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Abstract. Automatic labeling of anatomical structures in brain images plays an
important role in neuroimaging analysis. Among all methods, multi-atlas based
segmentation methods are widely used, due to their robustness in propagating
prior label information. However, non-linear registration is always needed,
which is time-consuming. Alternatively, the patch-based methods have been
proposed to relax the requirement of image registration, but the labeling is often
determined independently by the target image information, without getting
direct assistance from the atlases. To address these limitations, in this paper, we
propose a multi-atlas guided 3D fully convolutional networks (FCN) for brain
image labeling. Specifically, multi-atlas based guidance is incorporated during
the network learning. Based on this, the discriminative of the FCN is boosted,
which eventually contribute to accurate prediction. Experiments show that the
use of multi-atlas guidance improves the brain labeling performance.

1 Introduction

Accurate labeling of neuro-anatomical regions is highly demanded for quantitative
analysis of MR brain images. Many attempts have been made in automatic labeling
methods since it is infeasible to manually label a large set of 3D MR images. However,
it remains a challenging problem due to the complicated brain structures and also the
ambiguous boundaries between some regions of interest (ROIs).

The multi-atlas based methods have emerged as the standard way in the brain
image labeling for its effectiveness and robustness. By using the atlases, each with a
single MRI scan and its manual label maps, the multi-atlas based methods first register
multiple atlases to the target image and then fuse the respective deformed atlas label
maps to obtain the labeling results. Many relevant works have been made to improve
the performances of these registration and label fusion steps in the multi-atlas based
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methods, as summarized in [1-3]. However, one major limitation of these multi-atlas
based method is that it always needs non-rigid registration for aligning atlases to the
subject, which is time-consuming [4]. Besides, it is also a challenging work to obtain
accurate registration, which will eventually affect the final labeling performance.

On the other hand, the patch-based methods have gained increased attentions
recently, which are mainly developed to relax the high demands of registration accu-
racy in the multi-atlas based methods. Specifically, in the patch-based methods, each
patch in the target subject image looks for its similar patches in the atlas images
according to patch similarity. Then, the label of those selected atlas patches are fused
together to label the center voxel of subject patch [5, 6]. The weights of selected atlas
patches in the label fusion process are estimated based on their intensity similarity with
the target subject patch. Also, Wu et al. [7] further proposed using a multi-scale feature
representation and label-specific patch partition method to extend the label fusion
strategy. In this method, each patch is represented by the multi-scale features that
encode both local and semi-local image information, and then the image patch is
further partitioned into a set of label specific partial image patches. Finally, the hier-
archical patch-based label fusion is followed to finish the labeling. On the other hand,
the learning-based methods have also been incorporated into the brain image labeling
process, generally in a patch-based manner. For example, Tu and Bai [8] extracted the
3D Haar features from the atlases and then employed the probabilistic boosting tree
(PBT) to learn the classifier for brain labeling. Hao et al. [9] introduced a hippocampus
segmentation method using L1-regularized support vector machine (SVM), with a
k-nearest neighbor (kNN) based training sample strategy. Moreover, the random forest
has also been widely applied, since it can efficiently handle a large number of training
atlases, and can largely avoid the overfitting problem in the conventional decision tree
methods by incorporating the uniform bagging strategy [10, 11]. Recently, fully con-
volutional networks (FCN) [12] have shown excellent performance in natural image
segmentation and recognition. Some researchers have also employed the FCN model
for medical image segmentation. For example, Nie et al. [13] adopted the FCN model
for brain tissue segmentation, which has shown a promising result.

However, the main limitation of the current methods is that they determine the
target labels merely on the local appearance of target image patch, without considering
the direct label information from those similar atlas patches. Besides, although
patch-based methods can relax the demand of accurate registration, most methods
[6-10] still apply non-rigid registration to preprocessing the data, for the benefit of
labeling improvements.

In this paper, we intend to solve the aforementioned issues by proposing a
multi-atlas guided 3D FCN model for improving the performance of brain labeling.
The major contribution here is two-fold. First, we develop a novel multi-atlas guidance
strategy, which can directly utilize prior information in the atlases to guide and improve
the labeling capability. Second, different from the conventional multi-atlas based
methods, we need no non-rigid registration for aligning atlases to the target image, by
still guaranteeing the reasonable labeling performance. This will greatly reduce the time
cost for the overall labeling process, thus making it more applicable for future clinical
applications.



