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Abstract. We consider a general concurrency model for distributed
systems, based on concurrent objects communicating by asynchronous
methods. This model is suitable for modeling of modern service-oriented
systems, and gives rise to efficient interaction avoiding active waiting and
low-level synchronization primitives such as explicit signaling and lock
operations. This concurrency model has a simple semantics and allows
us to focus on information flow at a high level of abstraction, and allows
realistic analysis by avoiding unnecessary restrictions on information flow
between confidential and non-confidential data. We formalize our app-
roach by introducing a high-level language for this concurrency model,
and we provide a secrecy-type system to capture inter-object communi-
cation. We prove soundness based on an operational semantics, which
includes runtime secrecy levels.
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1 Introduction

Programming languages can provide fine-grained control for security issues
because they allow accurate and flexible security information analysis of pro-
gram components [8]. In particular, to specify and enforce information-flow poli-
cies, the effectiveness of language-based techniques has been established. Secure
information flows are often expressed by semantic models of program execution
in the form of a noninterference policy. Noninterference stipulates that manip-
ulation and modification of confidential data should be allowed in programs, as
long as their visible outputs do not improperly reveal information about the
confidential data. Attackers are assumed to be able to view “low” information.
The usual method for showing that noninterference holds is to demonstrate that
the attacker cannot observe any difference between two executions that differ
only in their confidential input [7]. However, attackers may also see intermediate
outputs [1] and observe the progress of the program, e.g., absence or presence
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of the next observable value, which leads to the concept of progress-sensitive
noninterference [1].

In this paper, we are interested in service-oriented and object-oriented sys-
tems at a high level of abstraction, and consider the setting of distributed concur-
rent objects communicating by asynchronous methods calls. We focus on efficient
interaction, including non-blocking calls and high-level mechanisms for process
control, suitable for modern service-oriented systems. Our notion of noninterfer-
ence reflects the non-deterministic nature of interacting concurrent objects.

Fields are encapsulated by objects and remote access is forbidden. Thus, fields
are non-observable, and the (typically) illegal flows in the sense of assignment of
confidential values to non-confidential variables inside objects are not critical.

To formalize our approach we introduce a high-level imperative language
based on the chosen concurrency model. This language is derived from the object-
oriented language Creol [12]. We define an extension of Creol called SeCreol,
adding awareness of secrecy levels as well as secrecy type information. We define
an operational semantics, and prove that our secrecy-type system is sound with
respect to the operational semantics, ensuring that every well-typed program of
our language satisfies the proposed non-interference property.

2 Object-Oriented Distributed Systems in SeCreol

We consider concurrent, distributed objects where each object has its own exe-
cution thread. An object does not have access to the internal state variables of
other objects. Communication is only by method calls, allowing asynchronous
and synchronous communication, implemented by means of asynchronous mes-
sage passing. In order to avoid undesirable waiting in the distributed setting,
we allow mechanisms for non-blocking method calls. By means of a suspension
mechanism, unfinished method invocations in an object may be placed on the
object’s process queue, for instance while waiting for a response from another
object. The process will be enabled when then object receives the response. This
allows flexible interleaving of incoming calls and (enabled) suspended processes.
Internally in an object, there is at most one process executing at any time.
Objects reflect concurrent system components, while data structure inside an
object is defined by data types using functional programming.

A SeCreol program consists of a number of interfaces and classes (with the
last class being the “main” class). An interface may have a number of super-
interfaces and method declarations. A class C takes a list of class parameters cp,
defines fields w, and has an optional initialization part followed by method def-
initions. Class parameters cp are like fields apart from being initialized through
the new statement. Class parameters, the implicit class parameter this, and the
implicit method parameter caller are read-only. A class may implement a num-
ber of interfaces, and for each method of an interface it is required that the
class implements the method such that the type and secrecy level information
is respected. Additional methods may be defined in a class as well, but these
may not be called from outside the class. All variables and parameters are typed
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by data types or interfaces. Classes are not allowed as types, which means that
an object can only be seen through an interface, and therefore, remote access
to fields nor methods that are not exported through an interface is not allowed.
Thus shared variable concurrency is avoided. With respect to security analysis,
fields are then not observable, and observable behavior is limited to interactions
by means of method-oriented communication.

