
Interactive Thompson Sampling
for Multi-objective Multi-armed Bandits

Diederik M. Roijers(B), Luisa M. Zintgraf, and Ann Nowé

Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
{droijers,luisa.zintgraf,ann.nowe}@ai.vub.ac.be

Abstract. In multi-objective reinforcement learning (MORL), much
attention is paid to generating optimal solution sets for unknown utility
functions of users, based on the stochastic reward vectors only. In online
MORL on the other hand, the agent will often be able to elicit prefer-
ences from the user, enabling it to learn about the utility function of its
user directly. In this paper, we study online MORL with user interaction
employing the multi-objective multi-armed bandit (MOMAB) setting —
perhaps the most fundamental MORL setting. We use Bayesian learning
algorithms to learn about the environment and the user simultaneously.
Specifically, we propose two algorithms: Utility-MAP UCB (umap-UCB)
and Interactive Thompson Sampling (ITS), and show empirically that
the performance of these algorithms in terms of regret closely approxi-
mates the regret of UCB and regular Thompson sampling provided with
the ground truth utility function of the user from the start, and that ITS
outperforms umap-UCB.

1 Introduction

Many real-world decision problems require learning about the outcomes of differ-
ent alternatives, either by interacting with the real world, or simulations thereof.
When the outcomes can be measured in terms of a single scalar objective, such
problems can be modelled as a multi-armed bandit (MAB) [2]. However, many
real-world decision problems are further complicated by the presence of mul-
tiple (possibly conflicting) objectives [13]. For example, an agent learning the
best strategy to deploy ambulances from a set of alternatives, may want to
minimise average response time, while also minimising fuel cost and the stress
for the drivers. For such problems, MABs can be extended to multi-objective
multi-armed bandits (MOMABs) [3,9].

Research on MOMABs has hitherto focussed on settings in which no pref-
erence information w.r.t. the available trade-offs between the values in different
objectives of the available alternatives is provided by the user during learn-
ing [3,18,22]. However, in many situations, this is a limiting assumption. E.g.,
in the example of ambulance deployment strategies, the ambulances will have
to be deployed (i.e., a strategy will have to be executed) while still learning
about the expected value of the different strategies in the different objectives.
By providing preferences of the responsible human decision makers, i.e., the
c© Springer International Publishing AG 2017
J. Rothe (Ed.): ADT 2017, LNAI 10576, pp. 18–34, 2017.
DOI: 10.1007/978-3-319-67504-6 2

Interactive Thompson Sampling for Multi-objective Multi-armed Bandits 19

management of the ambulance service, w.r.t. the attainable trade-offs between
objectives, the agent can focus its learning on those strategies that the user
finds most appealing. Other examples of multi-objective learning problems in
which interaction with the user can be beneficial are: the exploration of preven-
tive strategies for epidemics using computationally expensive simulations under
objectives like minimising morbidity, the number of people infected, and the
costs of the preventive strategy; and future household robots that will need to
learn the preferences of their users with respect to the outcomes (performance,
speed, energy usage) of alternative ways to perform a household task.

In this paper, we focus on such online learning problems, in which the agent
can query the user via pairwise comparisons (following, e.g., [6,15,23]). Specif-
ically, we focus on the prevalent case that a user’s utility function is linear, in
the context of MOMABs.

We propose two new Bayesian learning algorithms for MOMABs that learn
about the environment and the user’s utility function simultaneously. Specifi-
cally, we build upon two popular classes of algorithms for single-objective MABs,
UCB1 [2] and Thompson sampling [16], to propose utility-MAP UCB (umap-
UCB) and Interactive Thompson Sampling (ITS). Both algorithms (umap-UCB
and ITS) pose pairwise comparison queries to the user. As a UCB-algorithm,
umap-UCB uses explicit exploration bonuses. To decide when to query the user,
it computes the MAP of the utility function to determine the arm correspond-
ing to the best mean estimate, and the arm corresponding to the best mean
estimate plus exploration bonus. When these two best arms are different, umap-
UCB queries the user by asking her to make a pairwise comparison between
the estimated mean reward vectors of the two arms. ITS also elicits preferences
via pairwise comparisons; it draws two sets of samples from the posteriors of the
mean reward vectors of the arms, and the posterior of the utility function. When
these two sets of samples have different best arms, ITS queries the user.

We test umap-UCB and ITS empirically, and find that the performance of
these algorithms in terms of regret closely approximates the regret of UCB and
regular Thompson sampling equipped from the beginning with the ground truth
utility function of the user. When comparing umap-UCB and ITS, we find that
ITS outperforms umap-UCB both in terms of minimising user regret, and in
terms of minimising the number of comparisons that the user is asked to make.

2 Background

Before introducing our setting, we first provide the necessary background on
scalar multi-armed bandits and multi-objective decision making in general.