14 L. Fang et al.

2 Methods

In this section, we will illustrate the details of our proposed multi-atlas guided FCN
method, which consists of the fraining and festing stages. In the training stage, we first
select a number of images from the training set, and consider them as the atlas images.
Then, we extract 3D cubic patches from the training images, and, for each selected
training patch, we also select K most similar atlas patches from the linearly-aligned
atlas images. Next, each training patch and its corresponding selected atlas patches
(including intensity patches and label patches) are used together to train the FCN
model. In the festing stage, the trained FCN model is first applied to each input testing
patch (of the new testing image) and its selected atlas patches, for obtaining a predicted
label patch. Then, all the predicted label patches from all locations of the testing image
are fused together to give the final labeling result.

2.1 Training Data Preparation

Data Preprocessing: The first step is normalizing the intensity of data in the range
from O to 255. And before the patch extraction process, for each training image, we first
register all atlases to its space. As stated above, we need no non-rigid registration;
instead, we just use affine registration, which can be implemented more efficiently.
Specifically, we first linearly align the intensity images of atlases to the target training
image using the flirt in FSL [14], and warp the label maps of all atlases to the training
image space by using the obtained respective linear transformation for each atlas.

Patch Extraction: Since there are high variations of ROI sizes for different brain ROIs
under labeling, we develop a specific patch extraction strategy to ensure that the
sufficient training patches can be extracted from each ROI under labeling. Specifically,
this strategy ensures an adequate number of patches extracted around the boundary of
each ROI, since boundaries contain the direct shape information vital for ROI labeling.
To do this, we first employ a canny edge detector to find boundaries in each of the atlas
label maps. Then, we randomly select the patches by ensuring that (1) the number of
patches extracted from every ROI is similar, and (2) the number of patches extracted
from the boundary of each ROI is similar to the number of patches extracted from
internal part of each ROL

Atlas Patch Selection: For each given training image patch Pr(; ), centered at voxel j
and extracted from the training image I, we can find one most similar atlas image patch
from each atlas in the 3D cubic searching neighborhood c(j), i.e., according to the
image intensity similarity. This step can be mathematically summarized by Eq. 1,
where (M, n) is an atlas image patch selected from the atlas image at the location of
voxel n, and || -||, is a Euclidean distance measure between image patches under
comparison.



Brain Image Labeling Using Multi-atlas Guided 3D FCN 15

2o
S w3
= & =R
£ g S
& —) g
-
-
LY g
@ -
2 g3
< K selected <5
patches
— ey < .
- i
g = 23
-9
= <=
S g
< = -

-~

Intensity | .pel Atlas Training
image patch data

Fig. 1. A brief illustration of steps for preparing the training data. The green dash box is the
searching neighborhood. (Color figure online)

. , )
P= {PA<M,n)|nfgcl(I}) 1Pr1.j) — Paam |12} (1)

By ranking all the selected atlas image patches according to their respective sim-
ilarities to the training image patch (I,), we can finally select the top K (i.e., K = 3)
atlas image patches. Then, each training image patch and its K selected atlas image
patches are combined as joint input to train our proposed FCN model. Figure 1
summaries all steps in our method for prepressing the training data to train the FCN
model.

2.2 Fully Convolutional Networks (FCN) Configuration

We employ an FCN model for the brain ROI labeling. FCN model is an end-to-end
learning structure, with its output as a patch. Compared with the convolutional neural
networks (CNN) [16] that output is just the label for the center voxel of the input image
patch, FCN can label the whole patch in one process, thus more efficient and potentially
more spatially-consistent labeling than CNN. The configuration of our FCN (as shown
in Fig. 2) is briefed below. (1) We first learn K + 1 mapping structures separately for
the training image patch and K selected atlas image/label patches. Specifically, in the
first layer, for each of K sets of selected atlas image/label patches, we use K concate-
nated layers to group the image patch and label patch of the same atlas together. For the
training image patch, since there is no label patch, it is simply input the FCN. Next,
three convolution layers are applied to each of K + 1 mapping structures, followed by a
max pooling layer for down sampling the mapped data. (2) After separately mapping
the training image patch and the K selected atlas image/label patches, we use another
concatenation layer to combine K + 1 sets of mapped data together, followed by two
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Fig. 2. Detailed structure and parameters of our proposed FCN model for patch labeling.

convolution layers and a max pooling layer. (3) Finally, we use two deconvolution
layers to get the label map. Note that the rectified linear units (ReLU) is used as our
activation function for all the convolution layers, and also cross-entropy loss is used as
our loss function.

