Adding Dense-Timed Stack to Integer Reset
Timed Automata

Devendra Bhavel ™ and Shibashis Guha?

! Indian Institute of Technology Bombay, Mumbai, India
devendra@cse.iitb.ac.in

2 The Hebrew University of Jerusalem, Jerusalem, Israel
shibashis@cs.huji.ac.il

Abstract. Integer reset timed automata (IRTA) are known to be a
determinizable subclass of timed automata, but it is not known whether
they are input-determined, i.e., the clock values are completely deter-
mined by an input timed word. We first define a syntactic subclass of
IRTA called strict IRTA and show that strict IRTA is equivalent to IRTA.
We show that the class of strict IRTA is indeed input-determined. Visibly
pushdown automata is another input-determined class of automata with
a stack that is also closed under boolean operations and admits a logical
characterization. We propose dtIRVPA as a class of timed automata with
a dense-timed stack. Similar to strict IRTA, we define strict dtIRVPA and
show that strict dtIRVPA is input-determined where both — stack oper-
ations and the values of the integer reset clocks — are determined by the
input word, and this helps us to get the monadic second-order (MSO)
logical characterization of dtIRVPA. We prove the closure properties of
dtIRVPA under union, intersection, complementation, and determiniza-
tion. Further, we show that reachability of dtIRVPA is PSPACE-complete,
i.e. the complexity is no more than that of timed automata.

Keywords: Visibly pushdown automata - Dense-timed stack * Integer
reset timed automata - Logical characterization - MSO

1 Introduction

Program verification involves ensuring that a program does not exhibit any unin-
tended behavior. Such verification is often done by building a suitable computa-
tional model of the program, which needs to be sufficiently powerful to express
program semantics, but without losing decidability of several interesting proper-
ties. Analysis and verification of such programs amount to checking various lan-
guage theoretic properties of their corresponding models. For programs involving
timed behaviour, timed automaton [4] is a simple yet powerful computational
model. They use a finite set of real-valued variables — called clocks — all of which
increase at the same rate as time elapses. Clocks can be reset as desired, which
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is useful to measure the time delay between various events. From a language
theoretic perspective, though timed automata are closed under union and inter-
section, they are not closed under complementation and determinization. For
this reason, it is not possible to verify a program modeled as a timed automaton
against specifications given by another timed automaton.

Suman et al. [20] identified integer reset timed automata (IRTA), where a
clock can be reset only when the value of some clock in an IRTA is an integer,
as a perfect subclass of timed automata, that are closed under all the language
theoretic operations such as union, intersection, complementation and deter-
minization. Naturally, universality checking and inclusion checking are decidable
for IRTA. But interestingly, IRTA are shown to be equivalent to their one clock
counterpart.

Apart from timing constraints, presence of function calls and interrupts in
the programs make the task of their verification difficult. Pushdown automata
(PDA) is a popular formalism for modeling function calls. PDA are closed under
union, but not under intersection, which limits their use for verification. A visibly
pushdown automaton (VPA) [5] is a perfect subclass of deterministic PDA that
is closed under union, intersection and complementation leading to decidable
language emptiness and inclusion.

Though IRTA forms a relatively restricted class of timed automata, Mohalik
el al. [19] have successfully used it in the latency analysis of distributed real-
time systems that synchronize on integer global times. They model tasks which
run periodically and communicate asynchronously using buffers with IRTA. Here
Fig. 1 shows a self recursive procedure P in one such task which implements a
boolean lock. Procedure P is a handler routine which is activated periodically
by a module that uses integer reset clocks. We do not show that module, but
instead discuss the usefulness of dense-timed stack in verifying richer properties.
In Fig.1, the dashed transitions correspond to either call or return transitions
in different contexts of P. Now, consider the following specification: “If a lock is
acquired in any context of a procedure, it must be released in the same context
within 5 time units”. Such requirement is enforced by pushing a symbol a on
the stack when a lock is acquired and checking whether the age of « is within 5
units of time while releasing the lock.

Contributions. We consider task models as used in [19] augmented with dense-
timed stacks. This motivates us to model recursive time-sensitive tasks using
dense-timed integer reset visibly pushdown automata (dtIRVPA) as a model for
real-time recursive programs. Our model uses integer reset clocks, visible alpha-
bet and a dense-timed stack. Like VPA, an input symbol determines the stack
operations, with the difference that we use a dense-timed stack. We show that
the formalism of dtIRVPA enjoys all good properties like closure under union,
intersection and determinization that paves the way to decidability of language
inclusion based model checking, where the specification is given in terms of
dtIRVPA. We consider a canonical form of dtIRVPA called the strict dtIRVPA
that enjoys input determinacy property, i.e. when reading a timed word u, the
clock values are completely determined by u. For the ease of presentation, we
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Bool lock = false;
procedure p() {
if (lock == false) {
lock = true;
P(); // Recursive call
lock = false;
// Must unlock within 5 time units
}

}

lock = false?

lock := true, push(a)

lock := false, .
pop(a) €[0,5]

,
.
return.p .-

Fig. 1. A recursive program and its dtIRVPA model

first define strict IRTA and show that it is equivalent to the class of IRTA. A
similar construction can be made for dtIRVPA which implies that the class of
dtIRVPA is equivalent to the class of strict dtIRVPA. In this work, we also pro-
vide the monadic second-order (MSO) logical characterization for strict dtIRVPA.
This allows us to check a system modelled as a dtIRVPA against any specification
given by such an MSO formula. Another significant contribution of this work is to
show that the location reachability checking is PSPACE-complete for dtIRVPA.

