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Abstract. It is well known that the longest common factor (LCF) of
two strings over an integer alphabet can be computed in time linear
in the total length of the two strings. Our aim here is to present an
algorithm that preprocesses two strings S and 7T in order to answer
the following type of queries: Given a position ¢ on S and a letter «,
return an LCF of T and S’, where S’ is the string resulting from S after
substituting S[¢] with a. In what follows, we present an algorithm that,
given two strings of length at most n, constructs in O(nlog® n) expected
time a data structure of O(n log? n) space that answers such queries in
O(log® n) time per query. After some trivial modifications, our approach
can also support the case of single letter insertions or deletions in S.

Keywords: Longest common factor - Dynamic data structure - Suffix
tree + Heavy-path decomposition - Orthogonal range searching

1 Introduction

In this work we consider strings over an integer alphabet. The longest common
factor (LCF), also known as longest common substring, of two strings S and T,
each of length at most n, can be computed in O(n) time [5,11,12,15]. The LCF
with k-mismatches problem has received much attention recently, in particular
due to its applications in computational molecular biology [13,17]. We refer the
interested reader to [3,8,10,14,16].
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Our motivation comes mainly from [14]; the author mentions that the solu-
tion to the LCF problem “is not robust and can vary significantly when the
input strings are changed even by one letter”. Somewhat surprisingly, however,
dynamic instances of the LCF problem have not yet been studied thoroughly to
the best of our knowledge. In this paper, we aim at initiating a line of research
on this general version of the problem, by presenting a solution for the restricted
case, where any single edit operation is allowed. In what follows, we focus on the
case of a letter substitution; insertions and deletions can be handled analogously.

Given two strings S and T" over an integer alphabet, each of length at most
n, one may ask the following question: How fast can we find an LCF of S and
T after a single letter substitution? For instance, after substituting S[i] with
letter . The goal is to preprocess S and T so that we do not need 2(n) time to
compute an LCF for each such query. A naive solution is to precompute an LCF
for all ©(on) possible substitutions in ©(on?) time and then be able to answer
any such query in O(1) time per query, where o is the size of the alphabet.

Hence, for ¢ such queries, computations can be done trivially in either O(gn)
time (directly) or in O(on? + q) total time—this includes the O(on?) time for
preprocessing. We thus aim at an algorithm that will require ¢, = o(on?) pre-
processing time and ¢, = o(n) querying time. We will then be able to answer ¢
such queries in O(t, + gt4) time, hence being more efficient than the aforemen-
tioned solutions, depending on the number g of queries to be answered.

Our Contribution. We present a data structure for solving the problem of
LCF after a single letter substitution for two strings, each of length at most n,
over an integer alphabet. Specifically, our construction requires t, = O(nlog” n)
expected preprocessing time and O(n log3 n) space. After this preprocessing, the
answer to any subsequent query for ¢ and o is computed in t,; = O(log3 n) time.

2 Preliminaries

We begin with basic definitions and notation generally following [6]. Let S =
S[1]S12] ... S[n] be a string of length |S| = n over a finite ordered alphabet. We
consider integer alphabets, i.e. X of size |X| = 0 = n®1) . By ¢ we denote an
empty string. For two positions ¢ and j on S, we denote by S[i..j] = S[i] ... S[j]
the factor (sometimes called substring) of S that starts at position ¢ and ends at
position j (it equals € if 7 < 7). We recall that a prefiz of S is a factor that starts
at position 1 (S[1..j]) and a suffiz is a factor that ends at position n (S[i..n]).
We denote the reverse string of S by S% ie. S = S[n|S[n —1]...S[1].

Let Y be a string of length m with 0 < m < n. We say that there exists an
occurrence of Y in S, or, more simply, that Y occurs in S, when Y is a factor of
S. Every occurrence of Y can be characterised by a starting position in 5. We
thus say that Y occurs at the starting position i in S when Y = S[i..i+m—1].

Given two strings S and T, a string Y that occurs in both is a longest
common factor (LCF) of S and T if there is no longer factor of T' that is also
a factor of S; note that S and T can have multiple LCFs. We introduce a
natural representation of an LCF of S and T as a triple (m,p,q) such that
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Slp..p+m—1]=T[g..q+m—1] is an LCF of S and T. The problem in scope
can be formally defined as follows; see also Table 1 for an example.

