin–up and –down states) are exactly diagonalized and the states
for E1 < K 2 ≤ 27 (degenerate 56 waves) are treated by the perturbation method
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As reported by Chelikowsky and Cohen [7] the over all features of the energy
bands are almost the same as the results calculated by the local pseudopotential
method except some critical points. Therefore the results shown in the text are cal-
culated by the local pseudopotential method, unless otherwise mentioned, because
we have to adjust more parameters for the nonlocal pseudopotential methods. The
local pseudopotential method requires fewer number of the pseudopotential para-
meters to get results in agreement with the experimental observation, and provides
the energy bands and optical properties of various semiconductors which help us to
understand the optical characteristics and transport properties based on the full band
Monte Carlo simulation.

1.7 k · p Perturbation

1.7.1 k · p Hamiltonian

The k · p perturbation was introduced by Kane [12] in 1956 to analyze the energy
band structures of III–V compound semiconductors and led to a successful result. The
method was originally used in 1936 to discuss the character table of the symmetry
points in the Brillouin zone by Bouckaert, Smoluchowski and Wigner [13]. Later
Dresselhaus, Kip and Kittel [14] used the k · p perturbation method to analyze the
detailed structure of the valence bands of Ge. This method is described in detail in
Sect. 2.1, where the k · p perturbation method is applied to analyze the experimental
results of cyclotron resonance in Ge. In this section we will consider the method used
by Cardona and Pollak [15] to calculate energy band structures.

We consider the non-relativistic Schrödinger equation for a one-electron system:

[
− �

2

2m
∇2 + V (r)

]
Ψ (r) = EΨ (r) , (1.112)

where V (r) is the crystal potential energy with the lattice periodicity. The solution
of (1.112) is given by the Bloch function

Ψ (r) = eik·run,k(r) , (1.113)

where un,k is a function of the lattice periodicity for band index n. Putting this Bloch
function into (1.112) and using the following relations

∇Ψ (r) = ikΨ (r) + eik·r∇un,k(r) , (1.114a)

∇2Ψ (r) = −k2Ψ (r) + 2ikeik·r∇un,k(r) + eik·r∇2un,k(r) ,

= eik·r(−k2 + 2ik · ∇ + ∇2)un,k(r) , (1.114b)

we obtain

[
− �

2

2m
∇2 + V (r) + �

2

2m
k2 − i

�
2

m
(k · ∇)

]
un,k(r) = En(k)un,k(r) . (1.115)

http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Using the relation −i�∇ = p for the momentum operator, the above equation may
be rewritten as

[
H0 + �

2k2

2m
+ �

m
k · p

]
un,k(r) = En(k)un,k(r) , (1.116)

where H0 = −(�2/2m)∇2 + V (r) is Hamiltonian. The terms �
2k2/2m in [ ] on the

left-hand side is a constant (c-number) without any operator and thus the term gives
rise to an energy shift of �

2k2/2m from En(k). First solving (1.116) for k = 0 and
then treating (�/m)k · p as a perturbing term, we obtain eigenstates as a function
of k which gives the energy band structure. Therefore, this method is called k · p
perturbation. The eigenstates for the Hamiltonian H0 are obtained by using the
pseudopotentials, but here we show a simplified method to obtain the eigenstates by
solving 2 × 2 matrices following the method reported by Cardona [16]. Although
such a calculation is very simple, obtained eigen energies and eigenvectors are very
useful to understand the band structures.

The above k · p Hamiltonian is rewritten by using atomic units as follows:

− �
2

2m
∇2 = �

2

2m

(
1

aB

)2

(−iaB∇)2 = Ry · (−iaB∇)2 (1.117a)

�
2k2

2m
= �

2

2m

(
1

aB

)2

(aBk)2 = Ry · (aBk)2 (1.117b)

�

m
k · p = �

2

2m

(
1

aB

)2 (
a2B
�

)
(2k · p) = Ry ·

(
a2B
�

)
(2k · p) , (1.117c)

where aB = 4πε0�
2/(me2) � 0.529 [Å] is Bohr radius and Ry = me4/(8ε2h3c)

� 13.6 [eV] is Rydberg constant. Using the dimensionless notation or the atomic
units

k (in [a.u]) = aBk , p (in [a.u]) = aB
�

p = −iaB∇ , (1.118)

and then the (�/m)k · p operator of (1.117c) is rewritten as

�

m
k · p = Ry · (2k · p) . (1.119)

Finally, the length is expressed in atomic units or normalized by aB and then the k · p
Hamiltonian is rewritten as

H0 + �

m
k · p + �

2k2

2m
= −∇2 + 2k · p + k2 . (1.120)

When we put k = 0 in (1.116), we obtain
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H0un,0(r) =
[
− �

2

2m
∇2 + V (r)

]
un,0(r) = En(0)un,0(r) , (1.121)

which is rewritten in atomic units as

[−∇2 + V (r)
]
un,0(r) = En(0)un,0(r) . (1.122)

Since the crystal potential V (r) and Bloch function un,0(r) are periodic with the lat-
tice constant, and thus these two functions are expanded by Fourier series. Therefore
we may use the pseudopotential theory stated before, and the diagonalization of the
Hamiltonian matrix gives the eigenstates and the corresponding eigenvalues. In the
k · p perturbation theory we need eigenstates at k = 0 (at the Γ point) only. For this
purpose we rewrite (1.86) and (1.87) as[−∇2 + Vps(|G|2)] |G j 〉 = En|G j 〉 , (1.123)

|G j 〉 = 1√
Ω

eiG j r , (1.124)

where Vps(r) is expanded with Fourier coefficients Vps(|G|2) (pseudopotential form
factors). Simplified solutions of the above equations are very helpful to obtain the
eigenstates and to explain the group theoretical representations used in Fig. 1.7. The
k· pHamiltonian for semiconductorswith inversion symmetry has off-diagonal terms
only. In addition, we classify the matrix elements with the help of group theory,
and so the number of the matrix elements are extremely decreased. Cardona and
Pollak [15] proposed to calculate the energy band structures using 15 electronic states
(wave functions) at the Γ point (at k = 0) and obtained very accurate energy band
structures of germanium and silicon. Here we will show the energy band calculations
of germanium and silicon based on the k · p perturbation method of Cardona and
Pollak, where the spin–orbit interaction is not included. First we classify the free
electron energy bands shown in Fig. 1.7 with the help of group theory.

Here we summarize important and useful results of group theory without showing
the derivation. Themost important factors are to use the character table of the crystal.
The character table for a face centered cubic lattice which includes diamond and zinc
blende crystals is shown in Table1.4. Although detailed description of group theory
is not shown here, the character table is very useful to calculate non-vanishing matrix
elements and thus selection rule of optical transition. Another important informa-
tion about the symmetry properties of quantum states is the basis functions for the
representations, which is summarized in Table1.5.

In a crystalline solid the notation of atomic orbitals is classified by using the
spherical harmonics Ylm(θ,φ)(m = −l, · · · ,+l) which constitute a basis for the
irreducible representation and thus the electronic states are related to the states of an
atom as shown below [17],
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Table 1.4 Character table of small representations of Oh group

BSW E 3C2
4 6C4 6C2 8C3 J 3JC2

4 6JC4 6JC2 8JC3

Γ1 1 1 1 1 1 1 1 1 1 1

Γ2 1 1 −1 −1 1 1 1 −1 −1 1

Γ12 2 2 0 0 −1 2 2 0 0 −1

Γ15′ 3 −1 1 −1 0 3 −1 1 −1 0

Γ25′ 3 −1 −1 1 0 3 −1 −1 1 0

Γ1′ 1 1 1 1 1 −1 −1 −1 −1 −1

Γ2′ 1 1 −1 −1 1 −1 −1 1 1 −1

Γ12′ 2 2 0 0 −1 −2 −2 0 0 1

Γ15 3 −1 1 −1 0 −3 1 −1 1 0

Γ25 3 −1 −1 1 0 −3 1 1 −1 0

Table 1.5 Basis function of irreducible representation of Oh group at Γ point

Representation Degeneracy Basis functions

Γ1 1 1

Γ2 1 x4(y2 − z2) + y4(z2 − x2) + z4(x2 − y2)

Γ12 2 z2 − 1
2 (x2 + y2), (x2 − y2)

Γ15′ 3 xy(x2 − y2), yz(y2 − z2), zx(z2 − x2)

Γ25′ 3 xy, yz, zx

Γ1′ 1 xyz[x4(y2 − z2) + y4(z2 − x2) + z4(x2 − y2)]
Γ2′ 1 xyz

Γ12′ 2 xyz[z2 − 1
2 (x2 + y2)], xyz(x2 − y2)

Γ15 3 x, y, z

Γ25 3 z(x2 − y2), x(y2 − z2), y(z2 − x2)

State s (l = 0) = Γ1 ,

State p (l = 1) = Γ15 ,

State d (l = 2) = Γ25′ + Γ12 ,

State f (l = 3) = Γ15 + Γ25 + Γ2′ ,

State g (l = 4) = Γ25′ + Γ15′ + Γ12 + Γ1 ,

State h (l = 5) = Γ25 + 2Γ15 + Γ12′ .