Related Work. Various models are known that combine clocks and pushdown
stack to model programs with timing constraints on function calls. The earliest
such model is a pushdown timed system [9]. It uses a set of global continuous
variables and a timeless stack. Reachability of a location in the pushdown timed
system is shown to be decidable. Dang [11] studied a model called pushdown
timed automata that uses global clocks, but the clocks here are never pushed on
the stack. Trivedi and Wojtczak [21] extended timed automata with recursion
where they permitted pushing the clocks onto a stack using various mechanisms
like pass-by-value and pass-by-reference and studied reachability and termina-
tion problems for this model. The model of dense-timed pushdown automata
(dtPDA) by Abdulla et al. [1] is also closely related to our work. Whenever a
stack symbol is pushed on the stack of a dtPDA, a real value called age is asso-
ciated with the stack symbol. Ages of all symbols present in the stack increase
uniformly with time. The problem of checking whether given a dtPDA and a
location £ in it, there exists a run from an initial location of the dtPDA to loca-
tion £ is shown to be decidable by Abdulla et al. [1] and is EXPTIME-complete.
We mention here that in dtPDA, the age of a newly pushed stack symbol is ini-
tialized to a non-deterministic value while in the model of dtIRVPA introduced
here, the age is initialized to zero. However, this difference is merely syntactic in
nature and does not affect expressiveness [10]. Another noteworthy contribution
is nested timed automata (NeTA) proposed by Li et al. [16]. In their model, an
instance of timed automata can be pushed on the stack along with the clocks.
Clocks of timed automata continue to run while on the stack. They have shown
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the decidability of the reachability problem by reducing it to dtPDA. Recently
they have further explored the model of NeTA where clocks on the stack are
either frozen or progressing [17]. However reachability for this extension is unde-
cidable for multiple global clocks.

Timed matching logic proposed by Droste and Perevoshchikov [12] is an exis-
tential fragment of second-order logic characterizing dtPDA. They effectively
reduce a formula in timed matching logic to dtPDA such that it is satisfiable
iff the language accepted by the corresponding dtPDA is non-empty. Recently
Bhave et al. [7] proposed dense-timed visibly pushdown automata (dtVPA)
as a perfect subclass of timed context-free languages in the sense that it is
closed under union, intersection, complementation and determinization. Lan-
guage inclusion is shown to be decidable for dtVPA. Further an equivalent MSO
logic has been proposed for dtVPA. In [8], they have also studied a perfect sub-
class of context-sensitive timed languages called dense-timed multistack visibly
pushdown automata (dtMVPA). Informally, a round of multistack computation
accesses each stack once. dtMVPA has been shown to enjoy all good properties
as that of dtVPA for the words having k-rounds of computations. For multistack
dense-timed pushdown systems, Akshay et al. [3] have proposed a tree automata
based technique for reachability problem on words with k-rounds.

Organization. We set up the technical definitions in Sect. 2. In Sect. 3, we give an
effective construction to convert any IRTA into a language equivalent canonical
strict IRTA. We show that strict IRTA are input-determined automata (IDA)
that implies input determinacy for strict dtIRVPA, a property that we need for
the logical characterization of strict dtIRVPA. In Sect.4, we define dtIRVPA,
discuss its closure properties, show that the model is determinizable and discuss
the complexity of checking emptiness of dtIRVPA. In Sect. 5, we give a logical
characterization of strict dtIRVPA. We conclude in Sect. 6.

We note that the abstract procedure for determinization of timed automata
given in [6] identifies IRTA as a subset of timed automata that can be deter-
minized by following the procedure. It constructs an intermediate symbolic infi-
nite timed tree that satisfies the input-determinacy property. The deterministic
symbolic infinite tree is folded back to construct the resulting deterministic timed
automaton. The folding into a timed automaton is possible only when the num-
ber of active clocks in each node of the infinite tree is bounded by some v € N.
The folding back requires mapping the clocks of the infinite tree to a finite set
of clocks X,. Under the 7-clock-boundedness, the only requirement is that each
time a new clock in X, is needed for mapping a clock of the infinite tree to a
clock in X, one free clock is available in X,. This renaming, however, does not
preserve the input-determinacy property and any relation to input-determinacy
cannot be ascertained from the procedure in [6].

Also, once we show that strict IRTA is input-determined, from [13], it auto-
matically implies that there exists an MSO logical characterization for strict
IRTA and such a logical characterization can be derived from the framework
given in [13] for any generic input-determined timed automaton. In [13], the
authors define a timed MSO (TMSO) and show the equivalence between the
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language of an IDA and a set of timed words satisfying a TMSO formula using
a proper symbolic alphabet. The logic in [13] uses an input-determined operator
A that has a semantic function of the signature [A] : (TX% x N) + 2Z¢_ where
TX“ is the set of infinite timed words over an alphabet X, and Zg is the set
of rational-bounded intervals over the non-negative reals. We use an operator
¢* : N+ Zg U {T}, where the symbol T denotes the clock values greater than
some integer k.

2 Preliminaries

A timed automaton (TA) is a non-deterministic automaton that allows modeling
of events to take place at specific time instants or within a time interval. It allows
modeling the passage of time by a finite number of clock variables. All the clocks
increase at the same rate. Lower case letters z,y, z will be used to denote clock
variables and C will denote the set of clock variables. Clock variables are assigned
non-negative real values.