LCF AFTER ONE SUBSTITUTION

Input: Two strings S and T

Query: LCF(i,«) that represents an LCF of S" and T, where S’[i] = o and
S'g] = Slj], forall 1 < 5 < |S], j #i.

Table 1. Answers to all LCF(i, @) queries for S = baccb and T' = baacca over alphabet
Y = {a,b, c}. In each case the corresponding LCF string is shown.

ali
1 2 3 4 )
(4,1,2) aacc| (3,2,3) acc| (4,1,1) baac | (2,3,5) ca | (4,2,3) acca
(3,2,3) acc | (2,3/4) cc |(2,1,1) ba |(2,2,3) ac |(3,2,3) acc
c |(3,2,3) acc |(2,3/4) cc | (3,2,3) acc | (3,2,3) acc| (3,2,3) acc

Suffix Tree and Suffix Array. The suffiz tree 7(S) of a non-empty string S
of length n is a compact trie representing all suffixes of S. The branching nodes
of the trie as well as the terminal nodes, that correspond to suffixes of .S, become
ezxplicit nodes of the suffix tree, while the other nodes are implicit. Each edge
of the suffix tree can be viewed as an upward maximal path of implicit nodes
starting with an explicit node. Moreover, each node belongs to a unique path of
that kind. Thus, each node of the trie can be represented in the suffix tree by
the edge it belongs to and an index within the corresponding path. We let L(v)
denote the path-label of a node v, i.e., the concatenation of the edge labels along
the path from the root to v. We say that v is path-labelled £(v). Additionally,
D(v) = |L(v)| is used to denote the string-depth of node v. A terminal node
v such that L(v) = S[i..n| for some 1 <4 < n is also labelled with index 3.
It should be clear that each factor of S is uniquely represented by either an
explicit or an implicit node of 7(S), called its locus. In standard suffix tree
implementations, we assume that each node of the suffix tree is able to access its
parent. Once 7 () is constructed, it can be traversed in a depth-first manner to
compute the string-depth D(v) for each node v. It is known that the suffix tree
of a string of length n, over an integer ordered alphabet, can be computed in
time and space O(n) [7]. In the case of integer alphabets, in order to access the
child of an explicit node by the first letter of its edge label in O(1) time, perfect
hashing [9] can be used.

The suffiz array of a non-empty string S of length n, denoted by SA(S), is an
integer array of size n+ 1 storing the starting positions of all (lexicographically)
sorted suffixes of S, i.e. for all 1 < r < n+ 1 we have S[SA(S)[r — 1]..n] <
S[SA(S)[r]..n]. Note that we explicitly add the empty suffix to the array. The
suffix array SA(S) corresponds to a pre-order traversal of all terminal nodes
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of the suffix tree 7(S). The inverse iSA(S) of the array SA(S) is defined by
iISA(S)[SA(S)[r]] =r, forall 1 <r <n-+1.

Algorithmic Tools for Trees. Let 7 be a rooted tree with integer weights
on nodes. We require that the weight of the root is zero and the weight of any
other node is strictly greater than the weight of its parent. We say that a node
v is a weighted ancestor of a node u at depth ¢ if v is the highest ancestor of «
with weight of at least £.

Lemma 1 ([2]). After O(n)-time preprocessing, weighted ancestor queries for
nodes of a tree T of size n can be answered in O(loglogn) time per query.

The following corollary applies Lemma 1 to the suffix tree.

Corollary 2. The locus of any factor Sli..j] in T(S) can be computed in
O(loglogn) time after O(n)-time preprocessing.

Let us also recall the notion of heavy-path decomposition. Consider a rooted
tree 7. For each non-leaf node u of 7, the heavy edge (u,v) is an edge for which
the subtree rooted at v has the maximal number of leaves (in case of several such
subtrees, we fix one of them). A heavy path is a maximal path of heavy edges.