In a crystalline solid the wave functions of an atom and the next nearest neighbor
are hybridized, resulting in bonding and anti-bonding states and thus in energy shift,
as discussed below. A concept of atomic orbitals, LCAO (Linear Combination of
Atomic Orbitals), is very helpful to understand the energy bands at k = 0. Here
we follow the method of Cardona [16]. First, we consider electronic states in the
outer shell of an atomic Ge, where two s–states and two p–states are filled with
electrons. Therefore the other two p–states and ten d–states are empty. Since two
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Fig. 1.16 Splitting of the
atomic states of Ge, Si and
α–Sn under the presence of
the crystalline field of the
diamond structure at Γ point
of the Brillouin zone, where
a bar corresponds to a
degenerate energy state with
spin up and down (after
Cardona [16])

atoms are included in a unit cell of diamond structure, the states are doubled when
the two atoms are put together. In such a case, the electronic states are modified
by linear combinations of the atomic orbitals, the bonding and anti-bonding states,
and thus the states split as shown in Fig. 1.16. No mixing by the crystal field occurs
between s– and p–orbitals at k = 0. The s–orbitals contain a negligible admixture
of f–orbitals while the p–orbitals may contain a significant admixture of d–orbitals
of the same shell. The ordering of the states are illustrated so as to fit the observed
conduction and valence bands. The ordering between the sates is changed by the
bonding–anti-bonding splitting. If the splitting is small, as in the case of α–Sn with
large lattice constant, the Γ1 and Γ2′ are filled and Γ25′ only partially filled. As the
bonding–anti-bonding splitting becomes larger, the Γ2′–state becomes higher than
Γ25′ , resulting in an energy gap. This is the case for Ge and Si as shown in Fig. 1.16.

In order to calculate the energy bands of Ge and Si by the k · p method, we have
to choose the eigenstates at k = 0 properly, not so many states but enough to lead
reasonable results. First we show the free electron bands for lower energy states in
Table1.6, where the free electron energies are estimated for Ge (a = 5.66 Å), G3

band is 1.038 a.u. (14.1eV), and G4 is 1.38 a.u. (18.8eV). The fourth band G8 is 2.77
a.u. (37.7eV), which is well higher than the G4 bands and we may limit the plane
waves up to G4. This enables us to choose 15 eigenstates with the representations;
Γ l
1 , Γ

l
25′ , Γ15, Γ l

2′ , Γ u
1 , Γ

u
25′ , Γ12′ , and Γ u

2′ . This approximation was used by Cardona
and Pollak [15].

Next, we discuss relation between the LCAO and plane waves of free electron
bands expressed by a combination of the reciprocal lattice vectors [Gx ,Gy,Gz] of
the empty lattice bands at Γ point (at k = 0 of the Brillouin zone). The plane waves
of [000], [111] and [200] are related to the LCAO states as shown by Cardona [16].
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Table 1.6 Reciprocal of smaller free electron energies, where dgn means the degeneracy of the
states and the free electron energy in [a.u.] is estimated for a = 5.66 [Å]

G Vector components dgn Representations Energy in
[a.u.]

G0 = (2π/a)[0, 0, 0] 1 Γ l
1 0

G3 = (2π/a)[±1,±1,±1] 8 Γ l
25′ + Γ15 + Γ l

2′ + Γ u
1 1.038

G4 = (2π/a)[±2, 0, 0] 6 Γ u
25′ + Γ12′ + Γ u

2′ 1.38

G8 = (2π/a)[±2,±2, 0] 12 Γ1 + Γ12 + 2Γ15 + Γ25′ 2.77

G11 = (2π/a)[±3,±1,±1] 24 Γ1 + Γ12 + Γ2 + Γ12′
Γ15′ + Γ25 + 2Γ25′ + 2Γ15

3.81

[000] Γ l
1 ; s-bonding;

[111]

⎧⎪⎪⎨
⎪⎪⎩

Γ l
25′ ; p-bonding

Γ15; p-anti-bonding
Γ l
2′ ; s-anti-bonding

Γ u
1 ; s-bonding (next shell);

[200]
⎧⎨
⎩

Γ u
25′ ; d-bonding

Γ12′ ; d-bonding
Γ u
2′ ; s-anti-bonding (next shell) ,

where the superscript l and u denote the lower and the upper of the two states of the
same symmetry. For simplicity we use the relation (1.59) to express dimensionless
reciprocal lattice vector K . The group of reciprocal wave vectors K [±1,±1,±1](8)
have 8 components (dimension is 8), and a combinations of the 8 plane waves gives
the following representations by using the character table of Table1.4

K [±1,±1,±1](8) = Γ u
1 (1) + Γ u

2′ (1) + Γ15(3) + Γ l
25′(3) . (1.125)

The representation Γ u
1 has the same character of the lowest valence band Γ l

1 arising
from the reciprocal wave vector K [0, 0, 0]. Representation Γ u

1 in (1.125) is under-
stood as follows. A summarized combination of orthogonalized plane waves for Γ u

1
is composed from [±1,±1,±1]

Γ u
1 [±1,±1,±1] = 1√

8

{[1, 1, 1] − [1̄, 1, 1] − [1, 1̄, 1] − [1, 1, 1̄]
−[1̄, 1̄, 1] − [1̄, 1, 1̄] − [1, 1̄, 1̄] + [1̄, 1̄, 1̄]} (1.126)

and the character is the same of Γ l
1 [0, 0, 0], where we used the notation

[Kx , Ky, Kz] = exp

[
i

(
2π

a

) (
Kx x + Ky y + Kz z

)]
. (1.127)



1.7 k · p Perturbation 41

In a similar fashion other symmetrized combinations of the orthogonalized plane
waves are composed for Γ u

2′ , Γ15, and Γ l
25′ . The representations of the plane waves

are summarized in Table1.6. In the following several symmetrized combinations of
the orthogonalized plane waves [Kx , Ky, Kz] belonging to the Γ –representation are
given:

Γ l
2′ [111]

= 1√
8
{[111] − [11̄1̄] − [1̄11̄] − [1̄1̄1] − [1̄1̄1̄] + [1̄11] + [11̄1] + [111̄]} ,

Γ u
2′ [200] = 1√

6

{[200] + [020] + [002] − [2̄00] − [02̄0] − [002̄]} ,

Γ l
25′(X) [111]

= 1√
8
{[111] − [11̄1̄] + [1̄11̄] + [1̄1̄1] + [1̄1̄1̄] − [1̄11] + [11̄1] + [111̄]} ,

Γ u
25′(X) [200] = 1√

2
{[200] + [2̄00]} ,

Γ15(x) [111]

= 1√
8

{[111] − [11̄1̄] + [1̄11̄] + [1̄1̄1] − [1̄1̄1̄] + [1̄11] − [11̄1] − [111̄]} ,

Γ12′(1) [200] = 1

2
{[020] − [002] − [02̄0] + [002̄]} ,

Γ12′(2) [200] = 1√
12

{2[200] − [020] − [002] − 2[2̄00] + [02̄0] + [002̄]} .

The Y and Z components of Γ l
25′ , and y and z components of Γ15 are obtained by

means of cyclic permutation.

1.7.2 Derivation of the k · p Parameters

Energy band calculation bymeans of k· p perturbation requires estimation ofmomen-
tummatrix elements such as 〈Γ l

25′ | p|Γ l
2 〉 and energy eigenstates at the Γ point of the

Brillouin zone (k = 0). For this purpose we use pseudopotential method stated in
the previous Sect. 1.6. These values are used for the initial data and then adjusted to
the values so that the calculated critical points agree with the experiment. Cardona
[16] applied the pseudopotential method for the purpose as described below. First
we solve (1.123) with (1.124). For simplicity, irreducible representations of linear
combinations of orthogonalized plane waves [000], [111] and [200] are considered,
and then we find in Table1.6 that representations Γ1, Γ2′ and Γ25′ appear twice,
and designated as upper “u” and lower “l” states. In the case of a diamond crystal
such as Ge and Si there exist symmetric pseudopotential terms only, and we obtain
eigenvalues and eigenfunctions by diagonalizing 2 × 2 matrices of Hamiltonian
H0 = −∇2 + Vps(|G|2) for the Γ1, Γ2′ and Γ25′ states:
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Γ1[000] Γ1[111]
0 2V S

3
2V S

3 3(2π/a)2 + 3V S
8

, (1.128a)

Γ2′ [111] Γ2′ [200]
3(2π/a)2 + 3V S

3

√
6(V S

3 + V S
11)√

6(V S
3 + V S

11) 4(2π/a)2 + 4V S
8

, (1.128b)

Γ25′ [111] Γ25′ [200]
3(2π/a)2 − V S

3

√
2(V S

3 − V S
11)√

2(V S
3 − V S

11) 4(2π/a)2
. (1.128c)