Expressions e and functions f are side-effect free, and e is a (possibly empty)
expression list, comma-separated. Statements include standard constructs for
assignment, skip, if, while, object generation, and sequential composition. The
simple call statement e!m(e) is like message passing; a message is sent to the
object expressed by e (the callee) indicating that it should execute method m
(when the callee is free to do this) with a list of actual parameters e. Thus the
current object is not blocked, and will not wait for the return value. If the return
value is desired by the calling object, it may use the blocking call statement
v := e.m(e) or the non-blocking call statement await v := e.m(e). The latter
call statement forces the caller object to suspend the current process, allowing it
to continue with any enabled suspended process in its process queue or handle
incoming calls. Similarly, the conditional await statement await e suspends,
placing the current process on the process queue. This process is enabled when
the Boolean condition e is satisfied. The considered core language allows high-
level and yet efficient method-based interaction, supporting both passive and
active waiting. The operational semantics of SeCreol is given in Sect. 4.

The language is strongly typed, and a typing system can be given in the style
of [13]. A variable is typed either by an interface or by a data type, called object
variable or data variable, respectively. The runtime value of an object variable
is an object identity (or null), and that of a data variable is a data value. Data
variables are passed by value and object variables are passed by reference (i.e.,
the object identity is passed by value). Note that all object expressions are typed
by an interface, except this, which is typed by the enclosing class. In a well-typed
program, we may assume that each call is annotated by the interface/class of
the callee, as in o.mI(. . .) where I contains a declaration of m.

Secrecy Levels. We enrich the typing system with secrecy levels. Secrecy levels
range over L of basic secrecy descriptions with ordering �, such that (L, �) is a
lattice, i.e., a partially ordered set with meet (�), join (�), a top element � and
bottom element ⊥. Higher in the lattice means more secure. A lattice may be
indexed by object identities for controlling access rights. This would be essential
at runtime for controlling object secrecy; however, in our static analysis we will
not use levels indexed by identities, since there is limited static knowledge about
object identities.

In a program, all declarations of fields, formal parameters, and return values
are given a secrecy level, with level Low as default (if none is specified). Local
variables do not have a declared secrecy level; their level starts as Low but may
change after each statement. At runtime, objects are assigned a secrecy level
that protects against unauthorized changes. Such a protected part is typical in
policy enforcement research [6]. The statically assigned level of a formal data
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parameter represents the maximal level of any actual parameter. The declared
secrecy level of an object variable expresses the secrecy of the object identity,
which is typically low, reflecting that object identities (as such) are considered
non-secret, whereas the runtime secrecy level of an object gives more detailed
information, for instance about the access rights of the object.

The static analysis is class-based, and therefore the analysis is based on
the (statically) declared levels, and not the runtime object levels. However, the
language allows specification of restrictions on the secrecy level of a new object
(as in x:=new C():Low) which determines the initial runtime secrecy level of
the generated object. At runtime an object generated by the statement x:=new
C():l will get the level l � lthis where lthis is the level of the parent object. Note
that l � lthis � lthis, ensuring that the secrecy level of the generated object will
not exceed that of the parent object. As an object encapsulates local data and
fields, these are not accessible from outside of the object, and we do not need
static control of write access to fields of an object. In a program, the runtime
secrecy level of an object can be tested using the � operation.

In the static analysis, we consider all possibilities for levels that can be
assigned at runtime. This allows us to detect a maximal secrecy level for each
program variables at a given point in a program (see Sect. 3).

3 Secrecy-Type System

Our analysis is done class-wise, which is possible since remote access to fields
is forbidden and since all object interaction is done by methods declared in an
interface. This means that limitations on information flow between high and low
variables (such as vHigh := vLow and vHigh := vLow) are not needed. However,
we rely on level information about fields before and after suspension, maintained
in a way similar to a class invariant. The secrecy analysis of a class only depends
on that class declaration, related interfaces, and the class parameter declaration
of instantiated classes.