Let m be a heavy path and u be its topmost node. Assume that u contains
m leaves in its subtree. We then denote by L(m) the level of the path 7, which
is equal to logm!. The crucial property of heavy-path decompositions can be
stated as follows.

Observation 1. For any leaf v of T, the levels of all heavy paths visited on the
path from v to the root of T are distinct.

Range Maxima in 2-d. Assume we are given a collection P of n points in
a 2-d grid with integer weights of magnitude O(n). In a 2-d range maximum
query RMQ(P, [a, b] x [¢,d]), given a rectangle [a, b] X [c,d], we are to report the
maximum weight of a point from P in the rectangle. We assume that the point
that attains this maximum is also computed.

Lemma 3 ([1]). Range maximum queries over a set of n weighted points in 2-d
can be answered in O(logn) time with a data structure of size O(nlogn) that
can be constructed in O(nlog?n) expected time.

Among orthogonal range searching problems one can also consider the so-
called range emptiness queries, in which we are only to check if any of the n
points is located inside a query rectangle. Such queries are obviously a special
case of 2-d range maximum queries.

! Throughout the paper we assume that logm denotes the binary logarithm of m
rounded down to the nearest integer.



18 A. Amir et al.

3 Two Auxiliary Problems

We assume throughout the paper that both strings S and T are over an integer
alphabet X' and that each of them has length at most n. We can decompose the
problem in scope into the following two subproblems; we then only need to take
the maximum. See also Tables 2 and 3 for an example.

LCF AVOIDING i

Input: Two strings S and T

Output: An array LCF; of size |S| such that LCF[] represents a longest
factor Y common to S and T such that Y occurs in S at some position p,
where p < i —|Y| or p > 1.

Table 2. The LCF[i] array for S = baccb and T' = baacca. The auxiliary arrays that
are used to compute it in Sect. 4 are also presented.

7 1 2 3 4 5
LCF1[7] | (3,2,3) acc| (2,3,4) cc | ( (2,2,3) ac |(3,2,3) acc
LCRi[] | (1,1,1) b | (2,1,1) ba | (2,2,3) ac | (3,2,3) acc

LCF [i] (3,2,3) acc | ( 151) b | (151D

LCF INCLUDING S[i]:=«

Input: Two strings S and T.

Query: LCF3(4,«) that represents an LCF Y of S’ and T', where S'[i] = «
and S’[j] = S[j], for all 1 < j < |S|, j # ¢, such that Y occurs in S’ at some
position p € {i — Y|+ 1,...,i}.

Table 3. Answers to all LCF2(%, @) queries for S = baccb and T' = baacca.

ali
1 2 3 4 5
(4,1,2) aacc| (3,2,3) acc| (4,1,1) baac | (2,3,5) ca | (4,2,3) acca
(21,)ba | (121)b | (13,1)b | (141)b (1,51)b
c|(2,1,5) ca |(2,24) cc |(3,2,3) acc |(3,2,3) acc|(2,4,4) cc

Observation 2. Suppose that we replace S[i] by a. If this gives us a longer
common factor than an LCF of S and T, this has to contain position i of S.

We first build 7(X), where X = T#S and # ¢ X is a letter that is lexi-
cographically smaller than all the letters of Y. We then store for every node of
T (X) whether it has descendants from S, T, or both and a starting position
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in each case; we can do this by performing a depth-first traversal. We further
preprocess 7 (X) in O(n) time so that we can answer lowest common ances-
tor (LCA) queries for any pair of explicit nodes in O(1) time per query [4].
We construct and preprocess in the same manner the suffix tree 7 (X %), where
XE = §RAUTE There will be more preprocessing that will be described later.

4 LCF Avoiding 1

In this section we present an algorithm for determining an LCF of S and T
avoiding position ¢ in S. It is clear that this is the longest between an LCF
of S[1..4 — 1] and T and an LCF of S[i + 1..|S|] and T. Let us denote the
representation of the former by ﬁl[z — 1] and the representation of the latter
by Rl?l[z + 1]; see also Table2 for an example. We will show how to efficiently
compute I_C_F)l[z} foralli =15],...,2.