In the following we estimate the eigen energies and eigenfunctions using the
pseudopotentials listed in Table1.2 and thus the obtained results differ a little from
those reported by Cardona [16] and Cardona and Pollak [15]. The energies of Γ1

states are −0.171 [Ry] (−2.326 [eV]) and 1.237[Ry] (16.8 [eV] for germanium, and
0.735 [Ry] (10.0 [eV] and −0.2399 [Ry] (−3.263 [eV]) for silicon. The energies
of the Γ2′ states are given by 1.69 [Ry] (22.9 [eV]) and 0.77 [Ry] (10.5 [eV]) for
germanium, and 1.81 [Ry] (24.6 [eV]) and 0.977 [Ry] (13.3 [eV]) for silicon. The
eigenstates of the lower energies are

Γ l
2′ for Ge : 0.843Γ2′ [111] + 0.539Γ2′ [200] , (1.129a)

Γ l
2′ for Si, : 0.906Γ2′ [111] + 0.422Γ2′ [200] . (1.129b)

In a similar fashion the eigenstates of Γ25′ are obtained by solving 2×2 Hamiltonian
matrix. The eigen energies are 1.74 [Ry] (23.6 [eV]) and 0.909 [Ry] (12.37 [eV]) for
Ge, and 1.84 [Ry] (25.0 [eV]) and 1.00 [Ry] (13,6 [eV]) for Si.

Γ l
25′ for Ge : 0.755Γ25′ [111] + 0.656Γ25′ [200] , (1.130a)

Γ l
25′ for Si, : 0.774Γ25′ [111] + 0.634Γ25′ [200] . (1.130b)

The energies of the single state Γ15 is given by 3(2π/a)2 − V S
8 , and the doubly–

degenerate statesΓ12′(1)[200]) andΓ12′(2)[200] are given by 4(2π/a)2−2V S
8 , where

matrix elements are 0 between the states Γ12′(1) and Γ12′(2). The calculated energies
at k = 0 (at Γ point) are listed in Table1.7, where energies of the first row of
the material in the table in units of [Ry] are obtained by solving a single band and
2× 2 pseudopotential matrices, and the second row of rel.[Ry] is the relative values
with respect to the valence band top of Γ l

25′ . The third row of the material shows
the eigenvalues calculated by diagonalizing 15 × 15 pseudopotential matrices. In
the 15 × 15 pseudopotential calculation, 15 reciprocal wave vectors of [000](1),
[±1,±1,±1](8), and [±2, 0, 0](6) (numbers in ( ) are degeneracy of the states) are
used, and the result reveals that Γ l

25′ , Γ u
25′ and Γ15 states are triply–degenerate, and

Γ12′ states are doubly–degenerate. We find in Table1.7 that the values deduced from
a simplified method give a very good guide to locate the eigenstates of the valence
and conduction bands. The results obtained by the simple method are very close to
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Table 1.7 Energy eigenvalues at k = 0 (Γ point) calculations by simplified matrices of the
pseudopotentials. Values are given in atomic unit Rydberg [Ry], and relative values (rel.[Ry]) are
with respect to the energy of the top valence band Γ l

25′ . For comparison eigenvalues obtained by
solving 15 × 15 pseudopotential matrix is shown by full [Ry]

At k = 0 Waves Germanium Silicon

[Ry] rel.[Ry] full [Ry] [Ry] rel.[Ry] full [Ry]

Γ l
25′ [111] 0.909 0.00 0.00 1.00 0.00 0.00

Γ l
2′ [111] 0.769 −0.139 0.0342 0.977 −0.023 0.2396

Γ15 [111] 1.026 0.117 0.2694 1.085 0.086 0.2521

Γ u
1 [111] 1.237 0.331 0.4805 1.374 0.246 0.5406

Γ l
1 [000] −0.171 −1.08 −0.9270 −0.128 −1.28 −0.9611

Γ12′ [200] 1.36 0.452 0.6044 1.42 0.421 0.5870

Γ u
25′ [200] 1.74 0.828 0.8938 1.836 0.836 0.9192

Γ u
2′ [200] 1.687 0.778 0.9396 1.809 0.809 0.9996

the values of “pseudo” in Table1.8, although the energy levels of Γ2′ estimated by
the simple method are negative and thus lie below the valence band top for both Ge
and Si. In the k · p perturbation calculations, however, the parameters are adjusted
to fit the data of experimental critical points and thus these estimations will be used
for the initial parameters (Table1.7).

Estimation of the momentum matrix element reported by Cardona [16] is very
helpful to understand the energy band structure and thus it is described below in detail.
The momentum matrix elements of p between Γ l

25′ and Γ l
2′ which is expressed as P

are given by using (1.129a) ∼ (1.130b)

〈Γ l
25′(X)|px |Γ l

2′ 〉 = 〈Γ l
25′(Y )|py|Γ l

2′ 〉 = 〈Γ l
25′(Z)|pz|Γ l

2′ 〉
= 2π

a
[0.843 × 0.755 + 0.539 × 0.656]

= 0.58 = P (: for Ge) , (1.131)

〈Γ l
25′(X)|px |Γ l

2′ 〉 = 〈Γ l
25′(Y )|py|Γ l

2′ 〉 = 〈Γ l
25′(Z)|pz|Γ l

2′ 〉
= 2π

a
[0.906 × 0.774 + 0.422 × 0.634]

= 0.59 = P (: for Si) . (1.132)

The momentum matrix elements of p between Γ l
25′ and Γ15 states are

〈Γ l
25′(Z)|px |Γ15(y)〉 = 〈Γ l

25′(X)|py|Γ15(z)〉 = 〈Γ l
25′(Y )|pz|Γ15(x)〉

= 2π

a
× 0.755 = 0.44 = Q (: for Ge) , (1.133)

〈Γ l
25′(Z)|px |Γ15(y)〉 = 〈Γ l

25′(X)|py|Γ15(z)〉 = 〈Γ l
25′(Y )|pz|Γ15(x)〉

= 2π

a
× 0.774 = 0.47 = Q (: for Si) . (1.134)
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Table 1.8 Energy eigenvalues used for energy band calculations by the k · p perturbation method
in units of Rydberg (from reference [15])

At k = 0 Waves Germanium Silicon

k · p OPWa Pseudo k · p OPWa Pseudo

Γ l
25′ [111] 0.00 0.00 0.00 0.00 0.00 0.00

Γ l
2′ [111] 0.0728b −0.081 −0.007 0.265b 0.164 0.23

Γ15 [111] 0.232b 0.231 0.272 0.252b 0.238 0.28

Γ u
1 [111] 0.571 0.571 0.444 0.520 0.692 0.52

Γ l
1 [000] −0.966 −0.929 −0.950 −0.950 −0.863 −0.97

Γ12′ [200] 0.770 0.770 0.620 0.710 0.696 0.71

Γ u
25′ [200] 1.25c 0.890 0.940 0.94

Γ u
2′ [200] 1.35 0.897 0.990 0.99

aF. Herman, in Proceedings of the International Conference on the Physics of Semiconductors,
Paris, 1964 (Dunod Cie, Paris, 1964), p. 3
bM. Cardona, J. Phys. Chem. Solids 24, 1543 (1963)
cG. Dresselhaus, A.F. Kip, and C. Kittel, Phys. Rev. 98, 368 (1955); E.O. Kane, J. Phys. Chem.
Solids 1, 82 (1956)

Table 1.9 The values of momentum matrix elements used for the energy band calculations of
germanium and silicon by the k · p perturbation (atomic units)

Momentum matrix elements Germanium Silicon

k · p Pseudo c.r.† k · p Pseudo c.r.†

P = 2i〈Γ l
25′ | p|Γ l

2′ 〉 1.360 1.24 1.36a 1.200 1.27 1.20b

Q = 2i〈Γ l
25′ | p|Γ15〉 1.070 0.99 1.07a 1.050 1.05 1.05b

R = 2i〈Γ l
25′ | p|Γ12′ 〉 0.8049 0.75 0.92c 0.830 0.74 0.68d

P ′′ = 2i〈Γ l
25′ | p|Γ u

2′ 〉 0.1000 0.09 0.100 0.10

P ′ = 2i〈Γ u
25′ | p|Γ l

2′ 〉 0.1715 0.0092 −0.090 −0.10

Q′ = 2i〈Γ u
25′ | p|Γ15〉 −0.752 −0.65 −0.807 −0.64

R′ = 2i〈Γ u
25′ | p|Γ12′ 〉 1.4357 1.13 1.210 1.21

P ′′′ = 2i〈Γ u
25′ | p|Γ u

2′ 〉 1.6231 1.30 1.32 1.37

T = 2i〈Γ u
1 | p|Γ15〉 1.2003 1.11 1.080 1.18

T ′ = 2i〈Γ l
1 | p|Γ15〉 0.5323 0.41 0.206 0.34

†Values used to analyze the cyclotron resonance experiments
aB.W. Levinger and D.R. Frankl, J. Phys. Chem. Solids 20, 281 (1961)
bJ.C. Hensel and G. Feher, Phys. Rev. 129, 1041 (1963)
cCalculated from cyclotron resonance data
dCalculated from cyclotron resonance data of reference b

The momentum matrix elements for the k · p perturbation should be multiplied by a
factor 2, and thus P = 1.16 forGe (P = 1.18 for Si) and Q = 0.88 forGe (Q = 0.94
for Si), which are very close to the parameters used by Cardona and Pollak [15] in
Table1.9. The matrix elements P play a very important role in the determination of
the valence band structure to be dealt with in Chap. 2 and the optical absorption due
to the direct transition discussed in Chap. 4.