We assume a well-typed program and assume each method call e.m(. . .) is
augmented by annotating the method name m by the interface of the callee e (as
in e.mI(. . .)), or the enclosing class when e is this. The secrecy-type system for
classes and methods are shown in Fig. 1. The confidentiality of a class definition
Cl is formalized by judgments of the form

� Cl ok

expressing that the class definition obeys the confidentiality rules. And the con-
fidentiality of a method definition M is formalized by judgments of the form

C � M ok

where C is the enclosing class. The confidentiality of a statement s is formulated
by considering judgments of the form

C � [Γ, pc] s [Γ ′, pc′]
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Fig. 1. SeCreol confidentiality type system for classes and methods where ΓC denotes
the declared secrecy levels for class parameters and fields, in class C, and Γ expresses
confidentiality information at a particular program point.

where Γ is a mapping binding variable names to confidentiality levels for a given
program point, and pc is the confidentiality level of the current program point.
As Γ and pc depends on the program point, we let the “pre-binding” [Γ, pc]
denote the bindings in the pre-state of s and the “post-binding” [Γ ′, pc′] those
in the post-state of s. Moreover, for a class C we let the mapping ΓC represent
the declared secrecy levels of fields and class parameters, as given in the class
definition, i.e., if the secrecy level of a field w is declared as l, the binding w �→ l
is included in ΓC . The notation Λ[I,m, i] denotes the level of the ith parameter
of the method as declared in interface I, and similarly for classes. For a class C,
we let C also denote the class constructor (initialization code). In contrast, Γ
expresses confidentiality information depending on a particular program point.
Since Γ -levels of class fields can increase and decrease, the type rules insist
that at the end of each method (and at each suspension point) their resulting
levels should not exceed the declared secrecy levels. This allows us to assume
the declared levels at method start and after suspension.

Map Notation. A finite mapping M is given by a set of bindings zi �→ valuei
for a finite set of disjoint identifiers zi, the domain. The empty map is denoted
∅. Map look-up is written M [z]. A map update, written M [z �→ d], is the map
M updated by binding z to d, regardless of any previous bindings of z. Similarly
M [S] denotes M updated with a set S of (disjoint) bindings. And the map
composition M +M ′ is the map M overwritten by M ′ (on the common domain).

According to Rule S-CLASS in Fig. 1, confidentiality of each class is sat-
isfied, or simply is ok, if the confidentiality of each method is satisfied. The
confidentiality of a method (see Rule S-METHOD) is satisfied if its body satis-
fies confidentiality, starting with the declared level bindings (for fields and class
parameters, method parameters, and local variables) and with Low as starting
pc level, and resulting in some binding [Γ, pc] such that Γ respects the declared
field and class parameter bindings levels (i.e., Γ [z] � ΓC [z] for each field/class-
parameter z) and such that the returned value respects the declared output level
of the method. As stated before, we check Γ [z] � ΓC [z] because the secrecy level
of program variables is allowed to be changed in different program points.

The SeCreol secrecy-type system for expressions and statements is shown in
Figs. 2 and 3, respectively. These figures present typing rules describing which
secrecy type is assigned to each occurrence of an expression and program vari-
able. The confidentiality of expressions and right-hand-sides rhs, given in Fig. 2,
are formulated by judgments of the form
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C � [Γ, pc] rhs :: l

where l is the resulting confidentiality level of rhs. The rules check that each
occurrence of an actual parameter (or return value) respects the declared level of
the corresponding formal parameter (or method return level), and that fields and
class parameters respect the corresponding declared levels at suspension points
and at method returns. In our formalization this is checked by premises in the
rules; thus if these premises cannot be derived, the program will not satisfy the
secrecy rules. Note that each statement may adjust Γ , but only if and while
statements may affect pc. Thus the level of variables and pc may differ at different
program points, which for example means that a call that is acceptable at one
program point, might be unacceptable at another point.

Rule S-EXP states that the confidentiality of an expression e is achieved by
Γ [e] � pc, where pc represents the context level of the current program branch.
Thus a low level expression occurring in a program branch with level pc, gets pc
as its level, since it may reveal context information. We define Γ [e] as follows: For
a constant c (including null, this, void, and caller) Γ [c] is Low (i.e., ⊥), Γ [e � e′] is
High (i.e., �), and for other kinds of expressions (including function applications)
Γ [e] is defined as �v∈e Γ [v], where v ranges over the variables textually occurring
in e, and Γ [v] is its level recorded in Γ . (For simplicity, we here ignore so-called
sanitizer functions, i.e., special functions resulting in a lower level than an input.)

