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Abstract. Indirect-immunofluorescence (IIF) of Human Epithelial-2 (HEp-2)
cells is a commonly-used method for the diagnosis of autoimmune diseases.
Traditional approach relies on specialists to observe HEp-2 slides via the
fluorescence microscope, which suffers from a number of shortcomings like
being subjective and labor intensive. In this paper, we proposed a hybrid deep
learning network combining the latest high-performance network architectures,
i.e. ResNet and Inception, to automatically classify HEp-2 cell images. The
proposed Deep Residual Inception (DRI) net replaces the plain convolutional
layers in Inception with residual modules for better network optimization and
fuses the features extracted from shallow, medium and deep layers for perfor-
mance improvement. The proposed model is evaluated on publicly available
I3A (Indirect Immunofluorescence Image Analysis) dataset. The experiment
results demonstrate that our proposed DRI remarkably outperforms the bench-
marking approaches.
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1 Introduction

Detecting antinuclear antibodies (ANAs) by Human Epithelial-2 (HEp-2) cell patterns
is a recommended approach for autoimmune disease diagnosis. However, in current
clinical practice, inspection of the indirect-immunofluorescence (IIF) slides requires
highly-skilled pathologists, resulting in a time-consuming analysis subject to
inter-observer variations. To address the problem, computer-aided diagnostic
(CAD) systems are proposed to assist pathologists. As one of the most challenging
tasks, HEp-2 staining pattern recognition has received increasing attention from the
research community. Recent contests [1-3] of HEp-2 cell image processing further
promoted the developments of CAD systems for automatic classification of HEp-2
cells.

The performances of previous works on HEp-2 cell pattern classification highly
rely on the choices of hand-crafted features. Nosaka et al. [4] proposed a rotation
invariant Local Binary Pattern descriptor (CoALBP) for HEp-2 cell classification,
which won the first prize of ICPR 2012 contest. In ICIP 2013 contest, the framework
combining LBP and bag of words proposed by Shen et al. [5] achieved the highest
accuracy, i.e. 83.65%. Manivannan et al. [6], the winner of ICPR 2014 contest,
extracted Root-SIFT features and multi-resolution local patterns from HEp-2 cell
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images and employed ensembles of SVMs for classification. In more recent studies, an
increasing number of methods using hand-crafted features were proposed to auto-
matically classify HEp-2 cell images. For examples, Xu et al. [7] trained a linear SVM
with a Co-occurrence Differential Texton (CoDT) feature to identify the staining pat-
terns of HEp-2 cells. Taalimi et al. [8] employed joint sparse representation of HEp-2
cell images for classification. Kastaniotis et al. [9] developed a method, named VHAR,
hierarchically aggregating the residual of the sparse representation of feature vectors
derived from SIFT descriptor for HEp-2 images classification.

Different from traditional approaches, convolutional neural networks (CNN) do not
require the design of hand-crafted features. They automatically construct feature rep-
resentations from input images through multi-layer processing. The feature learned
from CNN is verified to provide better classification performance than hand-crafted
features [10]. Researchers have made their efforts to implement CNN for HEp-2
classification. Gao et al. [11] presented the first work using CNN to classify HEp-2 cell
images. Their model is a VGG-based network [12], which consists of 8 layers.
Bayramoglu et al. reported their new progress on using CNN for HEp-2 classification
in [13]. Phan et al. [14] finetuned a model pre-trained on ImageNet to HEp-2 dataset.
The published CNN frameworks for HEp-2 classification share the same characteris-
tics: the network architectures are straightforward with a single softmax classifier. As
the deep learning model developed, multi-branches networks, e.g. ResNet [15],
Inception [16, 17], have gradually surpassed straightforward networks and become the
main-stream model for researchers.