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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The 15 states at the Γ point are classified into Γ l
1 (1), Γ u

1 (1), Γ l
2′(1), Γ u

2′ (1),
Γ l
25′(3), Γ15(3), Γ u

25′(3), Γ12′(2), where the superscripts l and u correspond to the
lower and upper states of the bands, respectively, and number in the parentheses ( )
is the dimension of the representation. It is evident from the character table of the
group theory thatΓ25′ is 3-dimensional with three eigenstates. The energy eigenstates
are estimated roughly by the pseudopotential method or other approximations [15]
as stated above, and shown in Table1.8. The momentum operator p has the same
symmetry as Γ15 and thus the matrix elements of k · p for the 15 eigenstates have
non-zero components, as shown in the following equations and in Table1.9.

P = 2i〈Γ l
25′ | p|Γ l

2′ 〉 , (1.135a)

Q = 2i〈Γ l
25′ | p|Γ15〉 , (1.135b)

R = 2i〈Γ l
25′ | p|Γ12′ 〉 , (1.135c)

P ′′ = 2i〈Γ l
25′ | p|Γ u

2′ 〉, (1.135d)

P ′ = 2i〈Γ u
25′ | p|Γ l

2′ 〉 , (1.135e)

Q′ = 2i〈Γ u
25′ | p|Γ15〉 , (1.135f)

R′ = 2i〈Γ u
25′ | p|Γ12′ 〉 , (1.135g)

P ′′′ = 2i〈Γ u
25′ | p|Γ u

2′ 〉 , (1.135h)

T = 2i〈Γ u
1 | p|Γ15〉 , (1.135i)

T ′ = 2i〈Γ l
1 | p|Γ15〉 . (1.135j)

The factor 2 of the momentum matrix elements in Table1.9 and (1.135a) ∼ (1.135j)
is understood from k · p perturbation Hamiltonian given by (1.119) and (1.120),
where energy is in Rydberg [Ry] and the length in unit aB (Bohr radius) as discussed
above. We note here the matrix elements of 〈Γ25′ |k · p|Γ12′ 〉 used in the present
calculations. Using the character table and the basis function we may deduce the
non-vanishing matrix elements for the k · p theory. In the present analysis the matrix
elements between Γ25′ and Γ12′ are evaluated by using the property of the character
table in Table1.4,

Γ25′ × Γ12′ = Γ15 + Γ25 , Γ15 × Γ12′ = Γ25′ + Γ15′ . (1.136)

The wave vectors p = [px , py, pz] have the same property as [x, y, z], and thus
the representation is Γ15. Therefore we find non-zero matrix elements 〈Γ25′ | p|Γ12′ 〉
and 〈Γ15′ | p|Γ12′ 〉. However, Γ15′ states belong to the plane waves [±3,±1,±1] and
the free electron energy is 11(2π/a)2 which is much higher than the upper states
of Γ25′ [200] with the free electron energy 4(2π/a)2, and thus Γ15′ states may be
disregarded. Therefore the following matrix elements for the states Γ12′ are included
in the 15× 15 k · p perturbation (see (1.143a) ∼ (1.143f) for a detailed treatment).

2i〈Γ l
25′(X)| p|Γ12′ 〉 = R , (1.137a)

2i〈Γ u
25′(Y )| p|Γ12′ 〉 = R′ . (1.137b)

Using the parameters listed in Table1.9 and following the procedures below, the
energy band structures of Ge and Si are easily calculated. First, we calculate the
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15×15 matrix elements of the k · p Hamiltonian, and second diagonalize the matrix
to obtain the energy eigenvalues and their eigenstates at k of the Brillouin zone. The
matrix of the k · p Hamiltonian has 15×15 complex elements. When we include the
spin–orbit interaction, the matrix of k · p Hamiltonian is given by 30 × 30 complex
elements.

1.7.3 15–band k · p Method

It is very important to point out here that the 15 × 15 matrices for Ge and Si are
factorized into smaller matrices when we use group theoretical consideration, as
shown by Cardona and Pollak [15]. For simplicity we consider the energy bands
along the 〈100〉, 〈110〉 and 〈111〉 directions of the k-vector. The direction 〈100〉
starts from the Γ point and ends at the X point along the Δ axis, and the 〈110〉
direction is from the Γ point to the K point along the Σ axis, while the 〈111〉
direction is from the Γ point to the L point along the Λ axis. With the help of the
compatibility relation given in Table1.10 (see [13]) the matrix elements of the k · p
Hamiltonian are factorized in several groups of smaller matrices. In the following
we use atomic units as stated above, and thus �

2k2/2m and p2/2m are expressed as
k2 and p2, respectively. In the following we show the factorized matrices of the k · p
Hamiltonian in the [100], [110] and [111] directions.
1. [100] direction
(a) Δ5 bands

From Table1.10 we find that three Γ bands exist, but the bands in the parentheses
( ) are neglected because of their high energy states.

Δ5 bands: (Γ15′), Γ u
25′ , Γ

l
25′ , Γ15

The matrix elements for these 3 bands are

Table 1.10 Compatibility relations

Γ1 Γ2 Γ12 Γ15′ Γ25′ Γ1′ Γ2′ Γ12′ Γ15 Γ25

Δ1 Δ2 Δ1Δ2 Δ1′Δ5 Δ2′Δ5 Δ1′ Δ2′ Δ1′Δ2′ Δ1Δ5 Δ2Δ5

Λ1 Λ2 Λ3 Λ2Λ3 Λ1Λ3 Λ2 Λ1 Λ3 Λ1Λ3 Λ2Λ3

Σ1 Σ4 Σ1Σ4 Σ2Σ3Σ4 Σ1Σ2Σ3 Σ2 Σ3 Σ2Σ3 Σ1Σ3Σ4 Σ1Σ2Σ4

X1 X2 X3 X4 X5 X1′ X2′ X3′ X4′ X5′

Δ1 Δ2 Δ2′ Δ1′ Δ5 Δ1′ Δ2′ Δ2 Δ1 Δ5

Z1 Z1 Z4 Z4 Z2Z3 Z2 Z2 Z3 Z3 Z1Z4

S1 S4 S1 S4 S2S3 S2 S3 S2 S3 S1S4
M1 M2 M3 M4 M5 M1′ M2′ M3′ M4′ M5′

Σ1 Σ1 Σ4 Σ4 Σ2Σ3 Σ2 Σ2 Σ3 Σ3 Σ1Σ4

Z1 Z1 Z3 Z3 Z2Z4 Z2 Z2 Z4 Z4 Z1Z3

T1 T2 T2′ T1′ T5 T1′ T2′ T2 T1 T5
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|Γ l
25〉 |Γ15〉 |Γ u

25′ 〉
k2x Qkx 0
Qkx E(Γ15) + k2x Q′kx
0 Q′kx E(Γ u

25′) + k2x

. (1.138)

(b) Δ1 bands
Δ1 bands: Γ l

1 , Γ
u
1 , (Γ12), Γ15

The matrix elements for these three bands are

|Γ15〉 |Γ u
1 〉 |Γ l

1 〉
E(Γ15) + k2x T kx T ′kx

T kx E(Γ u
1 ) + k2x 0

T ′kx 0 E(Γ l
1 ) + k2x

. (1.139)

(c) Δ2′ bands
Δ2′ bands: Γ l

25′ , Γ
u
25′ , Γ

l
2′ , Γ u

2′ , Γ12′

The matrix elements for these five bands are

|Γ l
2′ 〉 |Γ l

25′ 〉 |Γ12′ 〉 |Γ u
25′ 〉 |Γ u

2′
E(Γ l

2′) + k2x Pkx 0 P ′kx 0
Pkx k2x

√
2Rkx 0 P ′′kx

0
√
2Rkx E(Γ12′) + k2x

√
2R′kx 0

P ′kx 0
√
2R′kx E(Γ u

25′) + k2x P ′′′kx
0 P ′′kx 0 P ′′′kx E(Γ u

2′ ) + k2x

, (1.140)

where the factor
√
2 of

√
2Rkx and

√
2R′kx arises from the definition of Γ12′ states

(Γ12′(1) and Γ12′(2)) as given by Cardona and Pollak [15] and the Γ12′(2) state does
not interact with any other state in the [100] direction and behaves like a free electron
band (see (1.143a), (1.143b), (1.144)).

