On the Scalability of Data Reduction Techniques
in Current and Upcoming HPC Systems
from an Application Perspective

Axel Huebl"2®) @, René Widera!®, Felix Schmitt?3, Alexander Matthes'2®,
Norbert Podhorszki*®, Jong Youl Choi?*, Scott Klasky?,
and Michael Bussmann'(®*)

! Helmholtz-Zentrum Dresden — Rossendorf, Dresden, Germany
{a.huebl,m.bussmann}@hzdr.de
2 Technische Universitit Dresden, Dresden, Germany
3 NVIDIA ARC GmbH, Berlin, Germany
4 Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract. We implement and benchmark parallel 1/O methods for
the fully-manycore driven particle-in-cell code PIConGPU. Identifying
throughput and overall I/O size as a major challenge for applications on
today’s and future HPC systems, we present a scaling law characterizing
performance bottlenecks in state-of-the-art approaches for data reduc-
tion. Consequently, we propose, implement and verify multi-threaded
data-transformations for the I1/O library ADIOS as a feasible way to
trade underutilized host-side compute potential on heterogeneous sys-
tems for reduced 1/0 latency.

1 Introduction

Production-scale research simulation codes have been optimized in the last years
to achieve maximum compute performance on leadership, heterogeneous com-
puting systems such as the Titan supercomputer at Oak Ridge National Labora-
tory (ORNL). With close to perfect weak scaling domain scientists can increase
spatial and temporal resolution of their simulation and explore systems without
reducing dimensionality or feature resolution.

We present the consequences of near-perfect weak-scaling of such a code
in terms of I/O demands from an application perspective based on production
runs using the particle-in-cell (PIC) code PIConGPU [8,17]. PIConGPU demon-
strates a typical use case in which a PFlops/s-scale, performance portable sim-
ulation [29,30] leads automatically to PByte-scale output even for single runs.

This project has received funding from the European Unions Horizon 2020 research
and innovation programme under grant agreement No. 654220. An award of com-
puter time was provided by the Innovative and Novel Computational Impact on
Theory and Experiment (INCITE) program. This research used resources of the
Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-000R22725.
© Springer International Publishing AG 2017

J.M. Kunkel et al. (Eds.): ISC High Performance Workshops 2017, LNCS 10524, pp. 15-29, 2017.
https://doi.org/10.1007/978-3-319-67630-2_2


http://orcid.org/0000-0003-1943-7141
http://orcid.org/0000-0003-1642-0459
http://orcid.org/0000-0002-6702-2015
http://orcid.org/0000-0001-9647-542X
http://orcid.org/0000-0002-8258-3881

16 A. Huebl et al.

1.1 PIConGPU

PIConGPU is an electro-magnetic PIC code [5,14] implemented via abstract,
performance portable C++11 kernels on manycore hardware utilizing the Alpaka
library [29,30]. Its applications span from general plasma physics, over laser-
matter interaction to laser-plasma based particle accelerator research.

Since its initial open-source release in 2013 with CUDA support, PIConGPU
is reportedly the fastest particle-in-cell code in the world in terms of sustained
peak Flops/s [8]. We achieved this by not only porting the bottlenecks of the
PIC algorithm to new compute hardware but the complete code, thus minimizing
data transfer. PIConGPU data structures are tiled and swapping of frequently
updated data residing on device memory over low-bandwidth bottlenecks such
as the PCI bus is avoided [6].

The overall simulation is spatially domain decomposed and only nearby bor-
der areas need to be communicated across compute nodes (and accelerators)
inbetween iterations. Iterations in PIConGPU are performed with a frequency
of about 10 Hz on current accelerator architectures (GPUs) when simulating 3D
spatial domains and up to 60 Hz for two-dimensional domains. Each iteration
updates electro-magnetic fields and plasma particles, which together constitute
the simulation’s state.

1.2 Physical Observables

We will define primary observables as variables directly accessible and iterated
within the simulation. In terms of an electro-magnetic PIC code these are electric
field, magnetic field and plasma particles’ properties such as position, momen-
tum, charge to mass ratio and weighting. Primary observables are convenient for
the domain expert for exploration, of limited use for theories and models and
nearly always inaccessible directly in experiments.

We define secondary observables as computable on-the-fly, PIC examples
being the electric current density, position-filtered energy histograms or pro-
jected phase space distributions. In practice, analysis of a specific setup needs
multiple additional, study-specific derivations from already derived observables
which we summarize as tertiary observables. Examples in the domain of plasma
physics are integrals over phase-space trajectories, time-averaged fields, sample
trajectories or particle distributions in gradients of fields, flux over time, growth-
rates, etc. Usually, observables accessible by experiments fall in this last category
and can be compared to theoretical model predictions.

1.3 Two Example Workflows to Explore Complex Systems

In daily modeling work we usually iterate between two operational modes while
investigating a new physical system. We start with an exploratory phase guided
by initial hypotheses, looking at primary observables via visualizations or uti-
lizing existing analysis pipelines to iterate over the result of strongly reduced



On the Scalability of Data Reduction Techniques in Current 17

secondary and tertiary observables. During this phase, we develop new study-
specific analysis steps and working hypotheses.