Let W denote the disjoint union of sets. For a given k € N, let ZF = {(p, p +
)]0 <p<k}U{p,p]|0<p<k}U{(k,00)}, where p € N, be a set of real
disjoint intervals. Let x € C' be a clock variable. Whenever it is clear from the
context, we use Z instead of Z*. A clause is of the form z € I. We say that
a clause (z € I) holds true iff the current value of a clock variable z is in the
interval I. A guard is a conjunction of finitely many such clauses and its syntax
is given as g := g A g|(x € I) where x € C and I € Z. Let g[(x + p)/z] be an
expression obtained by replacing the variable x by the expression (x + p) in the
formula g. Let ¢(C) be the set of all guards.

A clock valuation or simply a valuation is a function v : C' +— IR>. For a
clock z € C and a valuation v, we use v(z) to denote the value of clock z in v. We
use |v(z)] to denote the integer part of v(x) while frac(v(z)) is used to denote
the fractional part of v(z). We define [v(x)] = |v(z)] + 1 if frac(v(x)) # 0, else
[o(@)] = [v(x)).

For a clock valuation v, we use v+d to denote the clock valuation where every
clock is being increased by an amount d € IR>¢. Formally, for each d € IR>,
the valuation v + d is defined as (v + d)(z) = v(x) + d, for each z € C.

For a clock valuation v, we use Vipp) to denote the clock valuation where
every clock in R C C'is set to zero, while the value of the remaining clocks remain
the same as in v. Formally, for each R C C, the valuation V[R0] is defined by
Vg p)(z) = 0ifz € R, else vjp_g(x) = v(z). We say that a valuation v satisfies
a guard g, denoted v | g, if for each clock x appearing in g, the formula obtained
by replacing x with v(z) is valid.

A timed automaton is defined by the tuple (L, Ly, X, C, E, Ly) where L is
a finite set of locations, Ly is a non-empty set of initial locations, X' is a finite
alphabet disjoint from IR, C is a finite set of clocks, E C Lx ¥ x ®(C)x 2% x L
is a finite set of edges and Ly C L is a set of accepting locations. Note that our
definition of guards is not succinct but it is equally expressive as the definition
of [4]. The definition that we use in this paper allows us to have cleaner proofs.
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A timed transition system [14], (TTS for short), S = (Q, Qo, X, —, —, QF),
where Y is a finite alphabet, Q) is a set of states, gy € Qo is an initial state,
—C Q xIR>9xQ is a set of delay transition relations, and = C Q@ x X' x Q is a

set of discrete transition relations. We write ¢ 4, ¢ if (¢,d,q") € — and ¢ N
if (¢,a,q") € —.

Let A= (L, Ly, X,C, E, Ly) be a timed automaton. The semantics of a timed
automaton is described by a TTS. The timed transition system T'(A) generated
by A is defined as T'(A) = (@, Qo, X, —,—, QF), where

- Q = {(4,v)| ¢ € L, vis a clock valuation}, is a set of states. Note that due
to the real-valued nature of time, this set is generally uncountable.

— Let v denote the valuation such that v, (z) = 0 for all z € C. Then
Qo = {(fo, Vinit) | lo € Lo}

- —>={((t,v),(l,v+d)) | (4,v),d,(l,v+d) € Q} for all d € R>o.

- = = {((¢,v),a,(¢,v")) such that (£,v),(¢;,v") € @Q and there is an edge
e=(lia,9,R,l') € Eand v |= g and v' = vp_g5}. From a state (£,v), if
v = g, then there exists a a € X transition to a state (¢/,v"); after this, the
clocks in R are reset while the values of the clocks in C'\ R remain unchanged.

- Qr ={(,v) |l € Ly and v is a clock valuation}.

For a timed automaton state p = (£, v), we denote by v, (p) the value of clock x for
state p. A run of a timed automaton is of the form 7= = (¢y, vg) o, (o, vo+do) =

(01,v1) L (01,v1 +dq) SN (Lo, v2) ... LN Ok, v + di) a8 (Ck41,vk+1) where for
all © > 0, we have d; € R>g and a; € Y. Note that 7 is a continuous run in

the sense that for a delay transition (¢;,v;), LN (€;,v; +d;), it includes all states
(¢;,v;+d) for all 0 < d < d;. A run is said to be initial if ¢y € Lo and vg = vingt-
An initial run is accepting if it ends in an accepting location. A timed word
w = (ap, to)(a,t1) ... (ak,tx) is said to be read on = whenever ¢; = Z;:o d; for
every 1 < i < k. The timed word w is said to be accepted by A if there is an
initial and accepting run of A that reads u. We write L(A) for the set of timed
words (or timed language) accepted by A. We say that a TA A is deterministic
whenever every timed word w produces at most one unique run. The set of finite
words over Y is denoted by X*. Additionally, we denote the set of all finite timed
words by TX™*.

An integer reset timed automaton (IRTA) [20] is a timed automaton A =
(L,Lo, X,C, E, Ly) with the restriction that for every edge e = (¢, a,g,R,¢'), if
R # 0, then g has a clause of the form xz € I for some z € C and I is of the
form [p, p] for p € N. Such clauses in the guard ensure that all resets happen at
integer time units. A consequence of this is that at any time, for any run of an
IRTA, the fractional parts of the values of all the clocks are the same [20)].