2.1 Multi-armed Bandits

Definition 1. A scalar multi-armed bandit (MAB) [1,2,16] is a tuple 〈A,P〉
where

20 D.M. Roijers et al.

Algorithm 1. UCB

x̄a ← initialise with single pull, ra for each
a
na ← 1 for each a
for t = |A|, ..., T do

a(t) ← arg max
a

(x̄a + c(x̄a, na, t))

r(t) ← play a(t) and observe reward

x̄a(t) ← na(t)x̄a(t)+r(t)

na(t)+1

na(t)++

Algorithm 2. Thompson Sampling

Input: A prior for the reward distribu-
tions

D ← ∅; // observed data

for t = 1, ..., T do
θt ← draw sample from P (θt|D)

a(t) ← arg max
a

EP (r|a,θt)[r]

r(t) ← play a(t) and observe reward
append (r(t), a(t)) to D

– A is a set of actions or arms, and
– P is a set of probability distributions, Pa(r) : R → [0, 1] over scalar rewards,

r, associated with each arm a ∈ A.

We refer to the the mean reward of an arm as μa = EPa
[r] =

∫ ∞
−∞ rPa(r)dr, to

the optimal reward as the mean reward of the best arm μ∗ = maxa μa, and to
the expected regret of pulling an arm, a, once as Δa = μ∗ − μa.

The goal of an agent interacting with a MAB is to maximise the expected cumu-
lative reward, E[

∑T
t=1 μa(t)], where T is the time horizon, and a(t) is the arm

pulled at time t. However, at the start, the agent knows nothing about P, and
can only obtain information about the reward distributions by pulling an arm
a(t) each timestep, obtaining a sample from the corresponding Pa(t). In the MAB
literature, this reward maximisation is typically defined via the minimisation of
the equivalent measure of expected total regret, i.e., the amount of reward lost
due to not playing the optimal arm in each step.

Definition 2. The expected total regret of pulling a sequence of arms for each
timestep between t = 1 and a time horizon T (following the definition of [1]), is

E

[
T∑

t=1

μ∗ − μa(t)

]

=
∑

a

Δa E[na(T)],

where na(T) is the number of times arm a is pulled until timestep T .

In the literature, a popular choice [1,2] for P is Bernoulli distributions, i.e.,
distributions with only two possible outcomes: 1 (dubbed ‘success’), according
to a probability pa ∈ [0, 1] or 0 (dubbed ‘failure’) with a probability 1 − pa. The
expected reward for a Bernoulli distribution is μa = pa.

The two most popular classes of algorithms for Bernoulli-distributed MABs
are UCB and Thompson Sampling. UCB [2,7], provided in a general form in
Algorithm 1, keeps estimates of the means of arms x̄a, and uses upper confidence
bounds c(x̄a, na, t) for exploration. I.e., at each round the arm is pulled with
the highest value for the mean plus exploration bonus, x̄a + c(x̄a, na, t). This
exploration bonus is defined so that it goes down with the number of pulls of an

Interactive Thompson Sampling for Multi-objective Multi-armed Bandits 21

arm, na, and up slowly with the total number of pulls of all arms, t. There are
many variants of UCB that differ in its definition of c(x̄a, na, t), ranging from
the original UCB1 bound [2],

c1(x̄a, na, t) =
√

2 ln t

na
, (1)

to the upper confidence bound derived from Chernoff’s bound [7]:

cch(x̄a, na, t) =

√
2x̄a ln

√
t

na
+

2 ln
√

t

na
. (2)

Thompson sampling (Algorithm 2) on the other hand, maintains posterior
distributions for the parameters of the reward distributions for each arm a ∈ A,
and pulls arms based on samples from this posterior. Bernoulli distributions
have only one parameter, μa. The typical prior for these μa are beta distribu-
tions, with a single count for the number of successes and failures: β(1, 1) for
each arm. The posterior can be calculated by simply counting the number of
successes, i.e., the number of times the reward was 1, sa(t), and the number
of failures fa(t) = na(t) − sa(t), leading to a posterior over the means of each
arm, β(sa(t) + 1, fa(t) + 1). We denote a sample from the joint posterior of all
arms as:

θt = 〈θt
1...θ

t
|A|〉 ∼ P (θt|D) =

∏

a∈A
β(sa(t) + 1, fa(t) + 1).

At each iteration, Thompson sampling draws such a sample and pulls the arm
corresponding to arg maxa EP (r|a,θt)[r]. Because these θt

a are samples from the
posteriors of the mean for each arm, a, the arm corresponding to arg maxa θt

a

represents the maximum expected reward (for that set of samples).

2.2 Multi-objective Decision Making

In single-objective MABs, an agent must find the alternative a that maximises
the expected reward. In multi-objective problems however, there are n objectives,
that are all desirable. Hence, the stochastic rewards, r(t), and the expected
rewards for each alternative μa are vector-valued.

Definition 3. A multi-objective multi-armed bandit (MAB) [3,18,22] is a tuple
〈A,P〉 where

– A is a finite set of actions or arms, and
– P is a set of probability distributions, Pa(r) : Rd → [0, 1] over vector-valued

rewards r of length d, associated with each arm a ∈ A.

As a result, rather than having a single optimal alternative, there can be multiple
arms whose value vectors are optimal for different preferences that users may
have with respect to the objectives. Such preferences can be expressed using

22 D.M. Roijers et al.

a utility function u(μ,w) that is parameterised by a parameter vector w and
returns the scalarized value of μ. Following the single-objective literature, we
make use of Bernoulli distributions (as a worst-case scenario of distributions
with high variance). Specifically, we assume that the reward for an arm, a, is
a vector of d independent Bernoulli distributions. This probability distribution
can thus be compactly described with a vector of means μa; for each objective,
samples can be drawn independently using the mean for that objective.

