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Abstract. Anti-transitivity captures the notion that enemies of enemies
are friends, and arises naturally in the study of adversaries in social net-
works and in the study of conflicting nation states or organizations. We
present a simplified, evolutionary model for anti-transitivity influencing
link formation in complex networks, and analyze the model’s network
dynamics. The Iterated Local Anti-Transitivity (or ILAT) model creates
anti-clone nodes in each time-step, and joins anti-clones to the parent
node’s non-neighbor set. The graphs generated by ILAT exhibit famil-
iar properties of complex networks such as densification, short distances
(bounded by absolute constants), and bad spectral expansion. We deter-
mine the cop and domination number for graphs generated by ILAT, and
finish with an analysis of their clustering coefficients. We interpret these
results within the context of real-world complex networks and present
open problems.

1 Introduction

Transitivity is a pervasive and folkloric notion in social networks, summarized in
the adage that “friends of friends are more likely friends”. A simplified, determin-
istic model for transitivity was posed in [3,4], where nodes are added over time,
and each node’s clone is adjacent to it and all of its neighbors. The resulting
Iterated Local Transitivity (or ILT) model, while elementary to define, simulates
many properties of social and other complex networks. For example, as shown
in [4], graphs generated by the model densify over time, have the small world
property (that is, small distances and high local clustering), and exhibit bad
spectral expansion. For further properties of the ILT model, see [5,12]

Complex networks contain numerous mechanisms governing link formation,
however. Structural balance theory in social network analysis cites several mech-
anisms to complete triads [11]. Another folkloric adage is that “enemies of ene-
mies are more likely friends”. Adversarial relationships may be modelled by
non-adjacency, and so we have the resulting closure of the triad as described in
Fig. 1.

Such triad closure is suggestive of an analysis of adversarial relationships
between nodes as one mechanism for link formation. For instance, in social net-
works, we may consider both friendship ties and enmity (or rivalry) between
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Fig. 1. Nodes x and y share z as a mutual adversary, and so form an alliance.

actors. We may also consider opposing networks of nation states or rival organi-
zations, and consider alliances formed by mutually shared adversaries. See [10]
for a recent study using the spatial location of cities to form an interaction
network, where links enable the flow of cultural influence, and may be used to
predict the rise of conflicts and violence. Another example comes from market
graphs, where the nodes are stocks, and stocks are adjacent as a function of their
correlation measured by a threshold value θ ∈ (0, 1). Market graphs were con-
sidered in the case of negatively correlated (or adversarial) stocks, where stocks
are adjacent if θ < α, for some positive α; see [1].

In the present paper, we consider a simplified, deterministic model for anti-
transitivity in complex networks. The Iterated Local Anti-Transitivity (or ILAT)
model duplicates nodes in each time-step by forming anti-clone nodes, and joins
them to the parent node’s non-neighbor set. We give a precise definition of
the model below in the next section. Perhaps unexpectedly, graphs generated
by the ILAT model exhibit familiar properties of complex networks such as
densification, small world properties, and bad spectral expansion (analogously
to, but different from properties exhibited by ILT).

We organize the discussion in this extended abstract as follows. In Sect. 2, we
give a precise definition of the ILAT model and examine its basic properties. We
prove that graphs generated by ILAT densify over time. We derive the density
of ILAT graphs, and consider their degree distribution. In Sect. 3, we prove
that ILAT graphs have diameter 3 for sufficiently large time-steps (regardless of
the initial graph). Further, we determine after several time-steps, ILAT graphs
have cop number at most 2 and domination number 3. We include in Sect. 4
an analysis of the clustering coefficients and provide upper and lower bounds.
The final section interprets our results within real-world complex networks, and
presents open problems derived from the analysis of the model.

We consider undirected graphs throughout the paper. For background on
graph theory, the reader is directed to [13]. Additional background on complex
networks may be found in the book [2].

2 The ILAT Model

The Iterated Local Anti-Transitivity (or ILAT) model generates a sequence
(Gt : t ≥ 0) of graphs over a sequence of discrete time-steps. The one para-
meter of the model is the initial graph G0. Assuming the graph at time Gt is
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defined, we define Gt+1 as follows. For a given node x ∈ V (Gt), define its anti-
clone x′ as a new node adjacent to non-neighbors of x. More precisely, x′ is
adjacent to all nodes in N c(x), where N c(x) = {y ∈ V (Gt) : xy �∈ E(G)}. To
form Gt+1, to each node x add its anti-clone x′.