The second phase continues with a high-resolution, high-throughput scan
of an identified regime of the physical system to prove or falsify our working
hypotheses. Due to higher resolution and full physical modeling, new observa-
tions will emerge from that step. Research is then about iterating both steps
in a refined manner until a system is well understood and a model is found to
describe the complex processes of interest.

1.4 Structure of This Paper

As our guiding example, we describe the Titan and Summit systems at ORNL
and their I/O bandwidth hierarchies from the special perspective of a fully GPU-
driven, massively parallel PIC code. We then evaluate the performance of PICon-
GPU’s 1/0 implementation, the overhead it introduces and mitigation strate-
gies via on-the-fly data reductions. We address issues in current state-of-the-art
compression schemes for our application and compare them to self-implemented
compression schemes that make optimal use of underutilized hardware compo-
nents. More specifically, we integrated the meta compression library blosc [2] into
ADIOS, thereby for the first time enabling multi-threaded compression within
ADIOS.

2 ORNL Titan and Summit Systems

With the launch of the Titan supercomputer to the public in 2013, manycore
powered supercomputing finally became accessible on large-scale installations.
Since then, the share of accelerator hardware in the TOP 100 systems has risen
to one third [24]. Such heterogeneous systems concentrate their compute per-
formance in the accelerator component, usually outnumbering the host system’s
compute potential by an order of magnitude, a trend that seems to continue on
upcoming systems such as Summit.

2.1 I/0O Limitations in State-of-the-Art Systems

The parallel file system Atlas at ORNL, partitioned in two islands of 14 PBytes
each, provides an overall design parallel bandwidth of Bparanel = 1 TByte/s. It
is worth noting that if a hypothetical application would be constantly writing
at this maximum parallel bandwidth, Atlas would run out of disk memory in
less than 9hour. We managed to write within each 8 hour production run of
our plasma simulation code PIConGPU about 1 PByte of (zlib) compressed
data, sampling the full system state every 2000 iteration steps. PIConGPU thus
presents a realistic use case that can consume a significant fraction of those
resources. With the upper limit of shared storage in mind, it is clear that data
reduction comes with great value. Additionally, fast migration to and from tape



18 A. Huebl et al.

storage and a strictly imposed short data lifetime on Atlas also encourage users
to avoid occupying disk memory for too long.

An equally severe limitation for I/O besides maximum data size is the over-
all time t/o for file I/O compared to one iteration of the simulation, including
data preparation time ;. Compared to the time tyithous 1/0 One iteration takes
without I/O this #;,o introduces an overhead to the application run time, so that
the single iteration runtime with I/O becomes tyith1/0 = twithout10 +t1/0- When
considering applications scaling to the full Titan system, reaching TByte/s over-
all throughput results in a maximum node-average throughput of 55 MByte/s.
Applications with near perfect scaling can generate GPU data at two-digit Hz
levels amounting to data rates as high as 10 x 6 GiByte/s (device global memory)
on a node-local level, outnumbering the file system performance by three orders
of magnitude. Asynchronous I/O lowers this dramatic gap temporarily, but still
throttles the application at least to 1/10th of the bandwidth of the CPU-GPU
interconnect, not accounting for data reorganization from tiled GPU memory to
per-node contiguous memory as expected by parallel I/O APIs.

2.2 Staging, Burst Buffers and I/0 Backlog

Even at moderate data rates, asynchronous writing can quickly overlap with the
next consecutive write period. Staging [1,10], if operating off-node, can reduce
that data pressure but is similarly limited by another order of magnitude gap in
throughput as soon as the interconnect is accessed.

Systems such as NERSC’s Cori recently introduced so-called burst-buffers [4].
Located either off-node similar to I/O nodes or in-node as with the upcoming
Summit system, overall size of those burst buffers is usually similar to that of the
global host RAM with access bandwidth ranging between network-interconnect
and parallel filesystem bandwidth.

Burst buffers provide an interesting mean for temporary checkpointing and
error-recovery. Coupled applications that only act as either a data sink or a
source for the main application are also major beneficiaries of burst buffers.
A prominent example in HPC are in situ visualizations copying on demand
snapshots [3,28] or accessing the primary observables directly [21,23,25].

Nevertheless, with the current absolute sizes of burst-buffers it is close to
impossible to keep data between application lifetime and parallel filesystem data
lifetime, simply because they cannot store a useful multiple of primary observ-
ables. As soon as a single stage in the I/O hierarchy is not drained as fast as it
is filled, a backlog throughout all previous stages is inevitable even when buffers
are used.

3 1I/0 Measurements

PIConGPU implements I/O for outputs and checkpoints within its plugin sys-
tem. Plugins are tightly coupled algorithms that can register within the main



On the Scalability of Data Reduction Techniques in Current 19

application for execution after selected iterations. They share full access to pri-
mary observables (read and write) of the application.