In this paper, we proposed a hybrid multi-branches model, Deep Residual Inception
(DRI), instead of straightforward CNN to improve the accuracy of classifying HEp-2
cell images. The proposed model combines the architectures of two advanced
high-performance deep learning networks, i.e. ResNet and Inception, by replacing the
plain convolutional layers in Inception with residual modules. Therefore, the proposed
DRI can exploit the strengths of both ResNet and Inception for network training and
image classification, i.e. easy network optimization from ResNet and multi-scale fea-
ture extractors from Inception. Furthermore, to better utilize the features learned by
DRI, we proposed a novel scheme to fuse the features extracted by the shallow,
medium and deep layers. Performance evaluation has been conducted on I3A dataset.
Experiment results demonstrate that our DRI can provide outstanding HEp-2 cell
classification performance.

2 Deep Residual Inception

2.1 Network Architecture

The architecture of proposed Deep Residual Inception network is shown in Fig. 1. The
input cell images are reshaped to a size of 76 x 76. The parameters of 1/2 and 1/3
represent the stride size of 2 and 3, respectively. The green layers are convolutional
layers. The numbers represent the size and amount of convolutional kernels. Our DRI
uses two kinds of pooling, i.e. max pooling and average pooling. The numbers in
pooling layers represent the kernel size. Layers named with ‘FC’ are fully-connected
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Fig. 1. Network architecture of Deep Residual Inception. (Color figure online)

layers. The second parameter of fully-connected layers is the number of containing
neurons. The third parameter of FC1-0 and FC2-0 indicates that the layers are followed
by a dropout layer [18] of 0.7. The non-linear activation function used in DRI is
PReLU [19]. Two auxiliary classifiers, i.e. FC1 and FC2, and one primary classifier,
i.e. FC3, are involved in the proposed DRI. The three classifier branches are trained
with separate softmax loss (L), as defined in (1), respectively.

o
L:%ZiLi:%Zi—log(W) (1)

where f; denotes the j-th element (j € [1, K], K is the number of classes) of vector of
class scores f, y; is the label of i-th input feature and N is the number of training data.

Different weights (w) are assigned to the softmax loss of different classifiers.
Assume L, represents the softmax loss of classifier FCn, the total joint loss (L) for
DRI can be defined as:

3
Lipia = Zn:l wy, X Ly, (2)

where w = 0.3, 0.3 and 1 for L;, L, and L3, respectively.

According to the calculated total loss, the optimization of DRI is performed using
the stochastic gradient descent (SGD) with back-propagation [20].

The original Inception net uses auxiliary classifiers to improve the convergence of
very deep network during training. In our experiments, we found the uses of auxiliary
classifiers not only assist network convergence, but also have positive effect to the
testing classification performance. Thus, the proposed DRI integrates the features from
shallow (FC1), medium (FC2) and deep (FC3) classifier branches with a sum layer and
accordingly predicts the staining cell pattern for testing HEp-2 image.
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2.2 DRI Module

The DRI has 7 multi-branches modules, named DRI block, whose architecture is
presented in Fig. 2. Branches with different sizes of convolutional kernels, i.e. 1 x 1,
3 x 3,5 x 5, enable the network to extract multi-scale features. Inspired by [21], the
Batch

3x3 convolutions

3x3 convolutions Batch Norm & PReLU

Batch Norm & PReLU
Batch Norm & PRelU

5x5 convolutions

Batch Norm & PReLU

Batch Norm & PRelU

Batch Norm & PReLU

Previous layer

Fig. 2. Architecture of DRI module. Two primary changes of module structure: (1) Two identity
shortcuts are added to 3 x 3 and 5 x 5 branches. (2) The depth of 5 x 5 branch is increased.

Normalization [22] and PReLU are placed in front of convolutional layers. Com-
pared to the original Inception module [16], two identity shortcut connections [15] are
added to 3 x 3 and 5 x 5 branches to alleviate the gradient vanishing problem as
network goes deeper. Another difference between the proposed DRI module and the
original inception module is that we increased the depth of 5 x 5 branch by adding a
3 x 3 convolutional layer to the end of 5 x 5 convolutions. This change of network
structure is inspired by the recent research [23], which illustrates the different-depth
branches can benefit the overall performance of multi-branches model.