2. [110] direction
From Table1.10, Σ1,Σ4,Σ3,Σ2 are included in this direction.
(a) Σ1 bands: Γ l

1 , Γ
u
1 , (Γ12), Γ

l
25′ , Γ

u
25′ , Γ15 (: 5 bands)

(b) Σ4 bands: (Γ2), (Γ12), (Γ15′), Γ15, (Γ25) (: 1 band)
(c) Σ3 bands: (Γ15′), Γ l

25′ , Γ
u
25′ , Γ

l
2′ , Γ u

2′ , Γ12′ , Γ15 (: 6 bands)
(d) Σ2 bands: (Γ15′), Γ25′l, Γ u

25′ , (Γ1′), Γ12′ , (Γ25) (: 3 bands)
Therefore, for the bands in the [110] direction, Σ bands, 15 × 15 matrix elements
results in irreducible matrix of 6 × 6, 5 × 5, 3 × 3, 1 × 1.

3. [111] direction
From Table1.10, Λ1,Λ3 are included in this direction.
(a) 7 bands of Λ1 bands: Γ l

1 , Γ
u
1 , Γ

l
25′ , Γ u

25′ , Γ l
2′ , Γ u

2′ , Γ15

(b) 4 bands of Λ3 bands: (Γ12), (Γ15′), Γ l
25′ , Γ u

25′ , Γ12′ , Γ15, (Γ25)
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and the Λ bands in the [111] direction are classified in 7 × 7 and 4 × 4 irreducible
matrix.

It should be noted here that above 15×15 k · pmatrix is easily extended to include
ky and kz components. However we have to take account of correct symmetry of the
Γ12′(1) and Γ12′(2) states, which is done by extending the method of Dresselhaus
[14] and convert them into the representations of Cardona and Pollak [15] as follows.
Using the definition of Dresselhaus et al. and following their procedures, we obtain

〈Γ25′(X)|px |γ−
1 〉 = R , (1.141a)

〈Γ25′(X)|px |γ−
2 〉 = −R , (1.141b)

〈Γ25′(Y )|py|γ−
1 〉 = ωR , (1.141c)

〈Γ25′(Y )|py|γ−
2 〉 = −ω2R , (1.141d)

〈Γ25′(Z)|pz|γ−
1 〉 = ω2R , (1.141e)

〈Γ25′(Z)|pz|γ−
2 〉 = −ωR , (1.141f)

where we have to note that the matrix elements R defined by Dresselhaus, Kip and
Kittel [14] (RDKK) and R defined by Cardona and Pollak [15] (RCP) are related by
RCP = 2RDKK. When we choose the eigenstates Γ12′ defined by Cardona and Pollak
[15];

Γ12′(1) = 1√
2
(γ−

1 − γ−
2 ) , Γ12′(2) = 1√

2
(γ−

1 + γ−
2 ) , (1.142)

we obtain the following results

〈Γ25′ |px |Γ12′(1)〉 = √
2R , (1.143a)

〈Γ25′ |px |Γ12′(2)〉 = 0 , (1.143b)

〈Γ25′ |py|Γ12′(1)〉 = (ω + ω2)R/
√
2 = −R/

√
2 , (1.143c)

〈Γ25′ |py|Γ12′(2)〉 = (ω − ω2)R/
√
2 = ω(1 − ω)R/

√
2 = iR

√
3/2 , (1.143d)

〈Γ25′ |pz|Γ12′(1)〉 = (ω2 + ω)R/
√
2 = −R/

√
2 , (1.143e)

〈Γ25′ |pz|Γ12′(2)〉 = (ω2 − ω)R/
√
2 = ω(ω − 1)R/

√
2 = −iR

√
3/2 , (1.143f)

where ω is the solutions of ω3 = 1 (exclude the solution ω = 1) or the solutions
of ω2 + ω + 1 = 0. The above results are obtained by using the solution ω =
(−1 + i

√
3)/2. When we choose the solution ω = (−1 − i

√
3)/2, the sign of the

imaginary part is changed, but the energy band calculations give the same result. In
addition we have to note that ω = 1, one of the solutions of ω3 = 1, does not give
a correct energy bands. This is because the solution ω = 1 does not represent the
correct symmetry of γ−

1 and γ−
2 . Here we show the 15×15 k · p Hamiltonian matrix

without the spin–orbit interaction (antisymmetric potential terms for zinc blende
crystals are included);
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|Γ l
25′ (X)〉 |Γ l

25′ (Y )〉 |Γ l
25′ (Z)〉 |Γ15(x)〉 |Γ15(y)〉 |Γ15(z)〉

E(Γ l
25′ ) + k2 0 0 −iV−

1 Qkz Qky
0 E(Γ l

25′ ) + k2 0 Qkz −iV−
1 Qkx

0 0 E(Γ l
25′ ) + k2 Qky Qkx −iV−

1
iV−

1 Qkz Qky E(Γ15) + k2 0 0
Qkz iV−

1 Qkx 0 E(Γ15) + k2 0
Qky Qkx iV−

1 0 0 E(Γ15) + k2

0 0 0 −iV−
4 Q′kz Q′ky

0 0 0 Q′kz −iV−
4 Q′kx

0 0 0 Q′ky Q′kx −iV−
4√

2Rkx −(R/
√
2)ky −(R/

√
2)kz 0 0 0

0 −iR
√
3/2ky iR

√
3/2kz 0 0 0

Pkx Pky Pkz 0 0 0
P ′′kx P ′′ky P ′′kz 0 0 0
0 0 0 T kx T ky T kz
0 0 0 T ′kx T ′ky T ′kz

|Γ u
25′ (X)〉 |Γ u

25′ (Y )〉 |Γ u
25′ (Z)〉 |Γ12′ (1)〉 |Γ12′ (2)〉

0 0 0
√
2Rkx 0

0 0 0 −(R/
√
2)ky iR

√
3/2ky

0 0 0 −(R/
√
2)kz −iR

√
3/2kz

iV−
4 Q′kz Q′ky 0 0

Q′kz iV−
4 Q′kx 0 0

Q′ky Q′kx iV−
4 0 0

E(Γ u
25′ ) + k2 0 0

√
2R′kx 0

0 E(Γ u
25′ ) + k2 0 −(R′/

√
2)ky iR′√3/2ky

0 0 E(Γ u
25′ ) + k2 −(R′/

√
2)kz −iR′√3/2kz√

2R′kx −(R′/
√
2ky −(R′/

√
2)kz E(Γ12′ ) + k2 0

0 −iR′√3/2ky iR′√3/2kz 0 E(Γ12′ ) + k2

P ′kx P ′ky P ′kz 0 0
P ′′′kx P ′′′ky P ′′′kz 0 0
0 0 0 0 0
0 0 0 0 0

|Γ l
2′ (xyz)〉 |Γ u

2′ (xyz)〉 |Γ u
1 〉 |Γ l

1 〉
Pkx P ′′kx 0 0
Pky P ′′ky 0 0
Pkz P ′′kz 0 0
0 0 T kx T ′kx
0 0 T ky T ′ky
0 0 T kz T ′kz

P ′kx P ′′′kx 0 0
P ′ky P ′′′ky 0 0
P ′kz P ′′′kz 0 0
0 0 0 0
0 0 0 0

E(Γ l
2′ ) + k2 0 iV−

2 iV−
3

0 E(Γ u
2′ ) + k2 iV−

5 iV−
6−iV−

2 −iV−
5 E(Γ u

1 ) + k2 0
−iV−

3 −iV−
6 0 E(Γ l

1 ) + k2

(1.144)

It should be noted here that 〈Γ12′(2)|py|Γ25′(Y )〉 is given by the complex conjugate
of 〈Γ25′(Y )|py|Γ12′(2)〉. Energy bands without the spin–orbit interaction are easily
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Fig. 1.17 Energy band structure of Si and GaAs calculated by 15 band k · p perturbation with-
out spin–orbit interaction. The results are obtained by solving secular equation (1.144) with the
parameters given in Table1.11

calculated by solving (1.144) in any directions of the Brillouin zone. As an example
calculated energy band structure of Si along the L , Γ , X ,W , K to Γ points is shown
in Fig. 1.17. Also in the figure the energy band structure of GaAs is shown, where
the antisymmetric potential is taken account (see 1.7.4).