We denote the length of the longest common prefiz of two strings W and
Y by lecp(W,Y). Further we will also use the notation lcs(W,Y) to denote the
length of the longest common suffix of W and Y. Let us make the following
observation.

Observation 3. If for a pair (p,q) with i <p <|S| and 1 < q < |T| we have

m = lep(Sp-.. |51, Tla - IT1)) = maxc {iep(STj -.|S1), TTk. 7)),
1<k<|T|

then S[p..p+m—1]=T[q..q+m —1] is an LCF of S[i..|S|] and T.

We first traverse 7(X) in a depth-first manner in order to store, for every
explicit node u, the maximal length ¢(u) of the longest common prefix of L£(u)
and any suffix of 7" and a position t(u) of T' where the maximum is attained. If
a node u has descendants from 7', then clearly ¢{(u) = D(u) and t(u) is already
stored. Whenever we reach a node u that does not have descendants from T, we
set the values ¢(u) and ¢(u) equal to these of u’s explicit parent.

To compute the array TFl, we go through the terminal nodes of 7 (X) that
represent suffixes of S in increasing order with regards to the length of the suffix
they represent. We initialize variables lcf = p = ¢ = 0. When processing node u,
with £(u) = S[i..|S|], we first check whether ¢(u) > lcf; if so, we set lcf = £(u),
p =1 and ¢ = t(u). Then, based on Observation 3, we set TFl[z] = (lef, p, q).

The computation of ﬁl [i] fori=1,...,]S|—1 can be done in a symmetric
way by employing 7 (X ). Finally, we compare (Iﬁzl [i — 1] with FFl [i + 1] and
store the longer one as LCF;[i]. We thus arrive at the following result.

Lemma 4. Problem LCF AVOIDING i can be solved in O(n) time and space.
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5 LCF Including S[i]:= «

We first compute two factors, P and @, of T

— P is the longest factor of T that is equal to a suffix of S[1..7 — 1]y
— @ is the longest factor of T that is equal to a prefix of S[i +1..|S]].

In addition to P and @, we will also compute the locus p of P in 7(X*) and
the locus ¢ of @ in T (X). Note that ¢ is an explicit node of 7 (X), however, p
need not be an explicit node of 7 (X%). We first compute the locus p’ of P in
7(X) (which may be implicit as well).

The locus p’ is computed by performing binary search on S[1..i—1]. We first
identify the locus of S[|i/2]..i—1] in 7(X). If it is explicit, we check whether it
has an outgoing edge with label a and if the explicit node we obtain by following
this edge has descendants in T'. If it is implicit, we check if the next letter on
the path-label of the edge is o and whether the explicit node to which this edge
points has descendants in T'. If the corresponding check succeeds, we look at the
locus of S[|i/4] ..i—1], otherwise we look at the locus of S[|3i/4] ..i—1]; and so
on. The whole binary search works in O(lognloglogn) time using Corollary 2.

Recall that for the closest explicit descendant of p’ we store the starting
position of some occurrence of the corresponding factor in X. We can then use
this information to find the locus p of P in T(X%) in O(loglogn) time using
Corollary 2.

Finally, the locus ¢ of @ in 7(X) can be analogously computed by binary
search on S[i 4+ 1..]S[] in O(lognloglogn) time.

Let us note that LCF2(i, o) corresponds to the longest factor of T' that is
composed by concatenating a suffix of P with a prefix of Q. We say that a
node u of 7 (XF) with path-label U and a node v of 7(X) with path-label V
are T-attached if and only if URV is a factor of T. We thus aim at finding an
ancestor u of p in 7 (X %) and an ancestor v of ¢ in 7(X) such that u and v are
T-attached and the sum D(u) + D(v) of string-depths is maximal.