A detailed configuration of DRI is shown in Table 1. The first number of each entry
in Table 1 is the kernel size and the second number is the amount of kernels. Similar to
original Inception, the amount of convolutional kernels in our DRI smoothly increases
for extracting features with better representation capacity.

2.3 Network Training

The proposed DRI is implemented utilizing Caffe toolbox [24]. The network is ini-
tialized with the ‘xavier’ scheme and trained with a mini-batch size of 24 on one GPU
(GeForce GTX TITANX, 12 GB RAM). A momentum of 0.9 is used to assist network
optimization. The initial learning rate is set to 0.001 and decayed with a gamma of
0.79. The network converges after 290,000 iterations.



16 Y. Li and L. Shen

Table 1. The configuration of the proposed DRI architecture

DRI 1-1 DRI 1-2 DRI 2-1 DRI 2-2 DRI 2-3 DRI 3-1 DRI 3-2
I x1branch |1 x 1,64 |1 x 1,128 |1 x 1,192|1 x1,160|1 x 1,244 |1 x 1,256|1 x 1, 384
3x3branch |1 x 1,96 |1 x 1,128 |1 x 1, 1121 x 1,128 |1 x 1,144 |1 x 1,160 |1 x 1, 192
3 x 3,128 3 x 3,192 |3 x 3,224 |3 x 3,256 |3 x 3,288 |3 x 3,320 |3 x 3,384
Sx5branch |1 x 1,16 |1 x1,32 [1x 1,16 |1 x1,24 |1x1,24 |1x1,32 |1x1,48
5x5,32 |5%x5/96 |5x5,48 |5x5,64 |5x5,64 |5x5,128|5 x 5,128
3x3,64 |3 x3,128/3x3,9 |3 x3,128|3 x 3,128 |3 x 3,256 |3 x 3, 256
3 x 3 max 1x1,32 |1 x1,64 |[1x1,64 |1 x1,64 |1x1,64 |1x1,128|1 x 1,128

3 Results

3.1 Dataset

We use I3A (Indirect Immunofluorescence Image Analysis) dataset for testing in this
paper. The I3A dataset' was first released on the HEp-2 cell classification competition
hosted by ICIP 2013, and used again in the contest organized by ICPR 2014. Partic-
ipants trained their algorithms on the publicly available I3A training set and submit
them to the contest organizers for testing. As the I3A test set is not publicly available,
we partitioned the I3A training set based on the protocol stated in [11] to evaluate the
performance of proposed DRI. The dataset contains 13,596 cell images which can be
separated to six categories: Homogeneous (H), Speckled (S), Nucleolar (N), Cen-
tromere (C), Nuclear membrane (Nm) and Golgi (G) (Fig. 3).

C Nm G

Fig. 3. Example images of I3A dataset

3.2 Data Augmentation

The I3A dataset contains 13,596 cell images. For comparison convenience, we partition
the dataset according to the same percentages, i.e. 64% for training, 16% for validation
and 20% for testing, as reported in [11]. A class-balanced augmentation scheme [25] is
employed to the training set. Each Golgi (G) image was rotated for 59°, i.e. 6° for each
rotation, which is three times more than that for the images of other cell patterns, i.e. 18°
for each rotation. The class-balanced augmentation approach addressed the problem of
unbalanced volumes of cell images contained in I3A dataset. Detailed information of

! http:/merone.diem.unisa.it/hep2-benchmarking/dbtools/.
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Table 2. Details of augmented training datasets

H S N C Nm G Total

I3A 2,494 | 2,831 | 2,598 | 2,741 | 2,208 724 | 13,596
Training set 1,596 | 1,812 1,663 | 1,754 | 1,413 463 | 8,701
Augmented set | 31,920 | 36,240 | 33,260 | 35,080 | 28,260 | 27,780 | 192,540

Table 3. Performance evaluations of the proposed DRI. (a) MCA of using DRI Module (%)
(b) MCA of using auxiliary classifiers (%)

MCA MCA
Shallow Inception 96.54 DRI, 96.23
SRI 97.85 DRI,; 97.41
Inception [16] 97.93 DRI, 3 96.23
DRI 98.37 DRI;.r.3 98.37

(a) (b)

augmented training set is listed in Table 2. The original training set is augmented from
8,701 to 192,540 images.