I/O modules implemented are parallel HDF5 [27] and ADIOS (1.10.0) [20].
In order to tailor domain-specific needs for particle-mesh algorithms, libSplash
is used as an abstraction layer [16]. Data objects are described by the meta-
data standard openPMD [15] in human- and machine-readable markup, allow-
ing for cross-application exchangeability as needed in post- and pre-processing
workflows.

3.1 Preparation of PIConGPU Primary Observables for I/0

In preparation of GPU device data for I/O libraries, PIConGPU field data are
copied from device to host via CUDA 3D memory copies while plasma particle
attributes stored in tiled data structures are copied via the mallocMC [11] heap
manager. Subsequently, scalar particle attributes are concatenated in prepa-
ration for efficient parallel I/O in a parallelized manner using OpenMP. The
single GPU data size needed for saving a complete system state is typically
S = 4 GiByte (assuming 2/3 of device global memory for primary observables).
The overall time for preparing these 4 GiByte of data for one GPU is typically
tprep = 1 s on the systems considered in this publication.

3.2 I/0 Performance in a Realistic Production Scenario

Measurements of the I/O performance are based on one of the default
benchmarks implemented in PIConGPU, a simulation of the relativistic
Kelvin-Helmholtz Instability [8,12]. Starting from two spatially homogeneous,
counterpropagating neutral plasma streams, a shear flow instability develops. This
scenario shows good load-balancing due to nearly homogeneous data distribution
across all GPUs with data size per output and GPU of S = 4 GiByte. We thus
assume in our following analysis for sake of simplicity that indeed each node has
the same output size, the same bandwidth and I/O operations have the same
impact on all N nodes of a system.

Our benchmark systems are Titan (ORNL) and the K20 queue of Hypnos
(HZDR), see Table1. We choose the second system intentionally, since it has
roughly the same age, similar ratio of Flops/s between CPU host an GPU device,
multiple GPUs per node as in upcoming systems, even less CPU cores per GPU
and an even higher single node average filesystem bandwidth compared to Titan.
All measurement input and results of the following sections are available in the
supplementary materials [18] and all software used is open source.

Most relevant from an application point of view is the absolute overhead t,0
in seconds caused by enabling I/O since it equals ‘wasted’ computing time that
could be otherwise spent to iterate the problem further or in higher resolution.
We define the effective parallel I/O throughput Teg in GiByte/s as

S N xS

Tz = N x = (1)
Lwith1/0 — Lwithout1/0O t1/0




20 A. Huebl et al.

Table 1. PIConGPU I/O benchmark systems, both commissioned in 2012/13: relevant
system characteristics and single node average filesystem throughput Trs, defined as
the design parallel bandwidth Bparaliel divided by N nodes

Titan Hypnos (queue: ‘k20")
GPUs/node 1x K20x 4x K20m
CPUs/node 1x AMD Opteron 6274 | 2x Intel Xeon E5-2609
CPU-cores/GPU 16 (8FP) 2
GPU/CPU Flop/s (DP) 9.3:1 7.6:1
File system Spider /Lustre GPFS
Bparallel = Trs * N [GiByte/s] 1000 20
Trs [GiByte/s] 0.055 1.25
CPU Themcepy [GiByte/s] 6.0 6.1
Maximum number of nodes Nmax | 18000 16

with the number of nodes N, the data size per node S and the difference between
execution time with I/O tyin1/0 and without I/O tyithous1/0 a8 ti/o. Besides
the (included) correction for intrinsic overheads in scaling the application, all
measurements are performed as a weak scaling of PIConGPU, which is near-
perfect up to the full size of Titan [8]. We average over 11 outputs within 2000
iterations with an average application iteration frequency of one Hertz.

In the following we model the I/O time per node by

| S
t?/mople = tprep T toff RAM = Tprep + E (2)

defining t,rep as the time to concatenate data into large, I/O-API compatible
chunks and tograM = S/Trs as the time to synchronously send the data off RAM.
This preparation time can potentially be lowered by reorganizing data on the
accelerator, where RAM is usually in full utilization from the application alone,
while asynchronous (non-blocking) writes that hide data transfer latency require
large enough temporary buffers to avoid backlog (see discussion in Sect. 2.2) and
I/0O library support. It is thus S/7ws that will dominate overhead compared to
iterations without I/O.

Figure 1 shows the achieved effective parallel I/O throughput Tog on Titan.
We noticed HDF5 I/0 overhead getting prohibitively large for production runs
as its parallelism is currently limited by the number of allocatable Lustre OST's
(£160) on which one global file needs to be strided over. After optimizing HDF5
performance with MPI-I/O and HDF5 hints, first manually via best-practices
and later using T3PIO [22], we turned down the strategy of parallel output in one
global file (June 2014) and started adopting ADIOS aggregators, which enable
transparently striding on subgroups of processes over a limited number of OST's



On the Scalability of Data Reduction Techniques in Current 21

2 512]2048
&~ ] # ADIOS: no transform 256]1024 2
£ 1004 O ADIOS: zlib oa2s6 ot ]
Ey : PHDF5 with T3PIO 32|128 /
2 1 16|64 */
= 10 4 8132 a4
= E Xe

q') 1 »
Q< ] 218 # 27 160 160
-8 1 % o~ 160
<3 E 12 o ~
== ] w / 128
: 1
Q f—Y 4
) 0.1+
2 ] A
B3 ] / labels: no. of OSTs
& T / 2nd argument: ADIOS aggregators
© 0.01 4z : : : .

