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1 Introduction

Data science and optimisation have evolved separately over several decades. In [16],

Tony Hey and his co-authors, inspired by the late, Turing award winning, Jim Gray

picture data science as a fourth paradigm in scientific evolution. After the empirical

branch, the theoretical and the computational branch, data exploration comes to the

scene. Historically, this evolution spreads over literary thousand years and most of

research domains can be traced back a long time in history. An interesting overview

on combinatorial optimisation is [23]. Interesting cases are e.g. the Steiner problem

[1, 4] and Kepler’s conjecture [15].

Here we will review some recent developments in the application of data science

to support heuristics for combinatorial optimisation problems as well as the use of

heuristics in a data science context.

2 Data Science for Optimisation

Optimisation is the discipline of finding values of variables that optimise some goal

function(s) within a given domain. The description of the problem is typically not

more than a couple of pages long. Its complexity status may or may not be known. In

practical situations, the problem is not in the complexity status, but in the expected

execution time for a specific instance.

Data science may enter in various ways. The difficulty of problems often strongly

depends on the properties of the problem instance. Producing optimal solutions in
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a guaranteed amount of computation time is often not possible. The problem shifts

from finding the optimal solution towards finding an as good as possible solution in

an acceptable amount of time for most of the problem instances that will be thrown

at the system.

2.1 DFO Example: Using Data Science in Algorithm
Construction

A first example with remarkable successes in recent years is automated algorithm

construction. Automated algorithm construction is one possibility in a set of auto-

mated mechanisms allowing data to be used for optimisation. Available are a set of

problem instances and a formal description of the problem. The aim is to produce

an algorithm that solves the problem as efficiently as possible. One could argue that

techniques such as algorithm selection and algorithm tuning are in fact algorithm

construction techniques. In algorithm selection, a set of algorithms for the problem

is defined and the aim of the automated construction phase is limited to learning a

predictor from the data that selects the best algorithm to solve a given problem. In

algorithm tuning, one algorithm is given with a number of discrete and continuous

parameters. The aim of the automated phase is to find the best setting of the para-

meters for the expected distribution of the problem instances of which the data is

supposed to be a representative sample.

An obvious argument against is that in selection, as well as in tuning, complete

algorithms have been designed and only a limited number of decisions are left to

the automated construction module. In the other extreme, no constraints except the

available operations at the machine or programming language level should exist.

As an example we discuss the approach in [2] for multi objective evolutionary

algorithm (MOEA) construction. The authors present a general conceptual view of

an MOEA, and prior to the automated approach, demonstrate how a number of well

known MOEA’s from literature can be described. MOEA’s are seen as combinations

of lower-level components such as preference relations and archives. The resulting

framework extends the number of algorithms that can be instantiated as well as the

number of MOEA approaches that can be designed. Given this large design space,

an efficient navigator is needed to find the best combination of components for a

given problem. The authors use the parameter tuning package irace[20] for this pur-

pose. iraceaccepts discrete and continuous parameters and can hence be configured

as a selector of components provided a specific pattern is given. iracethen only has

to decide which component to insert where. The authors design new databases of

instances for several problems and study the behaviour of the constructor. The same

problem with different instances turns out to lead to significantly different algo-

rithms. The constructed MOEA’s outperform existing algorithms, even after these

existing algorithms have been tuned by irace.
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This example uses expert human knowledge formalised in an algorithm template

and a black box analysis of a representative data set of instances. Some other exam-

ples are [3, 6, 18, 19, 21, 24]. The algorithm components in this approach are gen-

eral and not problem specific. In the next section we discuss an approach that allows

algorithm designers to insert knowledge about the problem. Optimisation is not only

linked to data but also to expert knowledge.

2.2 DFO Example: Using Data Science While Engineering
an Algorithm

Consider the problem of designing a multi-neighbourhood local search algorithm.

Our running example will be a vehicle routing problem (VRP). A multi

-neighbourhood local search algorithm is an algorithm that moves from one accept-

able solution for the VRP to another according to a number of neighbourhoods. The

local search could simply be hill climbing or it could employ a mechanism allowing

it to escape from local optimuma. Selection of a neighbourhood may be (weighted)

random selection or any intelligent, machine learning based, mechanism. A specific

neighbourhood may reflect expert understanding of the problem domain or design

experience. Designers will come up with a multitude of possible neighbourhoods.

The question that remains is which neighbourhoods to actually use.

This is an algorithm construction problem as we saw in Sect. 2.1, with the weights

as parameters. Another option is a hyper-heuristic approach [5] where the weights

evolve during the search guided by machine learning. All these are black box

approaches. The present example shows how to open the box.

The target it to offer support to algorithm designers. They will experiment with

neighbourhood combinations on a set of sample problems. The information retrieved

will be fragmented and no why-questions will be answered.