It is known that given an IRTA A, it can be determinized to produce another
IRTA B whose size is exponential in the number of locations of A [18]. Further,
given an IRTA A with an arbitrary number of clocks, it can be converted to
an IRTA B such that B has a single clock and the number of locations in B is
exponential in the number of clocks of A [18]. In both the above constructions,
the timed language accepted by A is preserved.
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A strong timed simulation relation between two timed systems T; =
(Qi, Qo,iy X, —4iy—4,Qrq), for i € {1,2} is a relation R C Q1 x Q2 such that if

(¢1,92) € R, and ¢1 Sy ¢}, where —=— and a € R>g, or —=<> and o € X,

then there exists g5 € Q2 such that ¢o 2 g5 and (q1,q%) € R. A strong timed
bisimulation relation between two timed systems T; for i € {1,2} is a relation
R C Q1 X Q2 such that both R and R~ are strong timed simulation relations.
We say that two timed automata A; and As are timed bisimilar if for every
initial state ¢ of T'(A;1), there exists an initial state go of T'(Az) such that there
exists a strong timed bisimulation containing ¢; and g2, and for every initial
state ga of T'(Ay), there exists an initial state g; of T'(A;) such that there exists
a strong timed bisimulation containing ¢; and gs.

Visibly pushdown automata [5] are a determinizable subclass of pushdown
automata that operate over words that dictate the stack operations. This notion
is formalized by giving an explicit partition of the alphabet into three dis-
joint sets of call, return, and local symbols and the visibly pushdown automata
must push one symbol to the stack while reading a call symbol, and must
pop one symbol (given the stack is non-empty) while reading a return sym-
bol, and must not touch the stack while reading the local symbol. A wvisibly
pushdown alphabet is a tuple ¥ = (X, X, X;)where X is partitioned into
a call alphabet Y., a return alphabet Y., and a local alphabet Xj;. A visi-
bly pushdown automaton over ¥ = (X., Y., X)) is a tuple(L, X, I, L, E, Ly)
where L is a finite set of locations including a set L% C L of initial loca-
tions, a finite stack alphabet I' with special end-of-stack symbol -, and £ C
(LXXexLx(I'\F)) U (Lx X, xI'xL)U (LxX;xL) and Ly C L is a set of final
locations. Alur and Madhusudan [5] showed that visibly pushdown automata
are determinizable and closed under Boolean operations, concatenation, Kleene
closure, and projection. They also showed that the language accepted by visibly
pushdown automata can be characterized by MSO over words augmented with
a binary matching predicate first studied in [15].

3 Transformation to Strict IRTA

In this section, we first define strict IRTA and show that the class of strict
IRTA is equivalent to IRTA. Then we show that strict IRTA are input-determined
automata.

Definition 1. An IRTA is said to be strict iff (i) it has only one clock and (i7)
every edge having a guard condition of the form [p, p] with p € N resets the clock.

Assume wlog that we are given a one-clock (not necessarily deterministic),
but non-strict IRTA A = (L, Lo, X, {z}, E, Ly). We now describe a construction
that yields a strict IRTA B which is timed bisimilar to A. For the following
discussion, we assume k to be the maximum constant appearing in the guards
of A.

First, we present an intuition behind our construction with some observa-
tions. Consider the one clock IRTA A in Fig.2 having a single clock x. We do
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not show the labels on the edges with the letters from X in the figure. Clearly A
is not a strict IRTA as the edge from ¢5 to /5 has an integer guard, but it does not
reset x. Suppose we forcefully reset « on the ¢5 to £3 edge, then we need to suit-
ably change the guards on all the edges that may be taken thereafter to preserve
the timed language. For example, one of the changes that we can immediately
identify is to make the guard in the edge from ¢3 to ¢; as « € (0,1) instead of
earlier z € (3,4) as the new value of x lags by 3. Clearly, the other side effects
of resetting x must be taken care of appropriately. These side effects are path
sensititive, i.e. for each location the amount of lag in x introduced because of

additional reset of x depends completely on the incoming path to that location.

As a general principle, consider an edge £ M ¢ which denotes a

transition from a location £ to ¢/ on an input symbol a and checks whether the
value of the clock x is m, but does not reset x. Suppose we modify it by adding
a reset to it, clock x will then lag by m units along the run until x is reset again.
Intuitively our construction keeps track of such a time lag introduced along the
run in the locations. Let N<,,, = {0,1,...,m} denote the set of natural numbers
less than or equal to m. We maintain sets of lags X, C N« for each location
{ € L, where k is the maximum integer appearing in the guards of the IRTA. Let
v : E s 2N<x give the lag introduced by each edge. Recall that a guard I on an
edge u of the one clock IRTA A is of the form [m,m] or (m,m + 1) for m € N.

{m} if u=(l1,2 € [m,m],a,0,{s)
v(u)=4 {0} if u= ({1, € [m,m],a,{z},{s)
Xy, N Naingry ifu=(l1,2 € I,a,0,¢3), where I # [m,m] for m € Ny,

Let pre(£) be the set of all incoming edges to location £. For computing the
possible set of lags at each location, we write the set of fixed point equations
for each location ¢ as X, = Uuepre(g) ~(u). For initial locations, there is no lag
initially, so we initialize X, to {0} for ¢ € Ly. Fixed point solution to these sets
of equations exists as the sets are finite and set union is monotonicity preserving.
Note that in each iteration y(u) is computed by intersecting with a constant set.
Let X, denote the fixed point solutions.