1 10 100 1000 10000

number of GPUs N

Fig. 1. PIConGPU I/O weak scaling on Titan from 1 to 16384 K20x GPUs (nodes).
Zlib was only supported serially with compression mode fast. MPI_Info hints for parallel
HDF5 set via T3PIO (v2.3). For ADIOS, labels denote number of OSTs|aggregators,
resulting for N > 32 in a striping of each aggregated process group over four OSTs.
Lustre filesystem limits enforced 160 OSTs for (single-file) parallel HDF5 writes.

(latest benchmark: September 2015). When using ADIOS in this manner, we
were able to reach an overall application throughput close to 280 GByte/s, see
Fig.2. We are not aware of substantial changes in the Atlas filesystem during
this period of time, expecting both benchmarks to be comparable.

It is important to note that measuring the I/O throughput indirectly via
introduced overhead masquerades the actual filesystem bandwidth Brg which
is always higher than the previously defined effective parallel throughput Teg
for raw, untransformed data as seen by the application. This is very important
to keep in mind as the effective parallel throughput determines the application
performance in most realistic scenarios.

As mentioned in Sect. 2.1, absolute I/O size during production runs quickly
becomes a show-stopper. Compressing data streams on the fly seems to suggest
itself as data reduction technique, either lossless or lossy, depending on applica-
tion needs. In ADIOS, compression schemes are implemented transparently for
the user as so-called data transforms. One would not only expect a reduction
in data size but also an increase in effective bandwidth since the size of the
compressed data S¢ written to the filesystem is lowered by a compression ratio
fc = 5¢/s < 1 compared to the initial size S. We observed that this expectation
could not be fulfilled using even the fastest compression algorithm implemented
at the time in ADIOS, zlib, see Fig. 1.



22 A. Huebl et al.

300 Write

Read

[~}
(==
(=)

atlas throughput B,
[GiByte/s]
3

7:30 PM 7:50 PM 8:10 PM

Fig. 2. Actual filesystem throughput as seen by Atlas 2 (ORNL) during run no. 2489794
(Sep 23rd, 2015) on 16384 nodes according to user support (data: DDNTool, Splunk).

We therefore expanded our model to account for the time trequce = /Tc it
takes to reduce the data by compression or other means and copy it from an
application-side buffer to an I/O library buffer. Up to now, data transforms in
ADIOS are performed before starting to send the data off-node, while parallel
HDF5 does not yet support data compression'. In order to account for data

reduction, Eq. (2) needs to be extended to add synchronous reduction over-
head by

ti"?%uce (treduce) = tprep + treduce + fC X toff RAM
S fc x S
=t =
prep Tc * Trs
S xS
= tprep + fe 3)
TC X Tmemcpy 7—FS X Tmemcpy
Sc Tc Trs
fC =< TC =5 %S =5
S Tmemcpy Tmemcpy

7c and 7Tpg characterize throughput for compression and filesystem writes,
respectively, normalized to in-node memory copy throughput Tinemcpy. We
acknowledge that t.equce + fc X toframM could in principle be lowered by copying
the data to an I/O stage immediately and performing compression there, again
within the limits of the discussion in Sect. 2.2.

Consequently, for a given normalized per-node filesystem throughput 7gg any
data reduction algorithm C needs to fulfill the relation

Tc x (1 - fc)

1— TC > TFS (4)

in order to not only reduce data size by fc but also perceived write time. This
inequality arises from Eq. (3) assuming a reduce operation that is as fast as

1 An experimental development preview with compression support in parallel HDF5
was announced after our measurements in February 2017.



On the Scalability of Data Reduction Techniques in Current 23

[\
=)
1

no transform

1z4: 2 threads, bitshuffle

zlib: 1 threads, noshuffle

zstd: 2 threads, bitshuffle

<>

H
t
1

o O

ée

effective parallel I/0
d

‘

o
G»\
)R>

-1

throughput Tog [GiByte/s]
=
[ l\\wh

g
m_
—
()
w
[N}
[@p)
T~

o

number of GPUs N x 4

Fig. 3. Weak scaling of PIConGPU with implemented I/O methods on Hypnos from
4 to 64 K20m GPUs (16 nodes). In contrast to Titan and Summit nodes, on Hypnos
only two physical CPU cores are available per GPU, resulting in I/O performance with
zlib and zstd [9] below the untransformed output.

possible by setting the second term of the sum t;educe = tmemepy and thus com-
paring tf‘;%“ce(treduce) < tf?%“ce(tmemcpy). The left-hand side of Eq. (4), which
we call the break-even threshold for a given data transform algorithm and single
(parallel) I/O stage, is discussed in greater detail in the following section.

In order to confirm this observation, we measured I/O performance on the
K20 queue of the HZDR compute cluster Hypnos, see Fig.3 (data points ‘no
transform’ and ‘zlib’). Following Eq. (4) it should be even harder for a com-
pression algorithm, lossless or lossy, to fulfill the requirements for break-even
on Hypnos. Therefore, an improvement in the latter case will be automatically
favorable for Titan or a Summit-like system.