The intuition behind that model is that the anti-clone x′ is adversarial with
x, and non-neighbors of x (that is, its own adversaries) become allied with x′.
This process, therefore, iteratively applies the triad closure in Fig. 1. Note that
the number of nodes doubles in each time-step, and the set of anti-clones forms
an independent set. See Fig. 2 for an example.

We introduce some simplifying notation. Let nt be the number of nodes at
time t, et be the number of edges at time t, and the degree of a node x at time
t will be denoted degt(x). We define the co-degree of x at time t as degct(x) =
nt − degt(x) − 1. It is straightforward to note that for t ≥ 1, nt = 2nt−1 = 2tn0.
Further, for an existing node x ∈ V (Gt),

degt+1(x) = nt − 1 (1)
degt+1(x

′) = degct(x). (2)

Fig. 2. An example of the first four time-steps of the ILAT model, where the initial
graph is the four-cycle C4.
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The ILAT model generates graphs that densify as we prove next. While
the proof is elementary, the result is not a priori obvious from the model. One
interpretation is that in networks where anti-transitivity is pervasive, we expect
that many alliances form in the network over time.

Theorem 1. The ratio et/nt tends to infinity with t.

Proof. Note that by the definition of the model and (2), we have that

et+1 = et +
∑

x∈V (Gt)

degt
c(x)

= et + nt
2 − 2et − nt

= nt
2 − et − nt.

Solving this recurrence, we derive that

et = nt−1
2

(
4
5

)(
1 −

(
−1

4

t−1))
− nt−1

(
2
3

)(
1 −

(
−1

2

t−1))

= 22t(n0)2
(

1
5

)(
1 −

(
−1

4

t−1))
(1 − o(1)).

Hence, we obtain that et/nt = Ω(2t). ��
Note that Theorem 1 immediately gives the limiting density of ILAT graphs.

Let Dt be the density of Gt; that is, Dt = et
(nt

2 ) .

Corollary 1. As t → ∞, we have that Dt → 2/5.

We next consider the degrees of vertices in the graph Gt. For each node x at
time t, we create its anti-clone x′ at time t + 1. Then at time t + 2 we create x′′

from x and (x′)′ from x′. For any node x that was created at a time-step k < t,
we have directly from (1) that

degt(x) =
nt

2
− 1.

If t > 1, then of the newly created nodes, half are anti-clones x′ of nodes x
that have already existed at time t − 2, and therefore, their degree at time t − 1
was

degt−1(x) =
nt−1

2
− 2 =

nt

4
− 1.

These anti-clones have at time t,

degt(x
′) = nt−1 − degt−1(x) =

nt

4
+ 2.
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Similarly, if t > 2 then there are nt

8 nodes y′′ created at time t that are anti-
clones of nodes y′ created at time t − 1 from nodes y at least as old as t − 3.
Then since by the previous argument degt−1(y′) = nt−1

4 + 2, we have that

degt(y
′′) =

3nt

8
− 1.

If we continue in this fashion, then by induction we will find that at time t, we
have that 2−knt nodes have degree ak + (−1)k−12 provided that for k < t:

a1 =
nt

2
− 1,

and
ak =

1
2

− ak−1

2
.

If t > 1, then of the newly created nodes, half are anti-clones x′ of nodes x
that already existed at time t−2. Therefore, the degree of those nodes x at time
t − 1 was

degt−1(x) =
nt−1

2
− 1 =

nt

4
− 1.

Their new anti-clones x′ have, at time t,

degt(x
′) = nt−1 − degt−1(x) =

nt

4
+ 1.

Similarly, if t > 2 then there are nt

8 nodes y′′ created at time t that are anti-
clones of nodes y′ created at time t − 1 from nodes y at least as old as t − 3.
Then since by the previous argument degt−1(y′) = nt−1

4 + 1, we have that

degt(y
′′) =

3nt

8
− 1.

If we continue in this fashion, then by induction we will find that at time t, we
have that 2−knt nodes of degree ak + (−1)k−12 provided that for k < t:

a1 =
nt

2
− 2,

and
ak =

1
2

− ak−1

2
.

3 Distances and Graph Parameters

The distances within graphs generated by ILAT become very small, with diame-
ter 3. Hence, highly anti-transitive networks exhibit short paths between nodes;
this occurs at time-step t = 2, regardless of the starting diameter of G0.
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Theorem 2. Let t ≥ 2, then the diameter diam(Gt) of Gt is 3.