Now we construct a strict IRTA B = (L5, L5, ¥, {x},EB7LJ§). We record
the time lag along the run in the locations of B such that LB = {(¢,p)|¢ €
Land p € X,} and initial locations are LB = Ly x {0}. Final locations are
L? = {(¢,p)| € € Ly and (¢,p) € LP}. The set of edges of B are given by

{((¢,p),a, (x+pel),d, (¢ p)|(l,xel,albl)eE
and I # [m, m| for m € N<j and p <inf()} U
5 _ {((t.p),a, (x+p € [m,m]),{z}, (",m)) | (( (z € [m,m]),a,0,0') € E
and p < m}U
{((t.p).a, (x +p € [m,m]), {z}, (¢',0)) | (£, (x € [m,m]),a,{z},¢') € E
and p < m}

E

Remark 1. Note that since the IRTA A has only one clock and its guards belong
to Z, the size of the IRTA B is polynomial in the size of A. Further, from EB. we
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note that the maximum constant with which the clock is compared to in B is no
more than the maximum constant with which the clock is compared to in A.

We now apply our construction on the automaton in Fig. 2. We compute the
set Xy, for each location ¢; where 0 <14 < 3. Initially X, is set to {0}, while for
i # 0, we set X;, = (). Next X, is set to {0} as it propagates from X, due to the
presence of the edge from ¢y to ¢1. Then X, is set to {0} as it propagates from
Xy, because of the edge from ¢ to ¢5. Then Xy, is set to {3} because of the edge
from ¢5 to 3. Again X, is modified to {0, 3} since 3 is propagated from X, due
to the presence of the edge from /3 to ¢1. Thus we reach the following fixed point:
Xy, = {0}, Xy, = {0,3}, X4, = {0} and X,, = {3}. Note that 3 is not added to
Xy, since 3 is greater than the infimum of the guard on the edge from ¢; to ¢
which is 1. The edges are added following the definition of E® given above. For
example, for the edge from ¢3 to ¢, consider the locations (¢3,3) and ({1, 3). In
the strict IRTA that is obtained, we have the edge ((¢3,3),-,2+3 € (3,4), ({1,3)).
The strict IRTA obtained is shown in Fig. 3.

Theorem 1. Given a one clock IRTA A, the construction presented above pro-
duces a strict IRTA B such that A and B are timed bisimilar.

Fig. 2. An IRTA that is not strict. Fig. 3. A strict IRTA obtained from the
one in Fig. 2.

We say that the class of timed automata has the property of input determi-
nacy if the values of the clocks along a run are completely determined by the
input timed word alone and do not depend on any specific instance of a timed
automaton. Clearly the class of IRTA as a whole does not have this property,
however, we claim that the strict IRTA does have the input determinacy property.

Lemma 1. Strict IRTA have the input determinacy property.

4 Dense-Timed Integer Reset Visibly Pushdown
Automata

We introduce dense-timed integer reset visibly pushdown automata (dtIRVPA)
as an IRTA augmented with a dense-timed stack having a visibly pushdown
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alphabet. Let an input alphabet X = Y. w X. W X; be partitioned into call,
return and local symbols respectively. Let - be the special stack symbol denoting
the bottom of the stack. We now formally define dtIRVPA and describe their
semantics.

Definition 2 (dtIRVPA). A dense-timed integer reset wisibly pushdown
automaton (dtIRVPA) over ¥ = X WX, WX} is a tuple A = (L, Lo, X, I',C,E =
E.WE,WE;, L), where L is the finite set of locations, Lo, Ly C L are the set of
initial and final locations respectively, I is the finite stack alphabet with special
end-of-stack symbol -, E. C (L x Y. x ®(C) x 2¢ x L x (I'\ F)) is the finite
set of call transitions, E, C (L x X, x ®(C) x 2¢ x I' x T x L) is the finite set
of return transitions, and Ey C (L x X; x &(C) x 2¢ x L) is the finite set of
local transitions. Additionally, the set of clocks that get reset in a transition is
nonempty only if its guard condition contains a clause of the form (xz € [p,p])
where x is some clock in C' and p € N.

Each symbol on the stack has an associated clock-like real value (called age)
which increments uniformly with time. When a symbol is pushed on the stack,
its age is initialized to zero. As time elapses, ages of all stack symbols increase
uniformly. A pop transition checks the age of the topmost stack symbol. We
denote the contents of the stack in a configuration using a timed word itself.
Let o be such a timed word where untime(c) € I'* is the string of (untimed)
stack symbols while age(o) is the string of real valued ages. We define the age of
stack bottom symbol F to be of undefined value, denoted by the special symbol
1 which is not affected by the passage of time. Hence (L + m) is defined to be
1 for any m € R>(. We introduce a string concatenation operation :: for both
types of strings for convenience in the next discussion.

Let w = (a1,t1), -, (an,t,) be a timed word. A configuration of dtIRVPA
is a tuple (¢, v, (vo,age(yo))), where £ is the current location of the dtIRVPA, v
is the clock valuation, yo € I'T™* is the content of the stack with v being the
topmost symbol and ¢ is the untimed word representing the stack content below
v, while age(yo) is a string of real numbers encoding the ages of all the stack
symbols (the time elapsed since each of them was pushed on to the stack).