5.1 O(|P|)-Time Query

In this section we show how to find the desired pair of T-attached nodes (u,v)
in O(D(p)) = O(|P]) time?. We improve this solution in the next subsection.
Recall that SA(T) and SA(T) are the suffix arrays of 7' and T, respectively.
Note that SA(T) (resp. SA(T*)) corresponds to a pre-order traversal of all the
terminal nodes of 7 (X) (7 (X)) that are loci of suffixes of T concatenated with
#5S (loci of suffixes of T). For each explicit node v of 7(X) we precompute a
range ranger(v) of SA(T) that corresponds to suffixes of T' that start with £(v).
Similarly, for each explicit node u of 7 (X ) we precompute a range rangesr (u)
of SA(T®) that corresponds to suffixes of T that start with £(u). The precom-
putations can be done via bottom-up traversals of 7(X) and 7(X%) in O(n)
time. For 7(X), the range of every explicit node is computed by summing the

O(1)

2 Throughout the paper O notation suppresses log n factors.
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ranges of its explicit children. Additionally, for a terminal node being a locus of a
suffix T'[j .. |T|]#S we extend its range by the element iSA(T")[j]. The computa-
tions for 7 (X ) are analogous. The ranges of implicit nodes of 7(X) and 7 (X %)
are defined as the corresponding ranges of their closest explicit descendants.

We can use the ranges to state an equivalent condition on when two nodes
are T-attached:

Observation 4. Node u of T(X*) and node v of T(X) are T-attached if
and only if there exist integers i € rangepr(u) and j € rangep(v) such that
SA(TH)[i] = |T| + 2 — SA(T)1j].

It turns out that the problem of checking if two nodes are T-attached can

be reduced to a 2-d range emptiness query. Indeed, let us consider a (|T] + 1) x

(IT| + 1) grid. We create a collection P of |T'| 4+ 1 points from the grid; for each
position j in T, j € {1,...,|T| + 1}, we select the point:
(ISA(T™)T| +2 — 5], iISA(T)[j])-

Intuitively, the dimensions of the grid correspond to SA(T*) and SA(T') and the
points that are selected correspond to pairs of suffixes: T[|T| +2 — j..|T|] =
(T[1..5—1))® and T[j..|T|]. Observation 5 is a reformulation of Observation 4
in terms of range emptiness queries in P.

Observation 5. Node u of T(X*) and node v of T(X) are T-attached if and
only if the rectangle rangepr(u) X ranger(v) contains a point from P.

Ezample 5. Consider the string T' = baacca from Tables 1, 2 and 3. Then:
SA(T®) = 7 (), 4 (aab), 5 (ab), 1 (accaab), 6 (b), 3 (caab), 2 (ccaab)
SA(T) = 7 (¢), 6 (a), 2 (aacca), 3 (acca), 1 (baacca), 5 (ca), 4 (cca)

The points from the set P on the 7 x 7 grid are shown on the figure below.
7

[

ISA(T)[]

= N W e Ot O

1 2 3 4 5 6 7
ISACTR)[8 — j]

Consider node u of T (X ) such that £(u) = a and node v of 7 (X) such that
L(v) = c. Then rangepr(u) = [2,4] and ranger(v) = [6,7]. The corresponding
rectangle rangepr(u) X ranger(v) contains a single point (2,7) from P which
corresponds to the second suffix in SA(T®), which is Y = aab, and the seventh
suffix in SA(T), which is Z = cca. Note that, indeed, YV starts with an a, Z
starts with a ¢ and Y®Z = T. Hence, v and v are T-attached.
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From the previous subsection we know that we need to find an ancestor u of
p in 7(X%) and an ancestor v of ¢ in 7(X) such that u and v are T-attached
and D(u) + D(v) is maximal. To find the desired nodes, we examine each node
u on the path from p to the root of 7 (X %) and apply binary search to find the
deepest node v on the path from ¢ to the root of 7(X) such that u and v are
T-attached. There are | P| binary searches to perform, each of which has O(logn)
steps. In each such step we first locate the required node in O(loglogn) time by
Corollary 2 and then check if the two nodes are T-attached via Observation 5
using a range emptiness query which takes O(logn) time by Lemma 3. In total,
we arrive at an O(|P|log® n)-time computation of LCFy (7, ).

5.2 O(1)-Time Query

Main Idea. In order to drop the |P| factor from the complexity, we make use
of the heavy-path decompositions of 7(X%) and 7 (X). For each heavy path,
we store its level. Moreover, each explicit node w of 7 (X%) and 7 (X) stores
the topmost node top(w) of its heavy path. For simplicity we first assume that
p is explicit in 7 (X ) (recall that ¢ is explicit in 7 (X)); we then discuss how
to tackle the case of p being implicit. By Observation 4, the sought node v is
always explicit and u may be implicit only if p is implicit and « is on the same
edge of 7(X¥%) as p.