Moreover, object identities are not confidential, thus object variables are
typically declared with a Low level. However, the level of such variables in Γ is
affected by the branch level pc as other program variables. Thus the resulting
level of object creation is pc as object identities as such are considered Low. For
the right-hand-side of a call or new construct, corresponding to the other rules
in Fig. 2, each actual parameter is required to have a level not exceeding the
declared level of the corresponding formal parameter. The resulting level of the
call’s right-hand-side is the declared return level of the method, joined with the
current context level pc. We observe that C � [Γ, pc] rhs :: l ⇒ pc � l, which
means the rhs level is always at least as high as pc. This can be easily proved
by looking at each case of a right-hand-side rhs in the rules.

Fig. 2. SeCreol secure-type system for expressions and right-hand-sides.

According to the secure-type system for statements in Fig. 3, a simple call
does not change Γ nor pc, but the actual parameter levels must respect the
declared levels of the corresponding formal parameters (as above). And we have
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Fig. 3. SeCreol secure-type system for statements.

C � [Γ, pc] skip [Γ, pc]. For an assignment, object creation statement, or call,
v := rhs, with level l for rhs, the level of v in Γ is changed to l, which could imply
a downgrade or an upgrade (or no change) of level. The pc is not modified since
such a statement is considered efficiently terminating without any branching.

For an await statement we must ensure that the declared levels of all
fields and class parameters are respected, since the suspension may cause other
processes to continue, for which we assume these declared levels. Levels of local
variables will remain after an await statement since local variables are not
affected by other processes. We therefore use map composition (+) in the post-
state of an await to overwrite the levels of fields and class parameters by the
declared levels (ΓC). For simplicity we consider only Low await conditions. In
the case of a suspending call, the effect of the assignment part is added after the
map composition since this assignment happens after suspension.

Rule S-IF lifts the pc level of each branch by the level of the test. This will
make all expressions occurring in both branches at least as high as the if-test.
Thereby implicit leakage is avoided. Since the static analysis does not know
which branch is taken at runtime, the resulting value of Γ for each variable
is calculated as the highest level of each branch. An if statement without an
else-branch is like an if statement with skip in the else-branch. The treatment
of while is similar to an if statement without an else-branch, except that
the static analysis cannot predict how many times the branch is iterated. Each
iteration may lift the levels in Γ or pc. However, a loop will have a finite number
of program variables and since there is a finite number of static levels, there is
a minimal fixpoint reachable in a finite number of approximations (typically i
equal to one or two). Rule S-while reflects this fixpoint calculation.

The secrecy typing ensures that there is no flow from high values to low
values, and that values evaluated in an if-branch with a high test are high (since
they may depend on the test), and similarly for values evaluated inside a while-
loop with a high test. Thus the values of low variables in any program state do
not depend on high inputs. Furthermore, this ensures that for each call (and
return) generated by o the values of parameters declared as low do not depend
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Fig. 4. An example showing a password protection class and a test program. In the
latter, level changes in fields and local variables are indicated to the right in each line.

on high inputs. We provide a proof of this in Sect. 5, based on a semantics that
includes runtime secrecy levels.

Example. A small example is given in Fig. 4 to illustrate possible changes in the
levels of fields (xh and xl) and local variables (x). The implementation of Passw
uses an if-test to check p � caller before returning a high value in check. A test
class with non-trivial secrecy typing is added. Here, level changes are written
to the right of each line, not repeating unchanged information. The program
satisfies the rules for confidentiality, i.e., the program does not leak information
in its explicit output and respects field levels at return/await statements. Note
that the lowering of xh was needed to make the check call allowed, that the
higher level of the local variable x was maintained over the await (since x is
local), that the higher level of x was acceptable in the passw call, and that the
high level of x is allowed at the return point (after which x is deallocated).