The run of a dtIRVPA on a timed word w = (a1,t1), ..., (an,t,) is a sequence
of configurations given as follows: (g, vo, ((F),(L))), (¢1,v1, (01,age(o1))),- - -,
(s Vn, (o, age(oy))) where €, € Lyo; € I'™ 4y € Lg, to = 0, and for each 1,
1 <1 < n, we have:

— If a; € X, then there is a transition (¢;_1,a;,9,R,¥;,v) € E such that
vi—1+ (t; —t;—1) = g. The clock valuation v; = (v;—1 + (t; — ti,l))[Rh@]. The
symbol v € I'\{F} is then pushed onto the stack, and its age is initialized to
zero, obtaining (o, age(o;)) = (v :: 05-1,0 :: (age(o;—1) + (t; — t;—1))). Note
that the age of all symbols in the stack excluding the topmost one increases
by ti - ti—1~

— If a; € X,, then there is a transition (¢;_1,a;,g,R,7v,I,¢;) € E. The
configuration (¢;_1,v;—1, (0;—1,age(c;-1))) evolves to (¢;, v;, (0;,age(c;))) iff
Vi—1 —|—(ti —ti_1) ): g,0i-1 =7k €lT*and age('y)—l— (ti _ti—l) € I. Then
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we obtain o; = &k, with age(o;) = age(k) + (t; — t;—1). However, if v = F,
the symbol is not popped, and the attached interval I is irrelevant. The clock
valuation vy = (Ui—l -+ (tl — ti—l))[Pu—(f)]-

— If a; € X}, then there is a transition (¢;_1,a;, g, R, ¢;) € E such that v;_1+(t;—
t;—1) F g. The clock valuation v; = (v;—1 + (t; — ti_l))[RH@]. In this case the
stack remains unchanged i.e. o; = 0;_1, and age(o;) = age(oi—1)+(t; —t;—1).
All symbols in the stack age by t; — t;_1.

A run p of a dtIRVPA A is accepting if it terminates in a final location. A
timed word w is an accepting word if there is an accepting run of A on w. The
language L(A) of a dtIRVPA A, is the set of all timed words w accepted by .A.

Definition 3 (Deterministic dtIRVPA). A dtIRVPA A = (L, Ly, X, T,C,E,
Ly) is said to be deterministic if it has exactly one start location, and for
every location and input symbol pair exactly one transition is enabled at all
times. Formally, we have the following conditions: (i) for call transitions
(L,a,91, R1,¢',m),(,a,92, R, ¥',v2) € E., we have g1 N g2 is unsatisfiable.
(i1) for return transitions (€,a,g1,Ri,v1, 11,¢'),(£,a,g2, Ro,vy2,I2,¢") € FE,,
either g1 A g2 is unsatisfiable or Iy N Iy = 0. (4i) for local transitions
(¢,a,g1,R1,0"),(£,a,g2, Ro,l') € E;, we have g1 N ga is unsatisfiable.

Now we state one of the central results of the paper.

Theorem 2. dtIRVPA are determinizable and closed under union, intersection
and complementation. Also, their language emptiness and inclusion is decidable.

Determinization. Although IRTA and VPA are individually determinizable, their
determinization techniques cannot be easily combined for determinizing dtIRVPA
due to the presence of a dense-timed stack. However technique used for deter-
minization of dtVPA in [7] is helpful for handling dense-timed stack. We have
the following result about the determinization of dtIRVPA.

Lemma 2. dtIRVPA are determinizable.

Closure properties and decision problems. The closure of dtIRVPA under union
follows from the non-deterministic union of two dtIRVPA, while the intersection
follows from their cross product construction. To obtain a complement of a
given dtIRVPA, we first determinize it and then interchange final and non-final
locations. We state the following results about the closure properties of dtIRVPA.

Lemma 3. dt/IRVPA are closed under union, intersection and complementation.

The reachability problem for a dtPDA amounts to checking whether there
exists a run starting from an initial configuration to a given configuration
in the given dtPDA. If the given configuration is a final one, then this
amounts to checking whether the language accepted by the dtPDA is empty.
Abdulla et al. [1] proved that the configuration reachability checking problem
for dtPDA is EXPTIME-complete. We now state the following theorem for the
reachability checking of dtIRVPA.
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Theorem 3. The reachability checking for dtIRVPA is PSPACE-complete.

PSPACE-hardness follows after a minor change in the initialization edges of the
constructed timed automaton to yield an IRTA in the proof of the reachability
problem of timed automata as given in [2]. An NPSPACE algorithm for emptiness
checking is given below.

We first define the notion of regions for dtIRVPA, then state the construction
of a region graph. Let A = (L, Lo, X, I,C,E,Ly) be a dtIRVPA with &k as a
maximum constant used in the guards. We define the regions for A as follows:
The region is a triple (¢, u,b) where ¢ € L is a location, u : C'+— NU{kT} is a
function that abstracts a clock valuation, and b € {0,1} is a flag which denotes
whether the fractional parts of the values of the clocks is zero. Here k™ is a special
symbol that represents clock values greater than k. We use b = 0 to denote that
the fractional part of all clocks is zero and b = 1 to denote non-zero value of
fractional part. Recall that Lemma 5 ensures that the value of fractional parts
of all integer reset clocks is the same. For a valuation v, for each clock z € C,
we have u(z) =kt if v(z) > k, else u(z) = |v(z)]|. We say that a state (¢,v,0),
where o is the stack content, belongs to a region (£, u,b) if for each clock = € C,
we have u(z) = |v(x)] when v(z) <=k, and u(z) = k™ when v(z) > k. Let R
be the set of all such regions.