2.3 Brain Labeling

For each new testing brain image, we first use affine registration to align all the atlases
to this target image. Then, for each (testing) image patch (with the same size as all the
training image patches) extracted from the testing image, we select its K most similar
atlas image patches from all linearly-aligned atlases as described in Sect. 2.1. Next,
each testing image patch and its K selected atlas image/label patches are combined and
inputted to our trained FCN for obtained the patch labeling result. Finally, the labeling
results from all testing patches covering the whole testing image are fused together
(with majority voting) to produce a final label map for the testing image.

3 Experimental Results
We use the LONI LPBA40" dataset to evaluate the performance of our proposed brain

ROI labeling method. The LONI LPBA40 dataset contains 40 T1-weighted MR brain
images with 54 manually labeled ROIs. In our method, four-fold cross validation is

! http://www.loni.ucla.edu/Atlases/LPBA40.
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used. Specifically, in each fold, we select 10 images as the testing images, and the rest
as the training images. Furthermore, we select 10 images from those 30 training images
as the atlas images, and other 2 images as the validation images for FCN training. Note
that we also train another FCN model without using multi-atlas guidance (i.e., just
using the training image patch), and use it as the baseline method. Note that the
network structures and parameters are same in both our proposed multi-atlas guided
FCN method and this baseline method. In our paper, we use the patch size of
24 x 24 x 24 in voxels, and the searching neighborhood size of 30 x 30 x 30 also in
voxels. The number of training image patches sampled from each training image is
8,400. For the testing image, we evenly visit patches with a step size of 9 voxels, to
ensure a sufficient overlap for the neighboring patches.

We evaluate the labeling performance using the Dice Similarity Coefficient (DSC).
The results on LONI LPBA40 show that our proposed method can achieve the average
DSC of (80.33 £ 1.26)% for 54 ROIs. Table 1 lists the comparison of our method with
the state-of-art methods. Note that, for these state-of-art methods, we simply copied
results from [7, 10, 11] for fair comparison. It can be observed that our proposed
method outperforms the non-local based method [11] for more than 2%, and also
achieves a comparable labeling results to the non-rigid registration methods [7, 10].
Although the mean DSC estimations by the multi-atlas method [10] and our proposed
method are close, it can be observed that our method has a much smaller standard
deviation, suggesting that our method is more reliable. Furthermore, it often takes 2—
20 h for just the non-rigid registration step in multi-atlas method [15], while our
proposed method takes less than 15 min for labeling a testing image which is definitely
more efficient in the application stage.

Table 1. Quantitative comparison between the proposed method and the state-of-arts methods.

Method | Non-rigid registration Affine registration
Multi-atlases [7] | Learning [10] | Non-local [11] | FCN-single patch | Proposed
DSC (%) | 81.46 £ 2.25 80.1 £ 4.53 |78.26 + 4.83 |78.20 £ 1.60 80.33 £ 1.26

We further compared our method with the baseline method (namely FCN-single
patch) in Table 1, which shows significant improvements for ROI labeling using
multi-atlas guidance in our method. The structure of baseline method is similar with
proposed method, except that baseline method does not have atlas patches. Figure 3
also shows a labeled testing image by the baseline method (FCN-single patch) and our
proposed method (Proposed). Figure 3(a) shows the golden standard (obtained with
manual delineation). Figure 3(b) shows the labeling result by the baseline method
(FCN-single patch), and Fig. 3(c) shows the labeling result by our proposed method
(Proposed). It can be observed that, the labeling results on the boundary by proposed
method is smoother than the baseline method. Moreover, there are wrong predictions
inside of some ROIs by the baseline method, as indicated in Fig. 3(b). When using
multi-atlas guidance to train the FCN model in our proposed method, more prior
labeling information from multiple atlases can be used to directly help refine the
labeling results, thus avoiding the wrong labeling by the baseline method.



18 L. Fang et al.

Golden standard FCN-single patch Proposed

Fig. 3. Visual comparison of labeling results by the baseline method (FCN-single patch) and our
proposed method (Proposed).

4 Conclusion

In this paper, we have presented a multi-atlas guided 3D FCN method for brain ROI
labeling. Different from the traditional neural networks, the input to our FCN includes
not only the intensity image patch from training (or testing) image, but also both the
intensity and label patches from the atlases. Such combination can provide a clearer
guidance for FCN to better label the target brain images. Furthermore, our proposed
method requires no non-rigid registration for data preprocessing. The validation results
on a public dataset show that our proposed method outperforms the non-local based
methods in accuracy and non-registration based methods in speed, as well as the
baseline method in terms of labeling accuracy.
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