When the parameter vector w is known beforehand, it is possible to a priori
scalarise the decision problem and apply standard single-objective algorithms
like UCB or Thompson sampling. However, often we do not know w at the start
of learning.

Fig. 1. The offline MORL decision support scenario.

Much multi-objective reinforcement learning (MORL) research assumes that
u(μ,w) is unknown throughout the learning phase, and there will only be access
to the user in a separate selection phase. We refer to this scenario as the offline
MORL decision support scenario, depicted in Fig. 1, in which an agent provides
decision support to the user by presenting her with a set of alternatives at the
beginning of the selection phase. In the learning phase, we thus need an algorithm
that computes a set of policies containing at least one arm with the maximal
scalarised value for each possible w. Which alternatives, i.e., arms, should be
included in this set depends on what we know about the utility function u. A
highly prevalent case is that u is linear.

Definition 4. A linear utility function is a weighted sum of the values in each
objective, μ, of an alternative, i.e.,

u(μ,w) = w · μ, (3)

where w is a vector of non-negative weights that sum to 1, and express the
preferences of the user w.r.t. each objective. Please note that we assume that all
objectives are desirable, and thus contribute positively to the utility.

In the offline MORL decision support scenario (Fig. 1) where the utility is
an unknown linear utility function, a sufficient solution is the convex hull (CH),
the set of all undominated policies under a linear scalarisation:

CH(A) = {a ∈ A | ∃w∀(a′ ∈ A) : w · μa ≥ w · μa′}.

Interactive Thompson Sampling for Multi-objective Multi-armed Bandits 23

When computation time is abundant, and there is enough time until the
final decision needs to be made, it can be feasible to do MORL in an offline
manner. This has the advantage that the interaction with the user can be done
separately after learning, and therefore typically more efficiently (i.e., with fewer
interactions with the user). However, as we have indicated in the introduction,
there are also situations in which decisions have to be made on a timescale that
is relatively short compared to the computation time needed to evaluate arms.
Furthermore, it can also be highly important to use the available computation
time as efficiently as possible. This is for example the case when evaluating and
selecting different alternative preventive strategies against an emerging epidemic
using computationally expensive simulations with computational epidemiological
models [11], in the presence of multiple objectives like infection ratio, morbidity
and economic damage. In other words, offline learning is not possible when there
is no time to perform a separate learning phase before acting. In such cases, we
need a different approach.

3 Online Interactive Learning with MOMABs

In this paper we focus on the case that we can have interaction with the user
during learning, and that the policies executed during learning are important,
i.e., accumulate regret. This leads to the online interactive MORL decision sup-
port scenario, which is schematically depicted in Fig. 2. In this scenario, learning
and execution of the policy happens simultaneously in the learning phase. Fur-
thermore, we have to interact with the environment as well as the user during
learning, in order to maximise the rewards (or minimise the regret). Finally, it
can happen that after some amount of time (and/or number of interactions),
the learning will stop, and we will move to an execution only phase. This hap-
pens, e.g., when the computational capacity of simulations is needed for different
learning problems, and/or the user becomes unavailable for further input.

Fig. 2. The online interactive MORL decision support scenario.

In the online interactive MORL decision support scenario, we aim to minimise
user regret, i.e., the amount of utility that is lost due to playing suboptimal arms.
We define the value of the optimal arm as

μ∗ = arg max
a

w∗ · μa,

24 D.M. Roijers et al.

where w∗ are the ground truth weights of a linear utility function (Definition 4).
Similar to single-objective MABs, we define the expected (in our case vector-
valued) regret of pulling an arm, a, once as Δa = μ∗ − μa.

Definition 5. The expected total user regret of pulling a sequence of arms for
each timestep between t = 1 and a time horizon T in a MOMAB is

E

[

w∗ · (
T∑

t=1

μ∗ − μa(t))

]

=
∑

a

(w∗ · Δa) E[na(T)],

where na(T) is the number of times arm a is pulled until timestep T .

4 Algorithms

To minimise user regret (Definition 5) in the online interactive MORL setting
(Fig. 2), we must interact both with the environment and with the user. Similar
to single-objective MABs, we need to learn about the reward, r, but in addition,
we must also learn about u and w, as u(E[

∑
tr(t)],w) is what we ultimately aim

to optimise.
Following Zoghi et al. [23] — who study relative bandits; which is an adjacent

but different model, in which the reward (vectors) cannot be observed — we
assume that we can interact with the user once before (or after) pulling an
arm, in the form of a pairwise comparison [6,15,23]. Contrary to [23] however,
we present the user with (estimations of) expected reward vectors, rather than
(data resulting from) single arm pulls. We thus ask users to compare two vectors,
x and y, and observe whether the user prefers x to y, denoted x � y. At timestep
t, we thus have access to a data set, C, of j of such preference pairs, where j ≤ t
is the number of comparisons performed until t:

C = {(xi � yi)}j
i=1. (4)

There is no predetermined budget on the number of comparisons a user can
make, other than the finite-time horizon, T , which also holds for the number of
arm pulls.