The region graph G induced by A is a graph in which the vertices are regions
in R and the directed edges are labeled either by symbols in X or by intervals in
7. Edges are labeled by input symbols for discrete transitions between regions.
If there is an edge labeled I € 7 from region r; to 73, it means that for every
state (¢1,v1,01) € 71, there exists a t € I such that there is a concrete run from
(¢1,v1,01) that reaches some state ({a,v9,09) € ro after time ¢ € I.

Ezample 1. Consider a dtIRVPA A with a maximum constant & = 2 in the guards.
This yields the set of intervals Z = {[0,0], (0,1),[1,1],(1,2),[2,2], (2,00) }. The
set of clocks of A is C = {z,y, z}. Let the stack symbols be I' = {«, 3}. Consider
astate s; = (1,v1 = (1.2,2.2,0.2),01 = (o, 1.2),(53,0.1))) of A. Recall that all
the clocks in an IRTA always have the same fractional part. The region r; to which
s1 belongs is 11 = (¢1,u1 = (1,27,0),1). Note that the stack contents are not
recorded in the regions. Now consider the effect of a time delay of 0.8 units on s;.
We get s = (€1,v2 = (2.0,3.0,1.0), 02 = ((c, 2.0), (8,0.9))). The state s belongs
to region ro = ({1,us = (2,2%,1),1). This gives us an edge in the region graph

0,1
] on, ro. In fact for every state s € r1, we can always choose some ¢t € (0,1)
such that by delaying time ¢ we reach some state in 5.

Construction of region graph. We now use an alternative definition of timed
words that uses delay intervals instead of global timestamps. For a timed word
w = (a1,01) ... (an,dn), duration of w is X, d;. Duration of a run is the duration
of the timed word that induces the run. We define an interval reachability relation
R; between the regions such that if (r1,72) € Ry then for every state s; € 71,
there exists a ¢t € I and a concrete run that reaches some state sy € roy after time
t. A region graph is constructed using the reachability relation R = J;.; Rr.
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Definition 4. We define interval reachability relation Ry recursively as follows.
We say (r,r") € Ry if one of the following cases holds.

[Case I| there are states ((,v1,01) € r and ({,v3,02) € 7' and a time delay
t € I such that vo = v1 +t and 09 = o1 +t. This case is for reachability by
delay transition.
- [Case Io L} (r,r1) € Ry and there is a local transition from 1 to 1’
[C’ase Colo R] all of the following hold
e there is a call transition from r to r1 that pushes a symbol o on the stack
e there exists some I-labeled edge from ry to ro i.e. (r1,12) € Ry
e there is a return transition from ro to v’ with stack condition pop(a) € I
[Case Io I] there exist (r,r1) € Ry, and (r1,7') € Ry, and there ewist t; €
Ji,ta € Jo and t € I such that t1 +ts = t.

We now give an NPSPACE algorithm to check if a region 7o is reachable
from a region r1. The size of the input is O(log k) bits as the input contains the
description of a given dtIRVPA. Each abstract value of a clock requires O(log k)
bits and hence the function u needs |C|- O(log k) bits of memory. Thus a region
requires O(log k) bits which is polynomial in the size of the input. We system-
atically guess the regions at each transition along the run such that only O(1)
regions are stored in each step. Our algorithm performs the following steps until
no new relation can be inferred further. (i) It add (rq1,r2) € Ry for delay tran-
sitions using case I. (ii) It guesses regions 71, rs and r3 such that (r1,7r2) € Ry,
and (ra,73) € Ry,. It then concatenates them to get reachability from 71 to 73
using case I o I. (iii) It guesses regions (r1,72) € Ry and guesses call and return
transitions such that r — ry is a call transition and ro — 7’ is return transition.
It then infers that (r,r') € Ry using case C o I o R. (iv)It guesses regions 71,79
and r3 such that (r1,72) € Ry, and (rq,r3) is a local transition. It then infers
the reachability from r; to r3 using case I o L.

A timed word is called well-matched if there is no call position without a
matching return position and vice versa. Our reachability algorithm can as well
be extended to words that are not well-matched by treating unmatched calls and
returns as local variables.

The problem of language inclusion checking for dtIRVPA is stated as whether
L(A) C L(B) for dtIRVPA A and B and this can be done by testing if L(A) N
L(B) = 0. The language inclusion checking for VPA is EXPTIME-complete [5].
As VPA is a proper subclass of dtIRVPA, we have the following lemma.

Lemma 4. For dtIRVPA A and B, checking whether L(A) C L(B) is decidable
and is EXPTIME-hard.

5 MSO Characterization for Strict dtIRVPA

We can extend Definition 1 to dtIRVPA to obtain a strict dtIRVPAin a straight-
forward way. We restate the following key lemmas regarding the properties of
IRTA that are instrumental in obtaining a strict IRTA from any given IRTA and
given a dtIRVPA, we can obtain a strict dtIRVPA analogously.
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Lemma 5. [20] Let A be an IRTA and v be a clock valuation in any given run
in A. Then for all clocks x and y of A, we have frac(v(z)) = frac(v(y)).

Lemma 6. [18/ Given an IRTA A, a deterministic one clock IRTA B can be
constructed such that L(A) = L(B).

Using the lemmas stated above and following a construction similar to the
one presented in Sect. 3, we have the following lemma.