3.3 Measurement of Compression Performance

In the interest of exploring feasible compression methods for PIConGPU data,
we performed ex situ benchmarks on generated data. Visualized in Fig. 4, such
a measurement directly allows a prediction for individual systems and user data
when comparing to our model, Eq. 4.

PIConGPU currently only utilizes one host thread per GPU, so we decided
to implement and explore compression throughput for blosc as an example for a
multi-threaded algorithm and compare it to other, previously implemented com-
pression algorithms. Blosc provides several bitshuffle pre-conditioners, which we
found of great importance for floating-point compression performance in agree-
ment with recent studies [7]. Further benchmarks with four threads on Hypnos’
K20 queue, limited to two host threads per GPU without oversubscription, indi-
cated that on Hypnos application throughput would benefit from more physical
CPU cores per GPU since the recent filesytem upgrade to GPFS.



24 A. Huebl et al.
lz4he Vzfp Ozstd Clzlib Qlz4 Oblosclz >snappy  threads: O1®2@4 B8 @16
o 1.00 e —=
= Titan e Hypnos ///
.8 s s
= 0.75 1 /7 7/
= / /
o 0.50 noshuffle / //
3 4
3 " mA ® e = o o '3
o
= 0.25 1 / /
——- break-even ——- break-even
g I/ \v/ v I/
0.00 T T T y
1072 1071 10° 102 1071 10°

compression throughput 7¢ [Timemcpy)

Fig. 4. Compression throughput 7¢ and ratio fc measured on PIConGPU particle data
(32 Bit floating point and integers). Lower fc and higher 7¢ is better. All operations
performed on contiguous, aligned, none-page-locked memory. The blosc [2] compression
level is 1 (fast). From available pre-conditioners (none, shuffle, bitshuffle), the latter
is shown due to the observed positive influence on fc with small impact on 7¢ for
floating point data which otherwise could not be compressed with LZ4 (v1.7.5) and
snappy [13]. Zfp (v0.5.1) was used in fixed-precision mode with three uncompressed
bits per scalar [19].

4 Analysis

Fully accelerator driven applications can use ‘the last 10% of system perfor-
mance’ on the host side in order to trade compute performance for I/O latency.
The Titan system provides up to 16 physical CPU cores per GPU and Sum-
mit is expected to allow for an order of magnitude higher parallelization on the
host. This section explores the limits to data reduction methods in terms of data
reduction ratio and throughput for an individual I/O stage independently of the
method of data reduction and only exemplified for compression methods.

4.1 Overhead of Compression in Parallel I/0

From Eq. (3) the relative I/O performance ratio I when using data reduction
instead of direct pass-through in an I/O stage follows as:

treduce
1/0
treduce
1/0

(treduce) . Cprep + % + Tc_l

I'= —
Cprep + Tpg +1

()

(fmemepy)

X Theme
S Py

where we assume that the time for reducing the data trcquce > tmemepy at min-
imum is as long as for copying data from node RAM to I/O buffer. It is clear
that in terms of I/O throughput reduction algorithms are beneficial if I" < 1
compared to I/O without reduction. Cases of I' > 1 and fc < 1 can still be



On the Scalability of Data Reduction Techniques in Current 25

lzdhe Vzfp Ozstd Clzlib {lz4 Oblosclz >snappy  threads: O1®2©4 B8 @16

% , noshuffle fo=01 fo=01

‘gg’ fe=0.5 fc=05

o n fo=1.0 ¥ fo=1.0

g

e e~ T-——~—= ’“—e --------

b5 Titan Hypnos

Cl‘O T T T T T T T T T T T
102 107! 10° 102 107! 10°

compression throughput 7c [Tmemepy]

Fig. 5. Visualization of Eq. (5) predicting the relative I/O overhead I" > 1 (gain I" < 1)
of compression during parallel I/O. The break-even threshold discriminates between
feasible and overhead-adding compression algorithms at I" = 1 (dashed line). Lower I’
and higher 7¢ is better. Iso-compression lines for user data are plotted for individual
systems (see Table 1) and compared to measured ex situ compression performance on
PIConGPU user data (see Fig. 4).

relevant in case of limited disk space. Note, that decreasing Cl,;op Would increase
the gradient of I", but not affect the position 7¢ for which we expect break-even.

Figure5 shows the effect of threaded compression, keeping the compression
ratio along iso-compression lines. Following the graph to the right, the higher
the throughput of a compression algorithm the less importance it has on I’
compared to the compression ratio fc. Thus, an important limit to I” is the
high-throughput limit 7c — 1 for fast compression algorithms below the break-
even threshold. For such, the performance ratio over non-compressed I/O can
barely be improved further via throughput but solely by compression ratio.

Exactly the opposite is true for any reduction algorithm with low throughput
Tc, to the left of the graph. Above the break-even threshold (dashed line at I' =
1), data reduction quickly becomes impractical for medium to high-throughput
tasks for a specific system, as the relatively wasted computing time never reaches
I' <1 even for small fc.