Because we assume that u(μ,w) is a linear utility function (Definition 4),
and data in the form of Eq. 4, we can estimate w∗ using logistic regression [5].
Specifically, as we propose Bayesian methods, we employ Bayesian logistic regres-
sion [5], enabling us to obtain both a maximum a posteriori estimate of the true
weights w∗, w̄, as well as a posterior distribution over the true weights.

Along with minimising user regret, we aim to not query the user excessively,
as querying the user costs time and can be experienced as bothersome. In other
words, we aim to propose algorithms in which both the expected user regret
per timestep, as well as the expected number of queries posed to the user per
timestep, goes down steeply as time progresses. In order to achieve this, we build
on two state-of-the-art classes of algorithms: UCB (Algorithm 1), and Thompson
Sampling (Algorithm 2) for single-objective bandits.

Interactive Thompson Sampling for Multi-objective Multi-armed Bandits 25

4.1 Utility MAP–UCB

Our first algorithm, that we call utility-MAP UCB (umap-UCB) (Algorithm 3),
is built upon UCB. In UCB for single-objective MABs (Algorithm 1), actions are
chosen based on the estimates of the means for each arm x̄a plus an exploration
bonus, which together form an upper confidence bound on the true means of
the arms. When applying the same schema to MOMABs we face the following
challenges: (1) that the user has a linear utility function (Eq. 3) with an unknown
weight parameter w∗; (2) that we must decide how to select which action to play,
given the current MAP estimate of the weight vector, w̄; and (3) that we want
to estimate w∗, while the number of queries posed to the user per timestep goes
down steeply as time progresses (without sacrificing too much user regret).

First, let us focus on how to estimate w∗. Because we assume a linear utility
function (Eq. 3) and pairwise comparisons as data (Eq. 4), we use Bayesian logis-
tic regression to estimate the weights.1 We thus define a prior on the weights.

Algorithm 3. Utility–MAP UCB

Input: A parameter prior on the distri-
bution of w.

C ← ∅; // previous comparisons

x̄a ← initialise with single pull, ra, for
each a
na←1 for each a

for t = |A|, ..., T do
w̄ ← Psimplex(MAP (w|C))

ā∗ ← arg max
a

w̄ · x̄a

a(t) ← arg max
a

(w̄·x̄a + c(w̄, x̄a, na, t))

r(t) ← play a(t) and observe reward

x̄a(t) ← na(t)x̄a(t)+r(t)

na(t)+1

na(t)++
if ā∗ �= a(t) then

perform user comparison for x̄ā∗

and x̄a(t) and add result ((x̄ā∗ �
x̄a(t)) or (x̄a(t)�x̄ā∗)) to C

Algorithm 4. Interactive Thompson
Sampling

Input: Parameter priors on reward distri-
butions, and on w distribution.

C ← ∅; // previous comparisons

D ← ∅; // observed reward data

for t = 1, ..., T do
ηt
1, η

t
2 ← draw 2 samples from

P (ηt|C)

θt
1, θ

t
2 ← draw 2 samples from P (θt|D)

a1(t) ← arg max
a

EP (r,w|a,θt
1,ηt

1)
[w · r]

a2(t) ← arg max
a

EP (r,w|a,θt
2,ηt

2)
[w · r]

r(t) ← play a1(t) and observe reward
append (r(t), a1(t)) to D
if a1(t) �= a2(t) then

μ̃1,a1(t)
← EP (r|a1(t),θ

t
1)

[r]

μ̃2,a2(t)
← EP (r|a2(t),θ

t
2)

[r]
perform user comparison for
μ̃1,a1(t)

and μ̃2,a2(t)
and add result

((μ̃1,a1(t)
�μ̃2,a2(t)

) or
(μ̃2,a2(t)

�μ̃1,a1(t)
)) to C

1 We note that logistic regression based on maximum likelihood can lead to problems
in earlier iterations of umap-UCB when there is little data available. We observed this
empirically. Specifically, in earlier iterations umap-UCB with ML logistic regression
instead of Bayesian logistic regression makes an estimate, w̄, with a sheer-infinite
weight on one objective, such that no comparison will be asked from the user again.
This can be prevented with a reasonable choice of prior in Bayesian logistic regres-
sion.

26 D.M. Roijers et al.

Specifically, we use a multi-variate Gaussian prior N (w|μ0,Σ0). We use η0 as a
shorthand for 〈μ0,Σ0〉. Given a prior distribution on w, and user comparisons
C as defined in Eq. 4, we obtain a maximum a posteriori (MAP) estimate at the
beginning of each iteration using Bayesian logistic regression. However, this esti-
mate might not adhere to the simplex constraints. Therefore, we back-project
the MAP estimate of the weights onto the simplex for d objectives, leading to the
estimate w̄ = Psimplex(MAP (w|C)). The fact that w̄ adheres to the simplex
constraints is important for UCB-algorithms, as the exploration bonuses, and
the regret-bounds derived from it, use the assumption that the reward samples
are within the interval [0, 1] (after applying the utility function).

After umap-UCB obtains a w̄ at the beginning of an iteration, it can proceed
to pick actions. To select which arm to play, a(t), umap-UCB follows the standard
UCB schema, using the expected scalarised reward, w̄ · x̄a plus an exploration
bonus c:

a(t) ← arg max
a

(w̄ · x̄a + c(w̄, x̄a, na, t)) .