The path from p to the root of T(XF) is composed of prefir fragments of at
most log n+ 1 heavy paths interleaved by single non-heavy (compact) edges. Here a
prefix fragment of a path 7 is a path connecting the topmost node of 7 with any of its
explicit nodes. We denote this decomposition by H (p); note that it can be computed
in O(logn) time by using the top-pointers of nodes, starting from p. Similarly, we
can decompose the path from g to the root of 7 (X)) into a collection H(q) of at most
log n+ 1 prefix fragments of heavy paths in O (log n) time. For each of the O(log® n)
pairs of prefix fragments of heavy paths 7} € H(p) and 7} € H(q) we will check if
there are any T-attached nodes u € 7} and v € 7} and, if so, find the maximum
value of D(u) + D(v) among such pairs.

Precomputations. We consider the same 2-d grid as described in the previous
subsection with (’)(log2 n) collections of points being copies of the collection P;
they are denoted by P;Ig, 77((111), PZEHI), PUV) for a,b=0,...,logn. The points

in the respective collections have the following weights:

- (4, k) € 73(57[3: D(u)+D(v) where u is the lowest node on a heavy path of level

a in T(XT) such that j € rangepr(u) and v is the lowest node on a heavy
path of level b in 7 (X) such that k € rangep(v);

- (j,k) € i D(u) where u is the lowest node on a heavy path of level a in
T(X®) such that j € rangepr (u);

- (4,k) € PISIH): D(v) where v is the lowest node on a heavy path of level b in
T (X) such that k € rangep(v);

— each point in PU") has a unit weight.



Longest Common Factor After One Edit Operation 23

By Observation 1, the heavy paths in each case, if they exist, are determined in
a unique way by j and k. If any of the nodes u or v does not exist, we set its
depth D to —oo. Note that each of the nodes u and v, if it exists, is explicit in
T(XF) and T(X), respectively.

The total size of the collections of points is O(nlog? n). We further have:
Lemma 6. Weights of the points from the collections 77,52, ’P(SH), P,S”I), pUV)

fora,b=0,...,logn can be computed in O(n log? n) time.

Proof. First, foreachb=0,...,lognand k =1,...,|T|4+1 we compute D[b][k] =
D(v) where v is the lowest node on a heavy path of level b in 7(X) such that
k € rangep(v). For each explicit node w of 7(X) we consider its heavy edge (if
exists) that leads to its explicit child w’ and for each k € rangep(w)\ rangep(w’),
we set D[b][k] = D(w) where b is the level of the heavy path that contains the
node w. This computation works in O(nlogn) time.

In the same way we can compute a symmetric array D’[a][j] = D(u) where u
is the lowest node on a heavy path of level a in 7 (X ) such that j € rangerr (u).
The two arrays allow us to compute the weights of all points. For example, the
weight of the point (j,k) € 73( » is D'[a][j] + D[b][k]. O

Queries. Let us consider a heavy path 71 of level a in 7 (X ) and a heavy path
mo of level b in T(X). Let 7} be a prefix fragment of m; that leads from node
x1 down to node y; and 7} be a prefix fragment of w5 that leads from node 2
down to node ys. Let Ay, By, C; be intervals such that

rangerr(y1) = B1  and  rangepr(z1) \ By = 41 UCh.
Similarly, we define the intervals Ay, B, Co so that:
ranger(y2) = Bs  and  rangep(xz2) \ By = As U Cy;

see Fig.1 for an illustration. Then the maximum of D(u) + D(v) over all
T-attached pairs of nodes u € 7} and v € 7} is the maximum of the follow-
ing nine values:

ab7A1 X AZ)
MQ 7’2[2,141 x Cy)
RMQ(PY). 0y x Ay)