Note that the value t = 2 in Theorem 2 is sharp. For example, we may take G0

to be a path of length 4. Or we may consider an initial graph of K3, in which
case the graph at t = 1 is disconnected.

Proof of Theorem 2. We show first that for t ≥ 1, the diameter of Gt is at least
3. To see this, consider the distance between some node x that existed at time
t − 1 and its anti-clone x′ created at time t. They are not adjacent and have no
common neighbors, and so we have that d(x, x′) ≥ 3.

We next show that for t ≥ 2, any two nodes that are not newly created are
at most distance 2 apart. For this, let x, y be two distinct nodes that already
existed at time t−1. Since the node degree at time t−1 is bounded by nt/4−1,
by the pigeonhole principle there is another node z that also existed at t − 1
that is not adjacent to either of them. Hence, z′ is adjacent to both nodes and
so d(x, y) ≤ 2.

Let x′, y′ be two separate nodes newly anti-cloned from some nodes x, y.
Since the node degree at time t − 1 is bounded by max{0, nt/4 − 1}, by the
pigeonhole principle there is another node z that also existed at t − 1 that
is not adjacent to either x or y. Then z is adjacent to both x′ and y′, and so
d(x′, y′) ≤ 2. Hence, any two nodes that both newly created are at most distance
2 apart.

The only case we have not considered are pairs of nodes where one is newly
created and one is not. But if t ≥ 3, then every newly created node has a
neighbor that is not newly created and vice versa. Therefore, any such pair can
be connected by a path of length at most 3. ��

The pairs of nodes we have not considered so far are ones where exactly
one node is newly created, but is not a anti-clone of the other. If they are not
adjacent, then we would like to know if they have a common neighbor. Let the
node that already existed at time t − 1 be x, and the newly created node be
y′, cloned from some node y �= x. Nodes x and y′ can have a common neighbor
unless the neighborhood of x at time t − 1 (other than possibly y itself) was a
subset of the neighborhood of y at time t − 1 (which would be the case when
x = y).

Theorem 3. If x and y are nodes of Gt that are not newly created at time t,
with t ≥ 2 and x �= y, and it is not the case that both x and y belonged to G0,
then d(x, y′) ≤ 2.

Proof. Unless x and y are adjacent, we have that d(x, y′) = 1. So suppose that
x and y are adjacent. Suppose that they did not both belong to the initial graph
G0. Since they are adjacent, one of them was created later than the other. If y
was created later, then every neighbor of x that was created at the same time
as y is now a common neighbor of x and y′. If x was created later, but before
t− 1, then every node adjacent to y but not x at the time produced a anti-clone
of the type we need. We are left with a case where x was created at time t − 1,
and y was created earlier.
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We want to find a common neighbor of x and y′ that was created at t − 2
or earlier. x was created at time t − 1, so it was cloned from a node with has
either nt/8−2, nt/16+2 or about nt/12 neighbors that already existed at time
t − 1, and so x has either nt/8 + 2, 3nt/16 − 2, or about nt/6 neighbors older
than itself. By the same argument, y′ has either nt/8 + 2, 3nt/16 − 2, or about
nt/6 neighbors at least as old as t − 2. There are in total nt/4 nodes at least as
old as t − 2. So by the pigeonhole principle, they must have such a neighbor in
common. ��

Let Lt denote the average distance at time t.

Corollary 2. The average distance Lt tends to 1.6 in t.

Proof. Notice that the number of pairs such that both x and y belong to G0 is
negligible, so will not change the average distance limit. Of the remaining pairs
of vertices, a proportion of 0.4 are adjacent and the rest are at distance 2. We
can thus, conclude that

lim
t→∞ Lt = 1.6.

��
We next turn to a brief discussion of the domination and cop numbers of the

ILAT graphs. As we have noticed with other parameters such as the diameter
and average distance, these two parameters are bounded above by very small
constants. For more on these graph parameters, see [6] (we omit their definitions
here as they are well-known and owing to space constraints). As a possible inter-
pretation of these, we note that in networks exhibiting high anti-transitivity, a
few important nodes emerge (either dominating nodes, or mobile agents rep-
resented by cops) which can reach all other nodes. Such so-called superpower
nodes organically emerge as important actors in the network.