We note that we can only use w̄ · x̄a as an estimate for the scalarised means
because we assume that the estimates of w∗ are independent of the estimates
of μa.2 In our setting this assumption holds if the user can objectively compare
two vectors, without being influenced by which arms have been pulled in previous
iterations, and which comparisons have taken place in previous iterations. We
believe this to be a realistic assumption for pairwise comparisons.

The exploration bonus, c(w̄, x̄a, na, t), can be implemented in many ways.
We note that when w∗ places all the weight on a single objective, the MOMAB
becomes a scalar MAB, which is Bernoulli-distributed (the only difference being
that the agent does not know w∗). We therefore use exploration bonuses that
reduce to those for single-objective MABs in this case. Specifically, we use either
c(w̄, x̄a, na, t) = c1(w̄ · x̄a, na, t) (i.e., UCB1, Eq. 1) or c(w̄, x̄a, na, t) = cch(w̄ ·
x̄a, na, t) (Eq. 2). We note that for weights that are more evenly distributed,
tighter bounds may hold, e.g., w∗ with equal weights for each objective, and
d → ∞, leads to normally distributed scalarised rewards, due to the central
limit theorem. However, as the estimation of w̄ is not exact, obtaining a tighter
bound is far from trivial, and we leave this open for future work.

Having defined how umap-UCB picks arms to perform, we now define when
and which comparison queries umap-UCB poses to the user. We note that we
want to decrease the number of queries steeply over time, but never to stop
querying (as we may at any point in time, have an estimate w̄ that favours a
suboptimal arm). For this reason, we tie in the querying of the user with the
exploration mechanism of UCB, which has a similar purpose, i.e., it aims to pull
arms so often as to keep on exploring, yet bound the regret of pulling those arms,
by rapidly decreasing the number of suboptimal arm pulls over time. To achieve
this, umap-UCB explicitly calculates the arm, ā∗, with best estimated scalarised
mean without exploration bonus, w̄ · x̄a, at the beginning of each iteration.

2
E[x · y] = E[x] · E[y], iff x and y are independent.

Interactive Thompson Sampling for Multi-objective Multi-armed Bandits 27

When ā∗ is different from a(t), we query the user for a comparison between the
estimates of the means (without exploration bonuses), x̄ā∗ , and x̄a(t).

Umap-UCB has two important characteristics. Firstly, the algorithm will
never stop querying the user. Therefore, if the current estimate of the weights w̄
favours the wrong arm, as time — and with time the accuracy of the estimated
means for each a — increases, more and more comparison data will be gener-
ated that will eventually lead the MAP estimate of the weights to favour the arm
which is best for the ground truth weights, w∗.3 Furthermore, the expected num-
ber of queries is equal to the number of suboptimal arm-pulls, which decreases
rapidly over time, and is bounded (in finite time) via the exploration bonuses
inherited from the single-objective UCB algorithms that umap-UCB builds upon.

4.2 Interactive Thompson Sampling

For single-objective MABs, UCB algorithms (Algorithm 1) are in practice often
outperformed [7] by Thomspon sampling [16] (Algorithm 2). Thompson sampling
works according to the following schema: first, it starts with a prior distribution
on the parameters of the reward distribution of each arm. Then, it gathers data
by drawing samples from the posterior distributions of these parameters, and
pulling the arm with the maximal expected rewards according to the sampled
parameters for each arm.

We build upon Thompson sampling for MABs by not only sampling from
the posteriors of the parameters of the reward distributions, but also those of
the user preferences w. We call this algorithm Interactive Thompson Sampling
(ITS) (Algorithm 4).

ITS starts each iteration by drawing two independent samples both from the
posteriors for the parameters of the reward distributions of each arm (θt

1 and
θt
2), and from the posterior for the parameters of the utility function (ηt

1 and ηt
2).

Without loss of generality, we use the first sample to determine the action to
play, a1(t). We note that for our assumptions (independent weights and rewards,
Gaussian weights, Bernoulli reward vectors), we can compute which action to
select as:

arg max
a

EP (r,w|a,θt
1,ηt

1)
[w · r] = arg max

a

(
w̃1 · μ̃1,a

)
,

where w̃1 (corresponding to ηt
1) is the sampled weights vector, and μ̃1,a (corre-

sponding to θt
1) is the sampled means vector for the rewards of arm a. Again, we

assume that w̃1 and μ̃1,a can be sampled from their resp. posterior distributions
independently.

The second sample is used solely to determine whether and how to interact
with the user. ITS determines which actions both samples would select, a1(t) and
a2(t). If a2(t) differs from a1(t), ITS queries the user for a comparison between
the expected reward according to the first sample μ̃1,a1(t) to that of the second
sample μ̃2,a2(t).

3 Please note that for obtaining 0 regret, it is not necessary that the MAP estimate
w̄ is identical to the ground truth w∗, as long as it leads to selecting the same arm.

28 D.M. Roijers et al.

As the posteriors of both distributions (rewards and weights) become increas-
ingly certain, the number of suboptimal arm-pulls made by ITS goes down. Fur-
thermore, the number of times that two sets of samples from these distributions
disagree on which action to take — and thus the number of queries to the user
— goes down as well.