Following the last argument one can further derive from Eq. (4) with ‘perfect
reduction’ fo — 0: For any given I/0 stage with write and reduction throughput
Trs, Tc the effective time an application spends in (synchronous) I/0O can only
be reduced, if the data reduction operation provides at least a throughput of

1c

m > TFS . (6)

5 Summary and Outlook

We implemented and benchmarked parallel I/O methods on top of state-of-the-
art I/O libraries for the massively parallel, fully-manycore driven, open source



26 A. Huebl et al.

PIC code PIConGPU. We outlined performance bottlenecks for medium to high-
throughput applications in general and the possibility to overcome these with
general data reduction techniques such as compression. We then derived and ver-
ified a scaling law that gives limits to expected application speed up when using
data reduction schemes for medium- to high-throughput applications. With this
we were able to derive a system- and application-specific break-even thresh-
old that allows for predicting when reducing data is benefitial in terms of 1/O
throughput compared to I/O without reduction.

5.1 Compression Algorithms

For the special case of compression algorithms, future designs to soften I/0 bot-
tlenecks first and foremost need to improve throughput for floating point data.
Even for a relatively large gap between local memory and filesystem throughput
as on the current Titan system, many single-threaded compression algorithms
that are still in use today do not fulfill the break-even threshold in Eq. (4).

Existing high-throughput compression algorithms would benefit from
research improving the compression ratio fc instead of throughput 7¢ [7,26].
This case is of importance since, due to high entropy in HPC applications’
primary observables (e.g. floating point), only lossy compression algorithms
are likely to bridge the upcoming throughput gaps between node-local high-
bandwidth memory and storage accessible longer than application lifetime.

For ADIOS we proposed, implemented and benchmarked for the first time
host-side multi-threaded transform methods as a feasible step to reach the break-
even threshold. With that, we successfully traded unused compute performance
within a heterogeneous application for overall I/O performance.

5.2 I/O Libraries

Burst-buffers are identified as enablers to reduce blocking time of the application
caused by synchronous transformations within I/O libraries, but are vulnerable
to backlog. Nonetheless, burst-buffers alone cannot cover the gap that will arise
between expected I/0 on system today and in the future. Further applications of
burst-buffers are coupled multi-scale simulations, in situ processing and check-
pointing and not in the scope of this paper.

Nevertheless, for both explorative-qualitative and medium- to high-through-
put quantitative studies I/O libraries need to act now to provide transparent and
easily programmable means for multi-stage I/O. For any practical application,
the first I/O stage should immediately start with a maximum-throughput mem-
copy from user RAM to I/O buffer, ideally asynchronously, while later stages
need to follow fully asynchronously. Copied memory (in unutilized RAM or burst-
buffers) will need several off-node user-programmable transformations which are
finally staged transparently through a subsequent non-blocking data reduction
(compression) pipeline. In each I/O stage, the break-even threshold derived in
this paper needs to be fulfilled or backlog will occur for successive outputs and
the overall application will be throttled by that specific bottleneck. With deeper



On the Scalability of Data Reduction Techniques in Current 27

memory hierarchies, user-programmability of stages will be a human bottle-
neck and needs to be addressed with easy and fast turnaround APIs to design
application- and study-specific stages, e.g. via Python/Numba.

In conclusion, introducing data reduction for I/O will be necessary because of
limited medium to long term storage size expected for future systems. Our analy-
sis and measurements show that even today one should however not expect 1/0
performance gains when using reduction. Parallelization of reduction algorithms
is one way to gain overall I/O performance but requires compute resources in
addition to those used by the application. Even for fully GPU accelerated appli-
cations one should not assume resources to be ‘free’ for I/O and analysis tasks,
since loosely coupled application workflows and models that depend heavily on
hardly-parallelizable aspects such as atomic data lookups will in the future be
more widespread and compete for the exact same resources.

References

1. Abbasi, H., Wolf, M., Eisenhauer, G., Klasky, S., Schwan, K., Zheng, F.:
Datastager: scalable data staging services for petascale applications. Clust. Com-
put. 13(3), 277-290 (2010). doi:10.1007/s10586-010-0135-6

2. Alted, F.: blosc 1.11.4-dev, March 2017. https://github.com/Blosc/c-blosc

3. Ayachit, U., Bauer, A., Geveci, B., O’Leary, P., Moreland, K., Fabian, N., Mauldin,
J.: ParaView catalyst: enabling in situ data analysis and visualization. In: Pro-
ceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-
Scale Analysis and Visualization, ISAV2015, pp. 25-29. ACM (2015). doi:10.1145/
2828612.2828624

4. Bhimji, W., Bard, D., Romanus, M., Paul, D., Ovsyannikov, A., Friesen, B.,
Bryson, M., Correa, J., Lockwood, G.K., Tsulaia, V., et al.: Accelerating science
with the NERSC burst buffer early user program. In: Proceedings of Cray Users
Group (2016)