To allow observation of neighbourhood behaviour during the search [9] uses code

inserts to register neighbourhood behaviour. Observables are goal function values,

times taken, . . . . Evolution of these observables for each neighbourhood in the course

of the search is stored. Inspection of the resulting file may a.o. reveal varying per-

formance of neighbourhoods during the search.

The data plotted plotted against time may not offer the full picture. Local search

algorithms often wander around in extended valleys before discovering higher hills.

A few observations in such a region may be sufficient to identify effective neigh-

bourhoods. More interesting information comes when the goal function approaches

its optimum.

The authors of [9] introduce the value of the goal function as the basis of a plot.

This goal function value is taken from a, conveniently discretised, finite interval.

The collected data reflects the events during one run. The following features

on each neighbourhood N include number of times used, number and amount of

improvements, no effects, worsening. Each of these features is plotted against the
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Fig. 1 Visualization of logged numbers of improvement, no effect and worsening for two neigh-

bourhoods. The x-axis represents solution quality (the larger the value, the better the corresponding

solution is). The y-axis represents values of the three observables

goal function value taken from a VNS algorithm. After dividing the goal function

range interval into regions, [9] collects the quantities in a vector characterising each

neighbourhood. See Fig. 1 for an example.

The procedure described now serves two purposes. It allows visualisation of

neighbourhood behaviour for algorithm developers to select a diverse set of lim-

ited size or to identify properties of missing neighbourhoods. It allows analysing an

existing algorithm automatically. If one supposes that neighbourhoods with simi-

lar profiles behave similarly, these characteristics may allow clustering neighbour-

hoods and selecting one from each cluster. This may lead to more efficient tuning

possibilities.

In [9], such a study was performed. A set of 42 neighbourhoods was reduced to

9 and it was shown that the result of applying iracesignificantly outperfomed the

42-neighbourhood version.

3 Optimisation for Data Science

3.1 OFD Example: Community Detection in Graphs

Large graphs have many applications in network analysis. Examples are records

of cell phone calls, e-mail connections, influencer graphs in social media, . . . . The

scales of these networks vary from rather small (up to 1000 nodes) over medium (say

50000 nodes) up to very large graphs (> 106nodes). For a review see [13, 14].

One subject of interest in such graphs is the detection of communities. Informally,

communities are collections of nodes that are more connected to each other than

to nodes outside the community. One way to model communities is by introducing

objective functions reflecting the quality of a partition of the set of nodes. The prob-

lem then reduces to an optimisation problem finding the best partition given an objec-

tive function. An interesting extension is when the network is evolving as reflected

by an evolution in the community structure. Although evolution could in principle

discontinuously impact the community structure, this is mostly not the case in real-

ity nor what one wants in the mathematical models. Systems relying on community

structure (think of an advisory system for public relations support) would probably



Data Science Meets Optimization 17

not be helped by erratically changing the viewed community structure. This adds a

second criterion to the optimisation problem, namely that of not changing abruptly.

[7, 8]. We will refer to this problem as the Dynamic Community Problem (DCP).

DCP has been studied as a weighted optimisation problem with two goal functions

called snapshot cost (SC) reflecting the absolute quality of the present structure and

the temporal cost (TC) reflecting the amount of change [17]:

cost = 𝛼.SC + (1 − 𝛼).TC

The solvers based on this cost function typically depend on a rather large number of

parameters and decisions. From an application point of view, an appropriate measure

for the community quality SC is selected from a large number of possibilities from

clustering theory. The evolution in the structure must be properly modeled in TC
and the parameter 𝛼 needs to be determined. These add to the parameters of the

optimisation algorithm.

DCP is in essence situated in data science, the data being the interactions between

the nodes of which the graph is a representation. When an optimisation approach is

selected, parameter tuning, algorithm configuration and construction as discussed in

Sect. 2.1 are needed.

As an example, we now discuss [12] in some detail. In this paper, DCP is recast

as a multi-objective optimisation problem effectively getting rid of the weight 𝛼.

Four versions of the algorithm are investigated, each using a different definition for

SC. TC is computed through an expression from information theory measuring the

similarity between community partitions. The algorithm is based on NGSA-II [10],

and is taken from a Matlab library. The remaining parameters in the algorithm are

linked to the genetic algorithm and the representation. Although the authors mention

the possibility to tune these automatically, a trial and error approach is selected.

The experiments are performed on a number of synthetic data sets and on two

data sets taken from real world cases. These data sets allow comparing against other

algorithms, and it is shown that the algorithm outperforms existing ones. The sizes of

the resulting graph range between 102 and 103 and must thus be considered small.