5 Experiments

In order to test the performance of umap-UCB and Interactive Thompson Sam-
pling, in terms of user regret (Definition 5) and the number of queries posed to
the user, we compare our algorithms on two types of problems: double circle
MOMABs in Sect. 5.2 and random MOMABs in Sect. 5.3. We use two variants
of umap-UCB: umap-UCB1, using c(w̄, x̄a, na, t) = c1(w̄ · x̄a, na, t) (Eq. 1), and
umap-UCB-ch using c(w̄, x̄a, na, t) = cch(w̄ · x̄a, na, t) (Eq. 2).

Besides our own algorithms, we also compare umap-UCB and ITS to single-
objective UCB and Thompson sampling provided with the ground truth utility
functions of the user. Note that his is an unfair comparison, in the sense that
our setting does not actually allow algorithms to know the ground truth utility
functions from the beginning. However, it does provide insight into how much
utility is lost due to having to estimate the utility function of the user via pairwise
comparisons.

5.1 Problems and Experimental Setup

Fig. 3. Examples of double circle (left) and
random (right) MOMABs.

To test the performance of our
algorithms, we use two types of
MOMABs: the double circle and
random, examples of which are
depicted in Fig. 3. Both prob-
lems have arms, a, associated
with distributions over vector-
valued rewards with mean vectors
μa. We use independent Bernoulli
distributions for each objective i,
with a mean μi

a.
A double circle is a two-

objective MOMAB that is deterministically generated from two parameters: a
number of ticks nα, and a reduction parameter pr ∈ [0, 1). A double circle
places the mean vectors μa of its arms on two quarter circles. The first is the
upper quarter of the unit circle (i.e., the circle with radius 1), and the second
that of a circle with radius pr. On each of the upper quadrants of these circles,
nα arms are evenly distributed. The double circle for nα = 10 and pr = 0.7 is
depicted in Fig. 3 (left).

Interactive Thompson Sampling for Multi-objective Multi-armed Bandits 29

A random instance is generated randomly using the number of objectives d,
and the number of arms, |A|, as parameters. First, |A| samples, μ′

a, are drawn
from a d-dimensional Gaussian distribution N (μ′

a|μrnd, Σrnd), where μrnd = 1
(vector of ones), and Σrnd is a diagonal matrix with σ2

rnd = (12)2 for each element
on the diagonal. This set is normalised such that all means fall into the d-
dimensional unit hypercube, μa ∈ [0, 1]d. Figure 3 (right) is an example random
MOMAB with d = 2 and |A| = 30.

Both umap-UCB and ITS require a prior on the weights, w, of the linear
user utility function. We employ a multi-variate Gaussian prior, parameterised
as η0 = 〈μ0,Σ0〉. We use the same prior for both algorithms for all experiments.
We assume μ is the vector of equal weights, i.e., 1

d for each objective, and for
the covariance matrix Σ0 we use a diagonal matrix with σ2

cov = (13)2.
In all experiments, we measure the regret according to Definition 5, i.e., for

a single run, when an algorithm pulls an arm a, w∗ · Δa, is added to the total
accumulated regret.

When querying the user for a comparison between two vectors, x and y, we
first calculate the true utility u(x) and u(y), to which we then add random noise
εx and εy, independently drawn from a normal distribution N (0, σ2

noise). We then
compare u(x) + εx to u(y) + εy. Unless otherwise indicated, σnoise = 0.001.

5.2 Double Circles

In order to test the performance of our algorithms, we measure their regret, the
number of questions they pose to the user, and the L2-norm distance between
their estimated weight vectors and the ground truth weights, as a function of
time (i.e., the total number of arm pulls) on a double circle with pr = 0.7
and nα = 10 (Fig. 4). We perform ten runs, with different levels of noise. When
comparing umap-UCB and ITS, both in terms of regret and in the number of
queries, ITS outperforms both UCB algorithms. However, this is not true for the
approximation quality of the weights of the linear utility functions. When the
noise levels are low (σnoise = 0.001), ITS quickly focusses on the arms that are
close to optimal, and reaches the best estimate of the weights. However, when the
noise levels on the comparisons are higher (σnoise ≥ 0.01), the estimates of ITS
first improve and then get worse again. We hypothesise that this is the result of
ITS quickly focussing on the arms that are close to optimal, whose utility values
lay so close that they fall inside the noise interval of the user comparisons, leading
to a low signal-to-noise ratio and thus worse estimates. However, the effect on
the incurred user regret of these worse estimates is minimal. We thus conclude
that ITS outperforms UCB, and that poorer weight estimates are not necessarily
detrimental for the incurred user regret.

We also test how much utility is lost by having to estimate the weights
of the utility function rather than them being given from the start. In Fig. 4
(left) the regret of the corresponding (cheating) single-objective algorithms to
our algorithms are shown as dashed lines. Our best algorithm — ITS — has
only little more regret than single-objective Thompson sampling when provided
with the ground truth weights from the beginning. Interestingly, umap-UCB1

30 D.M. Roijers et al.

Fig. 4. The performance of umap-UCB and ITS (and UCB and Thompson sampling
provided with the ground truth utility function at the start) in terms of regret (left),
number of queries asked (middle), and quality of estimation of w, on double circle

instances with pr = 0.7 and nα = 10, averaged over 10 runs. The rows represent the
noise level in the user comparisons: σnoise = 0.001 (top); σnoise = 0.01 (middle); and
σnoise = 0.1 (bottom). In all runs w∗ = (0.2, 0.8).

and umap-UCB-ch perform even better than their single-objective equivalents
(on most individual runs as well as on average). When inspecting the number
of pulls per arm of these algorithms, umap-UCB pulls more suboptimal arms
in total than single-objective UCB, but the suboptimal arms that are pulled are
closer (i.e., have smaller w∗ · Δa) than those of single-objective UCB. We thus
conclude that there is only a small increase in regret when having to estimate w∗.