Theorem 4. In Gt such that t ≥ 3, the domination number is 3.

Proof. Let A = {x, x′, (x′)′} be as follows. For any 1 ≤ k ≤ t−1, let x be a node
that existed at time k − 1 and x′ be the time-k anti-clone of x. Let x′′ be the
time-(k + 1) anti-clone of x′. Then any node of Gt not in A is either adjacent to
x′, adjacent to x′′, or a node created at time k + 1 that is not adjacent to x′, in
which case it must be adjacent to x. Therefore, A is a dominating set of Gt.

If t ≥ 1, then we can never find a dominating set of size 2. The node degrees
are bounded by nt

2 − 2. Therefore, the union of neighborhoods of any two nodes
contains at most nt − 4 nodes. ��
Theorem 5. If t ≥ 2, then the cop number of Gt is at most 2.

Proof. We now describe how two cops may capture the robber. Fix v ∈ V (Gt−1).
Then each vertex of Gt−1 is adjacent to one of v or v′. Place the cops on v and
v′. Hence, the robber must begin on an anti-clone say u′ newly created at time
t not adjacent to either v or v′. Now there must be an x in Gt joined to u′,
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otherwise, u is a universal vertex in Gt−1 which is a contradiction (here is where
we use t ≥ 2). It is straightforward to show that there is a perfect matching
between x, x′ and v, v′, and so the cops move to x, x′. The robber must move
to a vertex z in Gt−1. But z is joined to one of x or x′ and the robber is caught
in the next move. ��

Note that we must have t ≥ 2 in Theorem 5 or the cop number could be
larger than 2. For example, if G0 is a K3, then G1 is the disjoint union of K3

and K3, which has cop number 4.

4 Clustering Coefficient

For a node v, define ct(v) to be the (local) clustering coefficient of the node v
at time t. We note that in the ILAT model, older nodes exhibit significant local
clustering over time.

Theorem 6. Let k ∈ N. For node v created at time k, with t > k, if
limt→∞ ct(v) exists, then we have that

lim
t→∞ ct(v) = 0.4.

Hence, the clustering coefficient of a node v tends to 0.4 as v grows old, which
matches the density of the graph.

Proof of Theorem 6. Let c′
t(v) = c′

t be the density of v’s non-neighbor-hood set
at time t, and let c′′

t (v) = c′′
t be the density between the neighborhood and the

non-neighborhood of v. Hence, the number of edges with both endpoints in the
neighborhood of v is ct(v)

(
degt(v)

2

)
, the number of edges with both endpoints

in the non-neighborhood of v is c′
t

(
nt−degt(v)−1

2

)
, the number of edges with one

endpoint in the neighborhood of v, and the remaining number of edges in the
non-neighborhood of v is c′′

t degt(v)(nt − degt(v) − 1).
We write a ∼ b if a = b(1+o(1)). For large t, we may approximate the degree

by degt(v) ∼ nt − degt(v) − 1 ∼ nt

2 . Further, since the total number of edges in
the graph tends to 0.4

(
nt

2

)
, we have that

ct + c′t + 2c′′
t

4
∼ 2

5
,

and
c′
t ∼ 8

5
− ct − 2c′′

t .

Then we may determine ct+1(v) = ct+1 by counting the edges with both end-
points in the neighborhood of v at time t + 1. These are either the same edges
that contributed to ct(v), or edges between the t-time neighborhood of v and
the anti-clones of its non-neighborhood, giving the following equations:

ct+1

(
nt

2

)
∼ ct

(
nt/2

2

)
+ (1 − c′′

t )
nt

2

4
,

ct+1 ∼ ct
4

+
1 − c′′

t

2
.
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Further, we have that

c′′
t+1 =

c′′
t

4
+

1 − c′
t

4
+

1 − ct
4

c′′
t+1 =

c′′
t

4
+

1 − 2
5 + ct(v) + 2c′′

t

4
+

1 − ct
4

, and

c′′
t+1 =

3c′′
t + 2

5

4
.

By hypothesis, the limiting value of ct exists and we call this quantity c. In
particular, we have that for a sufficiently large t that, ct(v) ∼ ct+1 ∼ ct+1 ∼ c.
We have that

ct+2 =
ct+1

4
+

1 − c′′
t+1

2
=

ct+1

4
+

3
4

1 − c′′
t

2
+

1 − 2
5

8
,

and so ct+2 = ct+1 − 3ct
16 + 3

40 . By taking the limit as t → ∞, we have that
3
16c = 3

40 , and the result follows. ��
An open problem remains to prove that the limiting value of ct exist. Further,

computing the value of the clustering coefficient of Gt remains open.