5. Birdsall, C., Langdon, A.: Plasma physics via computer simulation. The
Adam Hilger series on plasma physics. McGraw-Hill, New York (1985). ISBN
9780070053717

6. Burau, H., Widera, R., Honig, W., Juckeland, G., Debus, A., Kluge, T., Schramm,
U., Cowan, T.E., Sauerbrey, R., Bussmann, M.: PIConGPU: a fully relativistic
particle-in-cell code for a gpu cluster. IEEE Trans. Plasma Sci. 38(10), 28312839
(2010)

7. Burtscher, M., Mukka, H., Yang, A., Hesaaraki, F.: Real-time synthesis of com-
pression algorithms for scientific data. In: SC16: International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 264275,
November 2016. doi:10.1109/SC.2016.22

8. Bussmann, M., Burau, H., Cowan, T.E., Debus, A., Huebl, A., Juckeland, G.,
Kluge, T., Nagel, W.E., Pausch, R., Schmitt, F., Schramm, U., Schuchart, J.,
Widera, R.: Radiative signatures of the relativistic Kelvin-Helmholtz instability.
In: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC 2013, pp. 5:1-5:12. ACM (2013). doi:10.
1145/2503210.2504564

9. Collet, Y., Skibinski, P., Terrell, N., Purcell, S.: Contributors: Zstandard (zstd)
1.1.4 - fast real-time compression algorithm, March 2017. https://github.com/
facebook/zstd


http://dx.doi.org/10.1007/s10586-010-0135-6
https://github.com/Blosc/c-blosc
http://dx.doi.org/10.1145/2828612.2828624
http://dx.doi.org/10.1145/2828612.2828624
http://dx.doi.org/10.1109/SC.2016.22
http://dx.doi.org/10.1145/2503210.2504564
http://dx.doi.org/10.1145/2503210.2504564
https://github.com/facebook/zstd
https://github.com/facebook/zstd

28

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A. Huebl et al.

Docan, C., Parashar, M., Klasky, S.: DataSpaces: an interaction and coordination
framework or coupled simulation workflows. In: Proceedings of 19th International
Symposium on High Performance and Distributed Computing (HPDC 2010), June
2010. doi:10.1007/s10586-011-0162-y

Eckert, C.H.J.: Enhancements of the massively parallel memory allocator scatter-
alloc and its adaption to the general interface mallocMC, October 2014. doi:10.
5281 /zenodo.34461

Grismayer, T., Alves, E., Fonseca, R., Silva, L.: dc-magnetic-field generation in
unmagnetized shear flows. Phys. Rev. Lett. 111, 015005 (2013). doi:10.1103/
PhysRevLett.111.015005

Gunderson, S.H., Evlogimenos, A.: Contributors: Snappy 1.1.1 - a fast compres-
sor/decompressor (2011). https://github.com/google/snappy

Hockney, R., Eastwood, J.: Computer Simulation Using Particles. Taylor & Francis,
Bristol (1988). ISBN: 9780852743928

Huebl, A., Lehe, R., Vay, J.L., Grote, D.P., Sbalzarini, 1., Kuschel, S., Bussmann,
M.: openPMD 1.0.0: a meta data standard for particle and mesh based data,
November 2015. doi:10.5281/zenodo.33624

Huebl, A., Schmitt, F., Widera, R., Grund, A., Schumann, C., Eckert, C., Bukva,
A., Pausch, R.: libSplash: 1.6.0: SerialDataCollector filename API, October 2016.
doi:10.5281/zenodo.163609

Huebl, A., Widera, R., Grund, A., Pausch, R., Burau, H., Debus, A., Garten, M.,
Worpitz, B., Zenker, E., Winkler, F., Eckert, C., Tietze, S., Schneider, B., Knespel,
M., Bussmann, M.: PIConGPU 0.2.4: Charge of bound electrons, openPMD axis
range, manipulate by position, March 2017. doi:10.5281/zenodo.346005

Huebl, A., et al.: Supplementary materials: On the scalability of data reduction
techniques in current and upcoming HPC systems from an application perspective,
April 2017. doi:10.5281/zenodo.545780

Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Trans. Vis. Com-
put. Graph. 20(12), 2674-2683 (2014). doi:10.1109/TVCG.2014.2346458

Liu, Q., Logan, J., Tian, Y., Abbasi, H., Podhorszki, N., Choi, J.Y., Klasky, S.,
Tchoua, R., Lofstead, J., Oldfield, R., et al.: Hello ADIOS: the challenges and
lessons of developing leadership class I/O frameworks. Concurr. Comput. Pract.
Exp. 26(7), 1453-1473 (2014)

Matthes, A., Huebl, A., Widera, R., Grottel, S., Gumbhold, S., Bussmann, M.:
In situ, steerable, hardware-independent and data-structure agnostic visualiza-
tion with ISAAC. Supercomputing Frontiers and Innovations 3(4) (2016). http://
superfri.org/superfri/article/view/114

McLay, R., James, D., Liu, S., Cazes, J., Barth, W.: A user-friendly approach for
tuning parallel file operations. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC 2014, pp.
229-236. IEEE Press (2014). doi:10.1109/SC.2014.24, https://github.com/TACC/
t3pio