We further note that, if the utility of the arms, w∗ · μa, lay close together
as in the double circle, umap-UCB and ITS keep on querying the user, as a
result of not being able to distinguish between the optimal arm and the arms
that are just below that in terms of utility (leading to over 40% of the 2000 arm
pulls for our best algorithm — ITS — for the lowest noise levels). We expect
the number of queries to be less in problems where arms lay further apart, as in
random MOMAB instances.

5.3 Random MOMABs

In order to test the performance of umap-UCB on MOMABs with arms with
mean vectors that lay further apart, we test them on random MOMABs with 30

Interactive Thompson Sampling for Multi-objective Multi-armed Bandits 31

arms each and varying numbers of objectives (Fig. 5). Again, we observe that the
user regret for our best performing algorithm, ITS, does not attain a significantly
lower regret than single-objective Thompson sampling provided with w∗ from
the start. Furthermore, ITS again outperforms both variants of umap-UCB.

Fig. 5. The performance of umap-UCB and ITS (and UCB and Thompson sampling
provided with the ground truth utility function from the start) in terms of regret (top),
number of queries asked (bottom) for random MOMAB instances with 30 arms and user
comparison noise ε = 0.001, randomly drawn w∗ from a uniform distribution, for 2
(left), 4 (middle), and 6 (right) objectives, averaged over 25 runs.

Because the arms lay further apart than on the double circle, we observe
that ITS — but not umap-UCB — is able to attain significantly lower regret.
Furthermore, we observe that for ITS, the number of queries posed to the user
is much less than for double circle, and often only increases marginally after
about 1000 timesteps.

Finally, we tested the effect of the number of objectives of 30-arm random
MO-MABs on the algorithms’ performances. Higher numbers of objectives seem
to accrue less regret, while needing about equally many queries. This can be
explained by the fact that for higher numbers of objectives, the arms lay further
apart (in terms of Euclidean distance), and are thus easier to distinguish. We
thus observe a blessing (rather than a curse) of dimensionality for user regret
for a fixed number of arms.

In summary, we conclude that ITS outperforms umap-UCB both in terms
of regret and in terms of the number of comparison queries posed to the user.
Furthermore, when the expected reward vectors of the arms are sufficiently far
apart, ITS is able to quickly reduce the number of questions asked per timestep,
while umap-UCB cannot. We therefore conclude that ITS is the better algorithm.

32 D.M. Roijers et al.

6 Related Work

Several papers exist that study MOMABs [3,9,18,22, a.o.]. However, to our
knowledge, the previous work on MOMABs all focusses on the offline setting
rather than the online interactive setting, as this paper does.

Related to online learning for MOMABs with pairwise comparisons by the
user, are relative bandits [23]. Similar to our setting, relative bandits assume a
hidden utility function which can be queried to obtain pairwise comparisons.
Contrary to our setting however, the rewards cannot be observed, and the com-
parisons are made regarding single arm pulls, rather than the aggregate infor-
mation, i.e., estimated means or posteriors over means, of all previous pulls of
a given arm. The best arm is the arm with the highest probability of a single
pull being preferred to a single pull of the other arms. The closest algorithms
in this field are RUCB [23] and Double Thompson Sampling [21] which keep a
preference matrix to determine which two arms to pull in each iteration.

In multi-objective sequential planning [4], combinatorial decision-making
[20], and cooperative game theory [10] preference elicitation w.r.t. (linear) utility
functions has been applied as well. These methods however, apply linear pro-
gramming or equation solving to induce constraints for their respective planning
problems, rather than Bayesian learning. It would be interesting to adapt our
methods to these problem classes to create Bayesian methods for learning in
these problems, as well as for MOMDPs [13].

7 Conclusions and Future Work

In this paper we proposed Utility-MAP UCB1 (umap-UCB) and Interactive
Thompson Sampling (ITS), two Bayesian learning methods for online multi-
objective reinforcement learning in which the agent can interact with its user.
Both algorithms build upon state-of-the-art learning algorithms and Bayesian
machine learning to learn about the environment and about the utility function
of the user simultaneously. Both algorithms pose pairwise comparison queries
to the user, and employ Bayesian logistic regression to learn about the linear
preferences, representable with a weight vector w∗, of its user. Umap-UCB uses
explicit exploration bonuses, and elicits preferences when the best mean estimate
for the current MAP estimate of the weight vector, and the best estimated mean
plus exploration bonus for the same estimate, recommend different arms. ITS
elicits preferences by pulling two sets of samples from both the posteriors of the
means of the arms and the posterior for (the estimate of) w, and querying the
user when those two sets of samples have a different best arm.