4 Operational Semantics

The operational semantics is given in Fig. 5. We explain the main elements, while
a more detailed explanation is given in the extended version [16]. A runtime con-
figuration of a system is a multiset of objects and messages (using blank-space
as the binary multiset constructor). Each rule in the operational semantics deals
with only one object o, and possibly messages, reflecting that we deal with con-
current distributed systems communicating asynchronously. When a subconfigu-
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ration C can be rewritten to a C′, this means that the whole configuration . . . C . . .
can be rewritten to . . . C′ . . ., reflecting interleaving semantics. Each object o is
responsible for executing all method calls to o as well as self-calls. An object
has at most one active process, reflecting a method execution, and a sequence of
suspended processes organized in a process queue PQ. Remote calls and replies
are handled by messages. Objects have the form

o : ob(δ, s)

where o is the object identity, δ is the current object state, and s is a sequence of
statements ending with a return, representing the remaining part of the active
process, or idle when no active process. A message has the form

msg o → o′.m(e)

representing a call with o as caller, o′ callee, and e actual parameters, or

msg o ← o′.(u, d)

representing a completion event where d is the returned value and u the identity
of the call. The operational rules reflect small-step semantics. For instance, the
rule for skip is given by o : ob(δ,skip; s) −→ o : ob(δ, s), saying that the
execution of skip has no effect on the state δ of the object. A while loop is
handled by expanding while b do s od to if b then s; while b do s od fi upon
execution of the while-statement. The semantics of an if-statement without an
else-part is equivalent to if b then s else skip fi.

The operational semantics uses some additional variables, like PQ for hold-
ing the process queue and nextId for generating unique identities for calls. These
appear as fields in the operational semantics. Furthermore, this is handled as
an implicit class parameter, while callId and caller appear as implicit method
parameters, holding the identity of a call and its caller, respectively. The opera-
tional semantics uses an additional query statement, [await] get u, for dealing
with the termination of call/await call statements. The query get u is blocking
while waiting for the method response with identity u, and await get u is a
suspending query.

The state of an object is given by a twin mapping, written (α|β), where
α is the state of the field variables (including PQ, nextId) and class para-
meters cp (including this), and β is the state of the local variables and for-
mal parameters (including callId and caller) of the current process. Look-up
in a twin mapping, (α|β)[z], is simply given by (α + β)[z]. The notation
α[z := e] abbreviates α[z �→ alpha[e]], and the notation (α|β)[v := e] abbre-
viates if v in β then (α |β[v �→ (α|β)[e]]) else (α[v �→ (α|β)[e]] |β), where in
is used for testing domain membership.

The process queue PQ is the queue of suspended processes, of form (β, s)).
The operations enq(PQ, p) and deq(PQ,α) are used to add a process p to the
queue, and to select an enabled process (if any) from the queue, respectively.
The latter results in the sequence (p;PQ′) of the selected enabled process p and
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Fig. 5. Operational rules reflecting small-step semantics of SeCreol with secrecy levels.
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the remainder of the queue PQ′ (depending on the specific scheduling policy),
or the empty sequence empty if no process is enabled. A process (β, s) is enabled
if it starts with an enabled statement. A conditional await is enabled if the
condition evaluates to true (in state α|β), and an await call statement is not
enabled unless reduced by the query rule. All other statements are enabled.

The given language fragment may be extended with constructs for local
(stack-based) method calls, e.g., by using the approach of [12].

Runtime Secrecy Levels. We here explain the secrecy aspects of the oper-
ational semantics. We assume a program that has passed the secrecy typing,
and therefore the operational semantics does not include explicitly checks for
confidentiality errors during reduction. However, we prove that any secrecy level
obtained at runtime is less or equal to the one calculated by the static secrecy
typing. This property, called secrecy soundness, is formalized in the next section.
This guarantees that the static secrecy level checks will be satisfied at run-time,
even when based on the runtime secrecy levels. And non-interference is then
proved.