1.7.4 Antisymmetric Potentials for Zinc Blende Crystals

We have to note here the definition of the matrix elements of the anti-antisymmetric
potentials. As discussed in Sect. 1.6, a diamond type crystal has inversion symmetry
and thus V A(G) = 0, while a zinc blende type crystal has no inversion symmetry and
thus V A(G) �= 0. In order to extend the k · p Hamiltonian for a zinc blende crystal
we have to evaluate the matrix elements of the anti-symmetric potential as shown in
(1.144). Here we present how to evaluate approximate values of the matrix elements
of the anti-symmetric potential. First, we obtain non-vanishing matrix elements of
the 15 plane waves of [0, 0, 0], [±1,±1,±1], and [±2, 0, 0] which are classified
as Γ l

1 , Γ l
25′ , Γ15, Γ12′ , Γ l

2′ , Γ u
1 , Γ u

25′ , Γ12′ , and Γ u
2′ as shown in Table1.6. In Table

1.4, an inversion operation is expressed by J and representation Γi has the inversion
symmetry when J > 0 but no inversion symmetry when J < 0. The product
of Γi × Γ j has the same symmetry property. Noting the anti-symmetric potential
V− has negative sign for the inversion operation, non-vanishing matrix elements
〈Γi |V−|Γ j 〉 are 〈Γ15|V−|Γ25′ 〉 and 〈Γ2′ |V−|Γ1〉.Whenwe use the notations of Pollak,
Higginbotham, and Cardona [18], these are given by the following relations,
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V−
1 = 〈Γ15|V−|Γ l

25′ 〉 = VA
4 , (1.145a)

V−
2 = 〈Γ l

2′ |V−|Γ u
1 〉 = −3V A

4 , (1.145b)

V−
3 = 〈Γ l

2′ |V−|Γ l
1 〉 = 2V A

3 , (1.145c)

V−
4 = 〈Γ15|V−|Γ u

25′ 〉 = √
2

(
VA
3 − VA

11

)
, (1.145d)

V−
5 = 〈Γ u

2′ |V−|Γ u
1 〉 = −(

√
6/3)

[
(4V A

3 + 2VA
11

]
, (1.145e)

V−
6 = 〈Γ u

2′ |V−|Γ l
1 〉 = (2

√
6/3)V A

4 , (1.145f)

where the last terms of the above equations are evaluated from the pseudopoten-
tials in Table1.2 and the relations defined by (1.109a) ∼ (1.109d) with linear com-
binations of the plane waves (1.126) and (1.128 ∼ (1.128). As an example we
evaluate these terms for GaAs using the pseudopotentials given in Table1.2. We
obtain V−

1 = 0.05 (0.12652), V−
2 = −0.15 (−0.24791), V−

3 = 0.14 (0.38210),
V−
4 = 0.0849 (0.12297), V−

5 = −0.245 (−0.34820), and V−
6 = 0.0816 (0.0),

where the values in the parentheses are determined form the energy band calcu-
lations and summarized in Table1.11 for several zinc blende type semiconductors.
Since the term V−

6 corresponds to interactions between very distant atomic orbitals
Γ u
2′ and Γ l

1 (difference in the free electron energy is 4(2π/a)2 = 1.38 [a.u.] for
GaAs), we may safely assume that V−

6 = 0.0 [18].
When we include the spin–orbit interaction, the above equation leads to 30 × 30

k · p complex matrix because each state is doubled with spin–up ↑〉 and spin–down
↓〉. In Chap.2, we will discuss the second order perturbation of the k · pHamiltonian
and the parameters defined by Dresselhaus et al. [14] and by Luttinger [2.2], where
the above results are used to evaluate the contributions from γ−

1 and γ−
2 (Γ12′(1) and

Γ12′(2)).

1.7.5 Spin–orbit Interaction Hamiltonian

When we take account of the spin–orbit interaction, the eigenstates are doubled with
spin–up and spin–down as discussed above, and then we have to solve 30 × 30
complex matrix. In the following we choose the wave functions |X ↑〉, |X ↓〉, |Y ↑〉,
|Y ↓〉, |Z ↑〉, |Z ↓〉 for Γ l

25′ , and |x ↑〉, |x ↓〉, |y ↑〉, |y ↓〉, |z ↑〉, |z ↓〉 for Γ15. This
approximation leads to 30 × 30 complex matrix with the spin–orbit interaction. In
this subsection we formulate the spin–orbit matrix elements using these eigenstates.
Spin–orbit interaction is also discussed in 2.3 to analyze the valence band structure,
in addition to describe the effective mass and effective g factor (Landé g factor) of
the conduction band. Evaluation of the matrix elements of spin–orbit Hamiltonian
is given in detail in 2.3.

We put the spin–orbit interaction term (H.18) of Appendix H into (1.112), and
obtain

Hso = �

4m2c2
[∇ × p] · σ + �

2

4m2c2
[∇ × k] · σ , (1.146)

http://dx.doi.org/10.1007/978-3-319-66860-4_2
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which should be added to the terms in the brackets of the left hand side of (1.116).
The second k–dependent term is very small compared to the first k–independent
term (see Kane [12]) and thus only the first term is considered in this text. Thus the
k–independent term of the spin–orbit Hamiltonian is rewritten as

Hso ∝ L · σ = (r × p) · σ = −i�(r × ∇) · σ (1.147)

and therefore we find that

− i�(r × ∇) · σ = −i�

[(
y

∂

dz
− z

∂

dy

)
σx +

(
z

∂

dx
− x

∂

dz

)
σy

+
(
x

∂

dy
− y

∂

dx

)
σz

]
, (1.148)

where σ is Pauli spin operator1 and the matrix elements are evaluated by using the
basis functions given in Table1.5.

〈X (Γ l
25′) ↑ |Hso|Y (Γ l

25′) ↑〉 = iΔl
25′/3 , (1.149a)

〈X (Γ l
25′) ↑ |Hso|Z(Γ l

25′) ↓〉 = Δl
25′/3 , (1.149b)

〈Y (Γ l
25′) ↑ |Hso|Z(Γ l

25′) ↓〉 = iΔl
25′/3 . (1.149c)

In the same manner the spin–orbit interaction for Γ15 is written as

〈x(Γ15) ↑ |Hso|y(Γ15) ↑〉 = iΔ15/3 , (1.150a)

〈x(Γ15) ↑ |Hso|z(Γ15) ↓〉 = Δ15/3 , (1.150b)

〈y(Γ15) ↑ |Hso|z(Γ15) ↓〉 = iΔ15/3 , (1.150c)

and the antisymmetric term of the spin–orbit interaction is treated as

〈X (Γ l
25′) ↑ |Hso|y(Γ15) ↑〉 = iΔ−/3 , (1.151a)

〈X (Γ l
25′) ↑ |Hso|z(Γ15) ↑〉 = +Δ−/3 , (1.151b)

〈Y (Γ l
25′) ↑ |Hso|z(Γ15) ↓〉 = iΔ−/3 . (1.151c)

The spin–orbit interaction in the valence bands is discussed in Chap.2. Here we
will show the present treatment leads to the same results. The Γ l

25′ valence bands
(|X〉, |Y 〉, |X〉) are triply–degenerate at the Γ point (k = 0). The degenerate Γ l

25′
bands split into doubly–degenerate heavy hole and light hole bands, and the spin–
orbit–split–off band as discussed in Chap. 2. Here it is shown that the above matrix
elements of the spin–orbit Hamiltonian for the valence bands Γ l

25′ give the same
results of the spin–orbit splitting dealt in Chap.2. Thematrix of the spin–orbit Hamil-
tonian for the valence band Γ l

25′ is written as

|X ↑〉 |Y ↑〉 |Z ↓〉∣∣∣∣∣∣∣∣

0 iΔl
25′/3 Δl

25′/3

−iΔl
25′/3 0 iΔl

25′/3

Δl
25′/3 −iΔl

25′/3 0

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣
|X ↑〉
|Y ↑〉
|Z ↓〉

∣∣∣∣∣∣ , (1.152)

1See (2.50) of Chap.2 for the definition and (H.33c) of Appendix H for the matrix elements.

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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and diagonalization results in

∣∣∣∣∣∣
(1/3)Δl

25′ 0 0
0 (1/3)Δl

25′ 0
0 0 −(2/3)Δl

25′

∣∣∣∣∣∣

∣∣∣∣∣∣
uv1

uv2

uv3

∣∣∣∣∣∣ . (1.153)

Therefore the spin–orbit splitting of Γ l
25′ bands is Δ0 = Δl

25′ and the corresponding
eigenfunctions are

uv1 = i√
2
(X − iY ) ↑ , (1.154a)

uv2 = 1√
2
(X ↑ +Z ↓) , (1.154b)

uv3 = −1√
3
[(X + iY ) ↑ −Z ↓] . (1.154c)

Using these results we may obtain the matrix elements of the spin–orbit Hamiltonian
Hso for the Γ25′ states:

〈Γ25′ |Hso|Γ25′ 〉 = Δ

3

|X ↑〉 |Y ↑〉 |Z ↓〉 |X ↓〉 |Y ↓〉 |Z ↑〉
0 i 1 0 0 0
−i 0 i 0 0 0
1 −i 0 0 0 0
0 0 0 0 i 1
0 0 0 −i 0 i
0 0 0 1 −i 0

, (1.155)

and the matrix is separated by two 3 × 3 matrices and diagonalization of the matrix
gives the following eigenvalues and eigen functions,

〈Γ25′ |Hso|Γ25′ 〉 = Δ

3

|vv1〉 |vv2〉 |vv3〉 |vv4〉 |vv5〉 |vv6〉
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −2 0
0 0 0 0 0 −2

, (1.156)

The eigenstates of the fourfold degenerate valence bands are
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uv1 = 1√
2
[|X ↑〉 + |Z ↓〉] ,

uv2 = 1√
2
[|X ↓〉 + |Z ↑〉] ,

uv3 = i√
2
[|(X − iY ) ↓〉] ,

uv4 = i√
2
[|(X − iY ) ↑〉] ,

and for twofold degenerate spin–orbit split off bands are

uv5 = − 1√
3
[|(X + iY ) ↑〉 − |Z ↓〉] ,

uv6 = − i√
3
[|(X + iY ) ↓〉 − |Z ↑〉] ,

where we find that the spin–orbit interaction results in the split of valence bands
Δ/3, Δ/3, and −2Δ/3. Note here that the obtained eigen functions differ from
those defined by (2.63a) ∼ (2.63f) in Chap.2 because of the different definition of
the original (unperturbed) basis functions. Similar relations for the Γ15 states and
antisymmetric parts are easily evaluated.