We tested umap-UCB and ITS empirically, and showed that the performance
of these algorithms in terms of user regret closely approximates the regret of
UCB1 and regular Thompson sampling provided with the ground truth utility
functions of the user. Umap-UCB can even perform better than UCB having
access to the ground truth. Hence, we conclude that with our algorithms we can
come close to the performance of state-of-the-art learning algorithms for single-
objective MABs that are provided with the ground truth weights at the start.

Interactive Thompson Sampling for Multi-objective Multi-armed Bandits 33

Furthermore, we conclude that ITS empirically outperforms umap-UCB both in
terms of regret, and in terms of the number of queries posed to the user. We
thus conclude that ITS is key for efficient multi-objective learning.

In this paper, we examined the setting of linear utility functions and multi-
objective multi-armed bandits. As a next step, we aim to extend ITS to more
general utility functions, e.g., additive utility functions [8], or even general-shape
monotonically increasing utility functions [14]. Furthermore, we aim extend our
methods to multi-objective reinforcement learning in MOMDPs and MOSGs
[12,13,17,19].

Acknowledgements. The first author is a postdoctoral fellow of the Research Foun-
dation – Flanders (FWO). This research was in part supported by Innoviris – Brussels
Institute for Research and Innovation.

References

1. Agrawal, S., Goyal, N.: Analysis of Thompson sampling for the multi-armed bandit
problem. In: COLT, p. 39.1–39.26 (2012)

2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

3. Auer, P., Chiang, C.-K., Ortner, R., Drugan, M.M.: Pareto front identification
from stochastic bandit feedback. In: AISTATS, pp. 939–947 (2016)

4. Benabbou, N., Perny, P.: Combining preference elicitation and search in multiob-
jective state-space graphs. In: IJCAI, pp. 297–303 (2015)

5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York
(2006)

6. Brochu, E., de Freitas, N., Ghosh, A.: Active preference learning with discrete
choice data. In: NIPS, pp. 409–416 (2008)

7. Chapelle, O., Li, L.: An empirical evaluation of Thompson sampling. In: NIPS, pp.
2249–2257 (2011)

8. Clemen, R.T., Decisions, M.H.: An Introduction to Decision Analysis. PWS-Kent,
Boston (1997)

9. Drugan, M.M., Nowé, A.: Designing multi-objective multi-armed bandits algo-
rithms: a study. In: IJCNN, pp. 1–8. IEEE (2013)

10. Igarashi, A., Roijers, D.M.: Multi-criteria coalition formation games. In: Rothe, J.
(ed.) ADT 2017. LNAI, vol. 10576, pp. 197–213. Springer, Cham (2017)

11. Libin, P., Verstraeten, T., Theys, K., Roijers, D.M., Vrancx, P., Nowé, A.: Efficient
evaluation of influenza mitigation strategies using preventive bandits. In: ALA, 9
p. (2017)

12. Mannion, P., Duggan, J., Howley, E.: A theoretical and empirical analysis of reward
transformations in multi-objective stochastic games. In: AAMAS, pp. 1625–1627
(2017)

13. Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R.: A survey of multi-objective
sequential decision-making. JAIR 48, 67–113 (2013)

14. Roijers, D.M., Whiteson, S.: Multi-objective decision making. Synth. Lect. Artif.
Intell. Mach. Learn. 11(1), 1–129 (2017)

15. Tesauro, G.: Connectionist learning of expert preferences by comparison training.
In: NIPS, vol. 1, pp. 99–106 (1988)

34 D.M. Roijers et al.

16. Thompson, W.R.: On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika 25(3/4), 285–294 (1933)

17. Van Moffaert, K., Nowé, A.: Multi-objective reinforcement learning using sets of
Pareto dominating policies. JMLR 15(1), 3483–3512 (2014)

18. Van Moffaert, K., Van Vaerenbergh, K., Vrancx, P., Nowé, A.: Multi-objective
χ-armed bandits. In: IJCNN, pp. 2331–2338 (2014)

19. Wiering, M.A., Withagen, M., Drugan, M.M.: Model-based multi-objective rein-
forcement learning. In: ADPRL, pp. 1–6 (2014)

20. Wilson, N., Razak, A., Marinescu, R.: Computing possibly optimal solutions for
multi-objective constraint optimisation with tradeoffs. In: IJCAI, pp. 815–822
(2015)

21. Wu, H., Liu, X.: Double Thompson sampling for dueling bandits. In: NIPS, pp.
649–657 (2016)

22. Yahyaa, S.Q., Drugan, M.M., Manderick, B.: Thompson sampling in the adaptive
linear scalarized multi objective multi armed bandit. In: ICAART, pp. 55–65 (2015)

23. Zoghi, M., Whiteson, S., Munos, R., De Rijke, M.: Relative upper confidence bound
for the k-armed dueling bandit problem. In: ICML, pp. 10–18 (2014)

http://www.springer.com/978-3-319-67503-9

	Interactive Thompson Sampling for Multi-objective Multi-armed Bandits
	1 Introduction
	2 Background
	2.1 Multi-armed Bandits
	2.2 Multi-objective Decision Making

	3 Online Interactive Learning with MOMABs
	4 Algorithms
	4.1 Utility MAP--UCB
	4.2 Interactive Thompson Sampling

	5 Experiments
	5.1 Problems and Experimental Setup
	5.2 Double Circles
	5.3 Random MOMABs

	6 Related Work
	7 Conclusions and Future Work
	References