At runtime the evaluation of an expression e gives a secrecy tag l, in addition
to a (normal) value d. We let the tagged value dl denote this result, and let c
denote tagged values. We let dl.tag be l. If this value is assigned to a program
variable v, the binding v �→ dl is added to the state. The state of an object is
given by a twin-mapping as above, but the values of variables are now bound
to tagged values. Thus the values appearing in the extended semantics are all
tagged. Each object identifier has the form of a pair (oid, l) where oid is a normal
object identifier and l is the secrecy level of the object. We refer to the secrecy
level of an object o by the meta-notation o.level, letting (oid, l).level be l. For
data values c, we define c.level by c.tag. The secrecy semantics uses an additional
variable pcs in each method, reflecting the context secrecy level of enclosing if-
and while-branches. (pcs is local since it must be retrieved after suspension.) And
pcs is a stack of levels reflecting the levels of the enclosing if- and while-branches,
such that the top of the stack is the innermost branch.

The evaluation of an expression e in a state δ is denoted δ[e], where the
value is evaluated ignoring tags, and the tag is defined by level(pcs) �i vi.tag,
where �ivi.tag is the join of the tags of all variables occurring in e, and where
level(pcs) is the join of all levels in the stack pcs. This assumes strictness of
all functions in the language, i.e., the level of f(c) is simply �ici. The special
expression e � e′ is evaluated by δ[e].level � δ[e′].level and with tag as defined
above. (Other kinds of non-strict functions are for simplicity ignored here.) The
runtime secrecy level of a variable v in an execution state will be less or equal
to that of the static level in a corresponding program point. There are several
reasons for this. For instance, there can be many calls to the same method, some
with actual parameters of less secrecy level than for other calls. And at the start
of a method, the static analysis will assume the declared secrecy level for fields,
whereas at runtime the levels might be less. Similarly, any expression may have
a lower level at runtime since the variables involved might have a lower level
than in the static analysis.
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5 Theoretical Results

In order to relate runtime states to those of the static secrecy typing, we use
statement labels. Following [15], each basic statement and each if- and while-
condition in a given program is tagged by a unique statement label (i.e., state-
ment number) n appearing as a superscript (when needed).

The result of the secrecy analysis can be captured by a mapping SL (Sta-
tic Level) such that SL(C, n) gives the binding environment of the pre-state of
statement n in class C. Thus SL(C, n)[v] is the level statically assigned to vari-
able v in this state by the secrecy typing analysis, and SL(C, n)[pc] is the level
statically assigned to pc in this state. If an execution reaches a configuration
where a C object is about to execute a basic statement sn, and similarly for
another execution, we say that the two pre-states of n are low equal if the values
of all variables v such that SL(C, n)[v] is Low are equal in the two pre-states.

In the operational semantics, the level information at time t (i.e., the number
of execution steps) in an execution is captured by a function RT (t) returning
the executing object (of form o : ob(δ, s)) such that RT (t).class is its class, and
RT (t).label is the label of the statement to be executed, and RT (t)[v] is the
secrecy level of variable v, i.e., the level of δ[v]. Similarly, RT (t)[pc] is the level
of pc in this state, and RT (o)[pcs] is the level of the stack pcs given by �ipcs[i]
where i ranges over all indexes in the stack. The following theorem ensures that
the evaluation of variables and expressions at runtime gives levels that are less
or equal to those of the static analysis.

Theorem 1 (Soundness). At any time t in an execution where the active
object RT (t) is of the form o : ob(δ, sn; s) of class C, then

(i) the levels of δ are less or equal to the corresponding ones in SL(C, n), i.e.,
δ[v] � SL(C, n)[v] for all program variables v and level(δ[pcs]) � SL(C, n)[pc].

(ii) if C � [Γ, pc] e :: l and δ[e] = dl′ for an expression e, then l′ � l.

Proof. We use induction on the time t, and may assume that the conclusion
holds up to a given time t and must ensure that it holds in the next state. We
first note that (i) implies (ii) because the static level of an expression e is given
by the join of the static levels of all variables in e and of pc, whereas the runtime
level of e is given by the join of the runtime levels of all variables in e and of
level(δ[pcs]). By (i) the latter cannot exceed the former since the runtime level
of each variable v cannot exceed the static level of v, and since the runtime level
of pcs cannot exceed the static level of pc.