The study is very similar to classical optimisation studies. An interesting analysis

concerns complexity. The authors show that the complexity of the algorithm can be

expressed as a function of the number of generations, the size of the population and

the dimensions of the graph as

O(g.p.log(p) × (n.log(n) + m)

where g is the number of generations, p is the size of the population, n is the number

of nodes and m is the number of edges in the graph. Of course, the number of gen-

erations as well as the population size needed for acceptable results will vary with

the size of the graph. The authors study the scalability of the method experimen-

tally for numbers of nodes ranging from 128 to 4096 and numbers of edges ranging

from 2938 to 65256. This allows quantifying these relationships to some extent. The

authors conclude that a tradeoff between computing time and error gap is necessary.
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So although the n.log(n) dependency is very promising and should allow handling

much larger graphs, the hidden dependency in the required number of iterations and

population size together with the rather large constant required by the genetic algo-

rithm are limiting factors.

The example discussed illustrates how a standard optimisation approach could

be used to solve a problem from data science. The low complexity of metaheuristic

approaches holds a promise for obtaining good solutions for large graphs.

4 Conclusions and Future Work

Data science supporting optimisation was illustrated through an example of algo-

rithm construction 2.1 and an attempt to support algorithm design 2.2.

The construction case is the most general case of algorithm configuration and

tuning which are generalisations of algorithm selection. The example relied on a

framework for the design of a multi objective algorithm and specialised in selecting

its components automatically. The link with data science is inherent in real world

problems. Even when using exact algorithms, the parameter setting strongly influ-

ences computation time. When heuristics are used, it is even more important as the

heuristics are often known to work well on a limited set of problem instances only.

A representative sample of the expected set is the starting point for automated algo-

rithm construction.

Another link was highlighted when discussing automated support for algorithm

design. Again a framework was selected, represented by a local search approach. The

main design issue is the selection of appropriate neighbourhoods relying on expe-

rience and intuition of designers. The support comes in when trial versions of the

algorithm are run using the neighbourhoods. By observing this process, character-

istic of the neighbourhoods emerged, suggesting good and worse sets. The example

was taken one step further when the neighbourhoods were clustered automatically

and the algorithm tuner was shown to profit from this information by producing bet-

ter parameter settings.

Optimisation for data science was discussed in Sect. 3.1. The example given

was a community detection algorithm for large graphs. By modelling the problem

as a multi-objective optimisation problem, an off-the-shelf genetic algorithm for

multi-objective optimisation could be used. The implementation in Matlab outper-

formed existing methods. An interesting complexity analysis revealed good asymp-

totic behaviour if one does not take the size of the population into account.

These examples suggest a number of possibilities for future research. Template

based algorithm construction is an example of how human knowledge and data

can be combined in a methodology that semi-automatically produces optimisation

algorithms. The human knowledge is expressed through the template and the cre-

ation of components. The data is taken into account by the automatic configuration

tool iracethat essentially runs the algorithm against a representative set of problem

instances. Similar ideas are used in hyperheuristics [5] where human knowledge and
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intuition are introduced through so called low level heuristics which are set to use

by a sophisticated optimisation algorithm, often a genetic algorithm. A challenge

for these lines of research is formalisation of the specification. As the example illus-

trates, and as can be seen in hyperheuristics literature, specification of components

or low level heuristics still requires high level expertise. A domain expert cannot

be expected to master the kind of sophistication needed to write efficient code for

those algorithm components. A formal definition or a declarative language for spec-

ifying this information could be an important step forward to take this methodology

to practice [11].

The design support for analysing the neighbourhoods in the local search

algorithm could speed up the task of specialist algorithm designers. The sound

mathematical basis used in the realisation of the characteristics and in the clustering

exercise have presently been implemented in R [9]. Concerning analysing the behav-

iour of neighbourhoods, an interesting follow up research could be about interaction

between neighbourhoods as exemplified by [22].

The optimisation for data science example concentrates on a genetic algorithm.

The complexity of the algorithm depends on the number of generations and the size

of the population. The accuracy of the result depends on the same parameters so that

a best compromise needs to be sought. It may be interesting to investigate a local

search approach which often leads to more efficient coding schemes, requires less

involved data structures and takes more advantage of delta evaluation of the goal

function. The question of the asymptotic behaviour needs an answer when looking

at larger graphs.

Finally, all these examples were inspired by problems from practice. In the his-

tory of optimisation, many insights have emerged from theoretical considerations.

Less theoretical effort has been spent on algorithm selection, configuration or con-

struction. We are thinking of a hypothetical setting where the instance distribution

is described analytically. Questions could be on a specific algorithm template, e.g.

for a traveling salesperson problem when the cities live on a given structure or on

the asymptotic behaviour of a community detection algorithm in terms of execution

time as well as solution quality.

These and other questions could play a similar role as the complexity studies on

classic optimisation problems and could help us understand the issues of DFO and

OFD better.
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