MQ(
(
(P
RMQ(PY) ¢y x Cy)
(
(

(1) R

(2) R

(3) b

(4) b

(5) RMQ(PUD, A, x By) + D(ys)
(6) RMQ H),C1 x B) + D(y2)
(7) D(y1) + RMQ(P | By x Ay)
E % (1) + RMQ(P{™D By x Cy)

D
D(y1) + D(y2) if RMQ(PUY), By x By) # —oc.
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T(XH)

Fig. 1. lllustration of the notations used to handle a pair of prefix fragments 7] € H(p)
and w5 € H(q). Assume that the sought pair of T-attached nodes u € 7] and v € 7
are located as shown. Here j € {1,...,|T| + 1} is an index for which w is the lowest
node on 7 such that j € rangepr(u); same holds for k and v € m2. Then D(u) + D(v)
is computed by value (2): RMQ(ng, A1 x Ca).

Values (1)—(4) correspond to the situation when the sought nodes u and v are
located strictly above y; and ys, respectively. Values (5)—(6) assume the case that
v = yo; values (7)—(8) assume the case that u = yi; finally, value (9) assumes
that v = y; and v = ys.

The maximum of the values of the form (1)—(9) is computed for all pairs of
prefix fragments of heavy paths 7] € H(p) and 75 € H(q). The global maximum
is the length of an LCF with S[i]:=«. Its example occurrence can be retrieved
from the coordinates (j, k) of the point for which the range maximum is obtained.
Indeed, let » = SA(T)[k]. Then an LCF occurs in S’ and T at positions i — d
and r — 1 — d, respectively, where d = Ics(S[1..7 — 1], T[1..r — 2]). Note that d
can be computed via an LCA query in 7 (X%) in O(1) time.

The Case of Implicit p. If p is not explicit, we make the above computations
for the nearest explicit ancestor of p. We need to consider separately the case
that v is an implicit node located between p and this ancestor. In this case
rangerr (u) = rangerr (p); we denote this interval by F. Hence, we take u = p.
We consider every prefix fragment 75 € H(q) of a heavy path with level b,
endpoints s, y2, and implied intervals As, By, Cy and pick the maximum of:

~ D(p) + RMQ(PD | F x Ay)

- D(p) + RMQ(P F x Cy)
— D(p) + D(y2) if RMQ(PUYY) | F x By) # —o.

Lemma 7. After O(n log* n) expected time and O(n log® n) space preprocessing,

LCF INCLUDING S[i]:=a queries can be answered in O(log®n) time.
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Proof. The suffix trees 7 (X %) and 7(X) with heavy-path decompositions and
ranges rangepr and rangep, respectively, take O(n) space and O(n) time to
construct. The (9(1og2 n) weighted collections of points can be constructed in
O(n log? n) time by Lemma 6. Then the data structures for range maximum
queries in 2-d (Lemma 3) in total take O(n log® n) space and require O(n log* n)
expected time to construct.

To compute LCF2(i, ), we perform the following steps. First, we compute
the loci p and ¢ in O(lognloglogn) time. Then, in O(logn) time we compute
the collections H(p) and H(q) of prefix fragments of heavy paths. Finally, for
each pair 7} € H(p) and 75 € H(q), we answer range maximum queries of the
form (1)-(9), each in O(logn) time. This gives O(log® n) total query time. O

Lemmas 4 and 7 lead to the main result of this paper.

Theorem 8. LCF ArTER ONE SUBSTITUTION can be computed in O(log® n)
time, after O(nlog4 n) expected time and O(n log® n) space preprocessing.

Corollary 9. Given two strings S and T over a constant-sized alphabet, the
answers to all ©(n) possible LCF AFTER ONE SUBSTITUTION queries can be
computed in O(nlog*n) expected time and O(n log® n) space.

6 Conclusions

We have presented an O(n)-space data structure that can be constructed in O(n)
expected time and supports @(1)—time computation of an LCF of two strings
S and T, each of length at most n, over an integer alphabet after one letter
substitution in S. Notably, our algorithm can be easily modified to work if we
also allow for single letter insertions or deletions in S.

An open question is to extend this result to a fully dynamic case; that is, to
propose a data structure that allows for subsequent edit operations in one or in
both strings supporting fast computation of an LCF after each such operation.
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