Lemma 7 (Clock reduction and strictness). For every dtIRVPA A, there
is a strict dtIRVPA B such that L(A) = L(B).

Theorem 4. Strict dtIRVPA have input determinacy property.

The above theorem allows us to have an MSO characterization for strict dtIRVPA.

Let w = (a1,t1)...(am,tm) be a finite timed word accepted by a strict
dtIRVPA A. Let D* = {1,...,m} be the set of positions in w called the domain
of w. Owing to Theorem 4, the value of the (only) clock at each position of w
can be computed and is given by a function ¢¥ : D* + [0,k] U T, where [0, k]
is the set of reals from zero to k and T is an artificially added symbol which
intuitively denotes the clock values greater than k. We let ¢ty = 0 to be the initial
timestamp. Formally ¢*(0) = 0 and for j > 0,

t; —t; if 7 is the largest position with 0 <4 < j and having integer
¢t) = t;and t; —t; <k and C*(i) £ T
T otherwise.

We now define the syntax of MSO(X, k) formulas over alphabet X' and para-
meter k € N using the following syntax.

¢ 2= Qa(n) | 7 (n) | ur(ny,n2) |m <nz2 |n€X [ =9 (V)| 3npn) | 3X o(X)

For every timed word w, we associate a word model w on which MSO(X, k)
formulas are evaluated. Predicate @, (n) checks whether the symbol a € X occurs
at position n in w. Predicate ¢ }“(n) checks whether the value of function ¢* is
in the interval I € ZU {T} at position n. The ordering relation < and the set
membership relation € over the set positions D* have their usual meaning. We
introduce a stack matching predicate py(ni,ns) which holds true when n; is a
call position that pushes a stack symbol v on the stack and ns is a matching
return position which pops the same ~ from the stack. Further, the time delay
between the positions n; and ns is in the interval I. This ensures that the age
of the topmost stack symbol at position ns is in I.

Consider an MSO(X, k) formula ¢(n1, ..., ny,, X1, ..., X,) having p first order
and ¢ second order free variables. Let Var be the set of variables. Let I : Var —
D* U2P" be the function which assigns values to all the free variables in ¢. We
denote the interpretation I = (ky, kg, ..., kp, K1, Ko, ..., K;) such that it assigns
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k; to the first order free variable n; and K; to the second order free variable X;
in ¢ respectively.

The model of the formula ¢(n,...,npy, X1,...,Xy) is a tuple (w,I) where
w € TX* is a finite timed word and I is an interpretation. This model is obtained
by extending 7% with a bit vector of size p + . For this purpose, we let X7+ =
2. x {0,1}PHa, spta = 5 % {0, 11719, and ZPT7 = 5 x {0,1}P19 be extended
call, extended return and extended local alphabets respectively. Let YP+9 =
zrtay grtay 2P Similarly we define 7279 = TX x {0,1}P%9. Let w =
(a1,t1), ..., (@], tjw)) € TX* be a timed word. We encode I into an extended
timed word u = (a1,t1), ..., (Qu|» tjw|) € (TEPT?)* whose untimed alphabet set
is extended to XPT9. This encoding is done as follows.

— Both w and w have the same length.

— for each position i € D¥, a; = (a;, b}, ..., 0%, cl, ..., cl) € TP such that
o b/ =1iffI(n;) =i
o ¢/ =1iffi € I(X;)

We define the language of ¢ as L(p) = {u € (TXP+9)* | (w,]) = ¢}.
The semantics of an MSO(X, k) formula in this system is given as follows.

(w,I) = Qu(n) iff a occurs at the position I(n)
W b CFn) i ¢KI(n)) € I
(w,I) = pr(ny, ne) iff I(ny) is a call and I(nsy) is matching return and
(tﬂ(nz) - tﬂ(nl)) el
En <ng iffI(ng) <I(ng)
EneX iffI(n) € I(X)
ffw, I~ ¢
Feve iff (w ) Eeor(w]) E¢
E dnp(n) iff there exists an ¢ € D™ such that (w,I[i/n]) = ¢(n)
E 3X o(X) iff there exists an S C D™ such that (w,I[S/X]) E ¢(X)

sBE2z2282
m
il
AS)

where I[i/n] denotes I(n) := 4 and I[S/X] denotes I(X) := S.

Theorem 5. L is a timed language over X accepted by a dtIRVPA with k as a
mazimum constant used in its guards iff there is an MSO(X, k) sentence ¢ that
defines L.

Let MSO!(X, k) be the MSO logic obtained by removing atom pr(n,ns)
from MSO(X, k). One proof of the MSO! characterization of strict IRTA follows
from Lemma 1 and the work by D’Souza and Tabareau [13]. As strict IRTA
are a proper subclass of strict dtIRVPA, we get another proof of their MSO*
characterization based on Theorem 5 and we state it as the following corollary.

Corollary 1. L is a timed language over X accepted by a IRTA with k as a
mazimum constant used in its guards iff there is an MSO* (X, k) sentence ¢ that
defines L.
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Conclusion

The class of dense-timed integer reset timed automata introduced in this paper
is a perfect subclass of timed context-free languages. The decidability of their
inclusion checking paves the way for the model checking programs described
as dtIRVPA against the subclass of richer timed context-free specifications. The
other novelty is that their emptiness checking is PSPACE-complete which is
same as that of timed automata. This is significant as timed automata cannot
describe context free specifications.
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