3.3 Performance Analysis

We use the mean class accuracy (MCA) adopted by ICPR 2014 competition [3] as the
criterion for performance evaluation. It measures the average of per-class accuracies, as
defined in (3).

1 K
MCA = EZk:l CCRy (3)

where CCRy, is the correct classification rate for class k and K is the number of classes.

DRI Module. To investigate the effect of DRI model and network depths, we
developed a Shallow Residual Inception (SRI) from the DRI by removing the DRI 1-2,
DRI 2-3, and DRI 3-2 modules. Shallow Inception was also developed by replacing the
DRI modules in SRI to original Inception modules. Table 3(a) listed the MCA of
Shallow Inception, SRI, and the deep frameworks using original Inception/DRI mod-
ules evaluated on testing set. It can be observed that with similar network depth, the
frameworks using the proposed DRI modules, i.e. SRI and DRI, outperform the ones
with original Inception modules, i.e. Shallow and Deep Inceptions, illustrating the DRI
is a more advanced network architecture compared to the original Inception. Further-
more, the deeper networks, i.e. Inception and DRI, yield better results, i.e. 97.93% and
98.37%, than the shallow ones, i.e. Shallow Inception (96.54%) and SRI (97.85%),
which demonstrates that the network depth enables the models to learn better feature
representations for HEp-2 cell classification.
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Aucxiliary Classifiers. Auxiliary classifiers were only used as regularizers to improve
network convergence during training in original Inception. In our experiments, com-
binations of the features extracted by auxiliary classifier branches, i.e. FC-1, FC-2, are
found to produce improvements of classification performance. Table 3(b) presents the
accuracies of combinations of different classifier branches. The MCA increases from
96.23% to 97.41% by adding FC1 branch. As the FC2 branch extracts similar features
compared to FC3, there is no improvement of classification accuracy by only using
FC2 and FC3. However, FC2 branch can be used as a corrector to amend errors
occurred in the model using shallow classifier branch, i.e. DRI, 3. The model using all
branches, i.e. DRI 5.3, achieves the highest MCA of 98.37%.

3.4 Comparisons

Table 4 compares our DRI with the benchmarking algorithms, i.e. the VHAR approach
[9], the Bag-of-features (BoF) model [11], the Fisher Vector (FV) model [11] and the
CNN model proposed by Gao et al. [11]. The average classification accuracy
(ACA) [11] is also measured for evaluation. All deep-learning approaches outperform
the models using hand-crafted features, i.e. VHAR, BoF and FV. Our DRI achieves the
highest MCA, i.e. 98.37%, and ACA, i.e. 98.49%, which are 1.61% and 1.25% higher
than that of the straight-forward CNN model proposed by Gao et al.

Table 4. Comparsion with benchmarking algorithms (%)

VHAR [9] | BoF |FV Gao et al. [11] | SRI (ours) | DRI (ours)
MCA | 93.60 94.23195.73 1 96.76 97.85 98.37
ACA |- 94.38 96.07 | 97.24 97.98 98.49

4 Conclusion

In this paper, we presented a hybrid deep-learning network, named Deep Residual
Inception, combining the architectures of two most advanced frameworks, i.e. ResNet
and Inception, for HEp-2 cell image classification. The DRI model adds short-cut
connections to the original Inception model for better network convergence and fuses
the features extracted from shallow, medium and deep classifier branches to improve
classification performance. The experimental results show that our DRI provides a
significant improvement compared to existing HEp-2 classification methods.
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