1.7.6 30–band k · p Method with the Spin–Orbit Interaction

We have to note here that the full band calculation (energy states at any points of the
Brillouin zone) is easily carried out by extending 15 × 15 k · p matrix of (1.144) to
30 × 30 k · p matrix with spin–up and spin–down states. The matrices of the spin–
orbit interaction Hamiltonian for Γ u

25′ states, Γ15 states, and the antisymmetric parts
between Γ u

25′ and Γ15 states are obtained by (1.155). The 30–band k · p Hamiltonian
with complex elements are solved to obtain 30 eigenstates. The full band calculations
based on the 30–band k · p methods have been reported in the literatures [19, 20],
where the treatment of the matrix elements R and R1 are deduced by Voon and
Willatzen [19].2 All the k · p parameters for semiconductors such as Ge and Si with
diamond crystal structure and several III-V compound semiconductors such as GaAs
and GaP are summarized in Table1.11. It should be noted again that III-V compound
semiconductors with a zinc blende structure have no inversion symmetry and thus we
have to include the anti-symmetric terms of the potentials and spin–orbit interaction
as discussed by Pollak et al. [18]. A lack of the inversion symmetry results in the
antisymmetric potential V−, and the antisymmetric parts of Δ− in the spin–orbit
Hamiltonian of which matrix elements are defined by (1.151a) ∼ (1.151c).

2The author is thankful for M. Cardona to remind the work by Voon and Willatzen after his visit to
Max Planck Institute at Stuttgart in June, 2013.

http://dx.doi.org/10.1007/978-3-319-66860-4_2
http://dx.doi.org/10.1007/978-3-319-66860-4_2
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Table 1.11 Energy eigenvalues (in Rydberg) and momentum matrix elements (in atomic units)
used in the k · p Hamiltonians for Si, Ge, GaAs, GaP, InP and InSb. Matrix elements of the anti-
symmetric potentials V− and anti-symmetric spin–orbit splitting parameter Δ− (in Rydberg) for
GaAs, GaP, InP and InSb are also listed. Values are from references [15, 18, 21–23]

Si Ge GaAs GaP InP InSb

Γ l
25′ 0.00 0.00 0.00 0.00 0.00 0.00

Γ l
2′ 0.265 0.0728 0.0845 0.2566 0.0929 0.022

Γ15 0.252 0.232 0.2596 0.2511 0.2622 0.232

Γ u
1 0.520 0.571 0.4940 0.5222 0.5057 0.400

Γ12′ 0.710 0.771 0.6063 0.7126 0.5803 0.494

Γ u
25′ 0.940 1.25 0.9002 0.9535 0.8745 0.726

Γ u
2′ 0.990 1.35 0.9849 1.0056 0.9792 0.765

Γ l
1 −0.950 −0.966 −0.844 −0.9827 −0.8107 −0.846

P 1.200 1.360 1.3225 1.207 1.0876 1.3460

Q 1.050 1.070 1.1599 1.051 1.1346 1.0990

R 0.830 0.8049 0.7635 0.8289 0.8045 0.5914

P ′′ 0.100 0.100 0.2465 0.100 0.1267 0.5324

P ′ −0.090 0.1715 0.0438 −0.07863 0.1031 0.0666

Q′ −0.807 −0.752 −0.5511 −0.8046 −0.6585 −0.2120

R′ 1.210 1.436 0.9697 1.220 1.1038 1.0760

P ′′′ 1.320 1.623 1.5530 1.333 1.4281 1.2340

T 1.080 1.200 1.1387 1.0852 1.0806 0.9070

T ′ 0.206 0.5323 0.5323 0.2202 0.3906 0.0210

Δl
25′ 0.0032 0.0213 0.0251 0.00399 0.00823 0.0590

Δ15 0.0036 0.0265 0.0135 0.00459 0.00573 0.0287

V1 = 〈Γ15|V−|Γ l
25′ 〉 0.12652 0.14924 0.1347 0.0869

V2 = 〈Γ l
2′ |V−|Γ u

1 〉 −0.24791 −0.26885 −0.2003 −0.1558

V3 = 〈Γ l
2′ |V−|Γ l

1 〉 0.38210 0.45687 0.2252 0.2391

V4 = 〈Γ15|V−|Γ u
25′ 〉 0.12297 0.21044 0.1131 0.0581

V5 = 〈Γ u
2′ |V−|Γ u

1 〉 −0.34820 −0.33021 −0.2601 −0.1252

V6 = 〈Γ u
2′ |V−|Γ l

1 〉 0.0 0.0 0.0 0.0

Δ− 0.0051 0.00485 0.00682 0.0160

The calculated energy band structures of in the energy range −15 ∼ 10 [eV] are
shown for Ge and GaAs in Fig. 1.18 and for GaP and InP in Fig. 1.19, where we find
that the 30–band k · p perturbation method gives a reasonable result although the
matrix elements are very few compared to the pseudopotential method. Since the
energy bands near the lowest conduction band and the top valence bands are very
important to understand the electrical and optical properties of semiconductors, the
energy band structures in the vicinity of the conduction minima and the valence band
maxima calculated by the 30–band k · p perturbation method are shown in Fig. 1.20
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Fig. 1.18 Energy band structure of Ge and GaAs calculated by the 30–band k · p method with
spin–orbit interaction in k space along L , Γ , X , W , K , and Γ of the Brillouin zone

Fig. 1.19 Energy band structures calculated by the 30–band k · p perturbation method for GaP and
InP, where the spin–orbit interaction is included

for Ge and GaAs, where the parameters are from the references [15, 18, 21–23]. The
k · p perturbation method is very simple, as shown above, and gives an information
about thematrix elements of the optical transition in addition to detailed and accurate
energy band structures [15].

We have to note here some difference of the calculated band structures between
the empirical pseudopotential method and 30–band k · p perturbation method. As
seen in the first Brillouin zone of a face centered cubic crystal given in Figs. 1.5a
and 1.22 the U point and K point are equivalent and we may expect the same
energy eigenvalues at the two points. This feature is understood from the symmetry
properties of the free electron band in the region U and K of Fig. 1.6. However,
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Fig. 1.20 Energy band structures near the conduction and valence bands calculated by the 30–band
k · p perturbation method for Ge and GaAs, where the spin–orbit interaction is included

when we plot energy bands obtained by the 30–band k · p method along X point to
U point and K point to Γ point, we find a small discontinuity at the pointsU and K ,
although the pseudopotential method gives smooth curve in this region. This may
be ascribed to the assumption of limited number of eigen sates at the Γ point for
the k · p perturbation method as follows. The free electron bands of a face centered
cubic lattice are shown in Figs. 1.6 and 1.7, where we find that one of the 12 free
electron bands of [220] is merged into one of the 6 free electron bands of [200]. This
is clearly seen in Fig. 1.21, where the energy band structures of GaAs calculated by
30–band k · p are shown in Fig. 1.21a and the results obtained from the empirical
pseudopotential method with 65 plane waves (130 plane waves with spin–up and
spin–down) are shown in Fig. 1.21b. In the calculations of the local pseudopotential
method, we used the following parameters replacing the pseudopotentials V S

3 and
VA
11 in Table1.3 by V S

3 = −0.260 and VA
11 = 0.015, and the spin–orbit interaction

parameters λS = −0.00050 and λA = −0.00012 in atomic units. Total number
of the free electron waves is 113 and the higher lying free electron waves beyond
E = 16 are included by Löwdin’s perturbation method.These parameters lead to
EG = 1.52eV and spin–orbit splitting Δ = 0.342eV. In Fig. 1.21a we find the bands
obtained from 30–band k · p method are discontinuous at U and K points, while
the bands calculated by the empirical pseudopotential method with 65 plane waves
are continuous. In addition the second lowest conduction band in the region Γ –X
calculated by 30–band k · p method does not appear in the region of between U, K
and Γ points. These features are observed in the band structures calculated by the
pseudopotential method with 15 plane waves shown in Fig. 1.9, while the energy
bands with 65 plane waves showmuch more smooth (continuous) curves nearU and
K points.