5 Spectral Expansion

For a graph G = (V,E) and sets of nodes X,Y ⊆ V , define E(X,Y ) to be the set
of edges in G with one endpoint in X and the other in Y . For simplicity, we write
E(X) = E(X,X). The normalized Laplacian of a graph relates to important
graph properties; see [7] for a reference. Let A denote the adjacency matrix
and D denote the diagonal degree matrix of a graph G. Then the normalized
Laplacian of G is L = I − D−1/2AD−1/2. Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2
denote the eigenvalues of L. The spectral gap of the normalized Laplacian is
defined as

λ = max{|λ1 − 1|, |λn−1 − 1|}.

A spectral gap bounded away from zero is an indication of bad expansion prop-
erties, which is characteristic for social networks; see [9]. The next theorem rep-
resents a drastic departure from the good expansion found in binomial random
graphs, where λ = o(1); see [7,8].

Theorem 7. If λt is the spectral gap of Gt, then λt ≥ 3/5 + o(1).

To prove Theorem 7, we use the expander mixing lemma for the normalized
Laplacian (see [7] for its proof). For sets of nodes X and Y we use the notation
vol(X) =

∑
v∈X deg(v) for the volume of X, X̄ = V \ X for the complement

of X, and, e(X,Y ) for the number of edges with one end in each of X and Y .
(Note that X ∩ Y does not have to be empty; in general, e(X,Y ) is defined to
be the number of edges between X \Y to Y plus twice the number of edges that
contain only nodes of X ∩ Y . In particular, e(X,X) = 2|E(X)|.)
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Lemma 1. For all sets X ⊆ V (Gt),
∣∣∣∣e(X,X) − (vol(X))2

vol(Gt)

∣∣∣∣ ≤ λt
vol(X)vol(X̄)

vol(Gt)
.

Proof of Theorem 7. Let X be the set of nt/2 the youngest nodes. Since X
induces an independent set, we note that e(X,X) = 0. We derive that

vol(Gt) ∼ 2nt
2/5,

vol(X̄) ∼ nt
2/4, and

vol(X) = vol(Gt) − vol(X̄) ∼ 3nt
2/20,

where the second expression holds as (nt/2)-many of the oldest nodes have degree
∼ nt/2. Hence, by Lemma 1, we have that

λt ≥ (vol(X))2

vol(Gt)
· vol(Gt)
vol(X)vol(X̄)

=
vol(X)
vol(X̄)

∼ 3/5,

and the proof follows. ��

6 Discussion and Future Work

We introduced the Iterated Local Anti-Transitivity (ILAT) model for complex
networks and analyzed properties of the graphs it generates. We proved that
graphs generated by ILAT densify over time, have diameter 3, and have density
tending to 0.4. ILAT graphs have small dominating sets and low cop number. We
analyzed the clustering coefficient of ILAT graphs, and noted that while older
nodes show high (local) clustering, the (global) clustering coefficient is less than
what is expected in binomial random graphs with the same expected degree.
In addition, we showed that graphs generated by ILAT exhibit bad spectral
expansion as found in social networks.

Theoretical results presented here for the ILAT model are suggestive of sev-
eral emergent properties in networks where anti-transitivity governs link forma-
tion. For instance, the presence of small (3-element) dominating sets suggest
the emergence of nodes we describe as superpowers, which have broad influence
in the network. Such nodes may emerge naturally in real-world networks which
are highly anti-transitive, owing to a high number of alliances against common
adversaries. Similarly, the presence of short paths, high density, and high (local)
clustering of older nodes in ILAT graphs suggests that networks, where com-
mon adversaries forge alliances, naturally form tight-knit communities that are
well-connected. In the sequel, it would be interesting to empirically test these
hypotheses with real-world networked data.

Besides applications of the ILAT model, it raises a number of interesting
graph-theoretic questions. An open problem remains to compute the clustering
coefficient for ILAT graphs. Another question is to determine the induced sub-
graph structure of such graphs. A characterization of the induced subgraphs of
ILAT graphs (that is, to determine its age) remains open. For example, do all
finite trees appear as induced subgraphs of ILAT graphs?
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