Meredith, J.S., Ahern, S., Pugmire, D., Sisneros, R.: EAVL: The extreme-scale
analysis and visualization library. In: Childs, H., Kuhlen, T., Marton, F. (eds.)
Eurographics Symposium on Parallel Graphics and Visualization. The Eurograph-
ics Association (2012). doi:10.2312/EGPGV/EGPGV12/021-030

Meuer, H.-W., Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: November 2016
— TOP500 Supercomputer Sites, June 2016. https://www.top500.org/lists/2016/
11/. Accessed 22 Mar 2017

Corporation, N.: NVIDIA IndeX 1.4. https://developer.nvidia.com/index


http://dx.doi.org/10.1007/s10586-011-0162-y
http://dx.doi.org/10.5281/zenodo.34461
http://dx.doi.org/10.5281/zenodo.34461
http://dx.doi.org/10.1103/PhysRevLett.111.015005
http://dx.doi.org/10.1103/PhysRevLett.111.015005
https://github.com/google/snappy
http://dx.doi.org/10.5281/zenodo.33624
http://dx.doi.org/10.5281/zenodo.163609
http://dx.doi.org/10.5281/zenodo.346005
http://dx.doi.org/10.5281/zenodo.545780
http://dx.doi.org/10.1109/TVCG.2014.2346458
http://superfri.org/superfri/article/view/114
http://superfri.org/superfri/article/view/114
http://dx.doi.org/10.1109/SC.2014.24
https://github.com/TACC/t3pio
https://github.com/TACC/t3pio
http://dx.doi.org/10.2312/EGPGV/EGPGV12/021-030
https://www.top500.org/lists/2016/11/
https://www.top500.org/lists/2016/11/
https://developer.nvidia.com/index

26.

27.

28.

29.

30.

On the Scalability of Data Reduction Techniques in Current 29

Tao, D., Sheng, D., Chen, Z., Cappello, F.: Significantly improving lossy com-
pression for scientific data sets based on multidimensional prediction and error-
controlled quantization. In: IPDPS 2017: Proceedings of the 31th IEEE Interna-
tional Parallel and Distributed Processing Symposium, May 2017

The HDF Group: Hierarchical data format version 5 (C-API: 1.8.14) (2000-2017).
http://www.hdfgroup.org/HDF5

Whitlock, B., Favre, J.M., Meredith, J.S.: Parallel in situ coupling of simulation
with a fully featured visualization system. In: Kuhlen, T., Pajarola, R., Zhou,
K. (eds.) Eurographics Symposium on Parallel Graphics and Visualization. The
Eurographics Association (2011). doi:10.2312/EGPGV/EGPGV11/101-109
Zenker, E., Widera, R., Huebl, A., Juckeland, G., Kniipfer, A., Nagel, W.E.,
Bussmann, M.: Performance-portable many-core plasma simulations: porting
PIConGPU to openpower and beyond. In: Taufer, M., Mohr, B., Kunkel, J.M.
(eds.) ISC High Performance 2016. LNCS, vol. 9945, pp. 293-301. Springer, Cham
(2016). doi:10.1007/978-3-319-46079-6_21

Zenker, E., Worpitz, B., Widera, R., Huebl, A., Juckeland, G., Kniipfer, A., Nagel,
W.E., Bussmann, M.: Alpaka-an abstraction library for parallel kernel acceleration.
In: 2016 IEEE International on Parallel and Distributed Processing Symposium
Workshops, pp. 631-640. IEEE (2016)


http://www.hdfgroup.org/HDF5
http://dx.doi.org/10.2312/EGPGV/EGPGV11/101-109
http://dx.doi.org/10.1007/978-3-319-46079-6_21

2 Springer
http://www.springer.com/978-3-319-67629-6

High Performance Computing

ISC High Performance 2017 International Workshops,
DRESD, ExaComm, HCPM, HPC-IODC, IWOPH, [XPUG,

P~ 3MA, WHPC, Visualization at Scale, WOPSSS,
Frankfurt, Germany, June 18-22, 2017, Revised Selected
Fapers

Kunkel, ).; Yokota, R.; Taufer, M.; Shalf, . (Eds.)

2017, XX, 743 p. 266 illus., Softcover

ISBM: 978-3-319-67620-6



	On the Scalability of Data Reduction Techniques in Current and Upcoming HPC Systems from an Application Perspective
	1 Introduction
	1.1 PIConGPU
	1.2 Physical Observables
	1.3 Two Example Workflows to Explore Complex Systems
	1.4 Structure of This Paper

	2 ORNL Titan and Summit Systems
	2.1 I/O Limitations in State-of-the-Art Systems
	2.2 Staging, Burst Buffers and I/O Backlog

	3 I/O Measurements
	3.1 Preparation of PIConGPU Primary Observables for I/O
	3.2 I/O Performance in a Realistic Production Scenario
	3.3 Measurement of Compression Performance

	4 Analysis
	4.1 Overhead of Compression in Parallel I/O

	5 Summary and Outlook
	5.1 Compression Algorithms
	5.2 I/O Libraries

	References