Although such a small difference exists in the energy band structure calculated by
the 30–bands k · p perturbation method, the obtained overall features of the full band
structures are very in good agreement with the empirical pseudopotential method and
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Fig. 1.21 Energy band structures of GaAs along L–Γ , Γ –X , X–U, K , and U, K–Γ points a cal-
culated by the 30–band k · p perturbation method and b calculated by the empirical pseudopotential
method with 65 plane waves (130 plane waves with spin–up and spin–down), where the spin–orbit
interaction is included. See the textbook for the used parameters

the bands along L , Γ , X , W , K to Γ are very smooth. As discussed in Sect. 1.8, the
density of states are calculated by dividing the polyhedron, the 1/48 volume of the
first Brillouin zone, starting the basal plane of L , Γ , X ,W , K . Then the calculations
of the density of states are straight forward.

From the results of the pseudopotential and k · p perturbation methods we find
the important features of the energy band structures of the semiconductors which we
deal with in this text. All these semiconductors have valence band maxima at k = 0
(Γ point) and most III–V semiconductors (except several compounds such as GaP,
AlAs and so on) have the conduction band minimum at k = 0 (Γ point), and so
are classified as direct gap semiconductors. On the other hand, other semiconductors
such as Ge, Si, GaP, AlAs and so on have the conduction band minima at k �= 0, and
so are called indirect gap semiconductors. Ge has the conduction bandminima at k =
(π/a)[111] (L point), which are degenerate and consist of equivalent four conduction
bands, and thus the conduction bands have a “many–valley structure.” On the other
hand, Si has the conduction band minima at the Δ point close to the X point and
six equivalent conduction band minima. Later we will discuss the optical properties
of semiconductors, where we find that the direct and indirect semiconductors are
quite different in their optical properties such as absorption and light emission. The
electrical properties also exhibit the features of many-valley structures in Ge and
Si, and also the Gunn effect of GaAs, which arises from the inter-valley transfer
of electrons in a high electric field from the high electron mobility Γ valley to the
low mobility L and/or X valleys. From these results we understand that the energy
band structures play a very important role in the understanding of the electrical and
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optical properties of semiconductors. In addition, once we know the procedures for
calculating energy band structures it is very easy to extend themethod to calculate the
energy band structures of superlattices (periodic layers of different semiconductors
such as GaAs/AlAs) as treated in Chap.8. It is also possible to predict the basic
features of semiconductors from the results of energy band calculations. In this text
the basic physics of semiconductors is treated on the basis of their energy band
structures.

1.8 Density of States

As shown in Sect. 4.3, density of states (DOS) is defined as the number of states per
unit energy. When the number of states in a small volume of k-space in a small range
of energy, [E , E + �E] is given by (1/2π)3�v(k), the density of states JDOS(E) is
defined by (spin factor 2 is omitted)

JDOS(E) =
∑
k

1

(2π)3

�v(k)
�E . (1.157)

Here v(k) is a small volume of the wave vector k in the first Brillouin zone. The
density of states is required to calculate dielectric function (joint density of states)
and also to calculate scattering rate of electrons. It is well known that Monte Carlo
simulation [24] gives a good description of transport properties at high electric fields.
Full band Monte Carlo simulation is used very often, where the calculated energy
band structure is used to simulated electron motion in k-space, and thus the density
of states is required to obtain the scattering rate. In this textbook we will not deal
with high field transport (see [25] for a review on high field transport) and thus
we will not concern with Monte Carlo simulation. However, it is very important to
know how to calculate the density of states defined by (1.157) from the calculated
energy band structure. Various methods have been reported to calculate DOS from
the energy bands. Brust [9] reported a rigorous analysis of the joint density of states
in Ge and Si, but the method is very complicated. Here we will show a simple
but accurate method to calculate the density of states. First, let’s take a look of the
Brillouin zone shown in Fig. 1.22 which is the same as shown in Fig. 1.5a. It is
clear from the 48-fold symmetry of the Brillouin zone that 1/48th part of the zone
shown in Fig. 1.22 is sufficient to calculate the density of states. In other words,
all the other k-points in the first Brillouin zone may be obtained by rotation of the
1/48-th of the Brillouin zone. Using a unit length kf = (X − Γ )/8 = π/4a with
the lattice constant a, 1/48-th part of the first Brillouin zone can be divided into
polyhedrons shown in Fig. 1.23. The bottom plane consists of the critical points
Γ, X, W, K . The second plane is displaced by kf in the kz direction with respect to
the first pane, and intersects Λ, S, Q. The third plane with the same displacement
intersects Λ, U, Q, and the fourth intersects Λ, Q, L . The two neighboring planes

http://dx.doi.org/10.1007/978-3-319-66860-4_8
http://dx.doi.org/10.1007/978-3-319-66860-4_4
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Fig. 1.22 The first Brillouin
zone of face centered cubic
lattice and the symmetry
points. The box defined by
the lines is 1/48-th part of the
volume of the first Brillouin
zone

Fig. 1.23 1/48th part of the
first Brillouin zone of face
centered cubic lattice is
discretized into polyhedrons
using unit length
kf = (X − Γ )/8 = π/4a,
where a is the lattice constant
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Σ
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Q
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form polyhedrons of which volume gives the number of states. The discretization
shown in Fig. 1.23 is not sufficient to calculate the density of states. Here we have
to note the most important idea to use this type of discretization. In order to get
smaller volumes of the polyhedrons, use the unit length kf/N → kf , where N is 2,
4, 8, . . .. Then the volumes of new polyhedrons becomes 1/8, 1/64, 1/512, . . . of the
original polyhedrons and the number of polyhedrons are 8, 64, 512, . . . times of the
original number. The density of states are easily calculated using this discretization.
We calculate the energy eigenstates at the corners of a polygon and tabulate them.
Then pick up the minimum Emin and the maximum Emax from the lowest pairs of the
tabulated eigenstates. Calculate �E = Emax − Emin and E = (Emax + Emin)/2. This
gives us

JDOS(E) � 1

(2π)3

�vf(k)
�E , (1.158)

where �vf(k) is the volume of the polyhedron. In a similar fashion we calculate
the density of states for the second lowest pairs, third lowest pairs and so on up to
a required E value. The obtained DOS JDOS(E) is not uniform but scattered in the
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Fig. 1.24 Energy band
structures of Si calculated by
empirical pseudopotential
method with the
pseudopotentials listed in
Table1.2 and the calculated
density of states (DOS)

Fig. 1.25 Energy band
structures of GaAs
calculated by empirical
pseudopotential method with
the pseudopotentials listed in
Table1.2 and the calculated
density of states (DOS)

energy E and thus we have to rearrange the data in the histogram, 0.1–eV histogram
for example. Then smoothing procedure will give a smooth curve of JDOS(E) as
a function of E . Typical examples of the energy bands and the DOS are shown in
Fig. 1.24 for Si and in Fig. 1.25 for GaAs, where the energy bands are obtained by
the local pseudopotential method using the pseudopotentials given in Table1.2 and
the density of states in the valence bands and the conduction bands are calculated.
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1.9 Problems

(1.1) Calculate the reciprocal lattice vectors of a zinc blende type crystal structure
and compare with the result of Table. 1.1.

(1.2) Energy band calculations are carried out by using atomic units [a.u]. Give
wave vector k = 2π/aB, and energy (�2/2m)/a2B) in atomic units, where aB =
(ε0h2/πme2) = 0.529177 [Å] is Bohr radius.

(1.3) Rewrite Equation (1.35), using the atomic units.
(1.4) Evaluate energy bands of two band model based on the nearly free electron

approximation, taking free electron bands of Gn = 0 and Gn = 1, where Gn =
2nπ/a, a = 0.543 [Å], and V (G1) = V s

3 = −0.21 [a.u.]. Calculate the energy
band E(kx ) and plot the energy bands together with the free electron bands.

(1.5) Derive fundamental vectors [a, b, c] of (i) simple cubic, (ii) body centered
cubic, (iii) face centered cubic and hexagonal closed pack crystals, and calculate
their unit cell volume v.

(1.6) Derive the reciprocal lattice vectors [a∗, b∗, c∗] of (i) simple cubic, (ii) body
centered cubic, (iii) face centered cubic and hexagonal closed pack crystals, and
calculate their unit cell volume v.

(1.7) Derive spin–orbit interaction given by (1.149a)

〈X (Γ l
25′) ↑ |Hso|Y (Γ l

25′) ↑〉 = iΔl
25′/3

(1.8) In order to calculate full band structure in the first Brillouin zone, we have to
the wave vectors at the critical points (symmetry points) and their lengths. Refer-
ring Figs. 1.22 and 1.23, evaluate the symmetry points and the lengths between
the symmetry points of a face centered cubic crystal.
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