It remains to show that (i) holds in the next state. Consider all basic state-
ments that modify the state (of the active object). For an assignment v := e
the new runtime level of v is the runtime level of e evaluated in the current
state. This level is less than the static level of e by (ii), thus the conclusion
holds in this case. Similar arguments apply to all assignment-like statements,
such as new and call statements, in which cases the assignment to the implicit
and unobservable object variable nextId is unproblematic. The operational rules
for skip and return give no state change. The operational rules for continue and
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suspend give a twin state where fields are not changed. In the case of suspend,
the local state is empty (ignoring the PQ which is not a program variable), and
in the case of continue, the local state is reset to an old state, for which we may
use the induction hypothesis. The rules for if and while give a next state (after
evaluating the condition) that is the same as before except that the pcs level
may be raised. We need to show level(δ[pcs]) � SL(C, n)[pc]. This follows by
(ii) since the condition is evaluated in the object state of time t. The discussion
of the rule for await is similar. ��
In our context of message-based systems, we define non-interference by:

Definition 1 (Non-interference). Non-interference means that if two execu-
tions reach the pre-state of a basic statement sn with configurations C1 and C2,
respectively, such that C1 =Low C2, then the observable output resulting from
execution of sn on the two configurations, will be the same.

The output of a basic statement s is the message (msg) generated by the
operational rule for s, if any, and otherwise empty. The observable part of a
message is the values of parameters/method results declared as Low in the method
declaration (as detected by the secrecy-type analysis).

Theorem 2 (Non-interference). A program that is secrecy-type correct will
satisfy non-interference.

Proof. We consider all basic statements. The ones generating output are the
call statements and the return statement. The output of a call statement is
given by the rule for simple call, and the observable output is the values of
the parameters of m for which the declared level is Low. Since this parame-
ter information is static, the sublist of Low parameters have the same length
for two executions. Consider a call statement with label n of a given class C.
Each parameter expression ei of a low parameter has a static level l, which by
Theorem 1 must be less than the runtime level l′ of the evaluation of RT (t)[ei]
for any execution at time t, where RT (t) has an active object of the given class
and with label n. Since the states of the two executions are low equal, the values
of any expression with a low runtime label must be the same since only low
variables are used on the evaluation (otherwise the runtime label could not be
low). Therefore the value of each such ei must be the same in the two executions.
Similarly, the values of any return expression e evaluated in different pre-states
of the same statement n are equal if the resulting runtime level is low, provided
the two pre-states are low equal. Since static low level implies runtime low level,
the two pre-states give the same observable output. The above discussion applies
also to object identities since the only observable relation over object identities
with low output is equality.

The argument above can be extended to new statements and any basic state-
ment. It follows that the new state of all variables is low equal for two executions
after a basic statement since each basic statement is deterministic (apart from
generated object identities). Thus we have also shown that low equality of states
is preserved by all basic statements. ��
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Note that the code if b then o!m1() else o!m2() fi leaks the outcome
of the if-test to object o. To deal with such implicit leakage, one may define
a stronger notion of non-interference involving communication events. This is
studied in [17] defining interaction non-interference and showing that this can
be enforced by static analysis involving communication traces.

6 Related Work

A number of complications arise from the different concurrency and communica-
tion models [3,19]. For imperative concurrent programs, the multi-thread, shared
variable, and channel-based paradigms have been studied [18]. These paradigms
give non-trivial privacy challenges. For instance the channel paradigm gives intri-
cate timing leaks, based on observations of channel size [4,18]. In our paradigm,
an object’s process queue and queue of incoming calls are encapsulated and are
non-observable (as well as their size). There are several works on static checking
of noninterference for active objects communicating by asynchronous methods,
including [10,11] and work based on [9], but with different goals, assumptions,
and results ([9] with other forms of noninterference). Kammüller [11] considers
a functional language with futures, with a different treatment of methods. To
preserve confidentiality, we have considered Multilevel Security(MLS) which is a
well-established concept for confidentiality while the goal of multilateral security
in [10] is useful to satisfy complex and very different sets of policies in distributed
computer systems. The multilateral security of [10] is relevant for our operational
semantics. In our setting, instead of the traditional concept of public and private
methods in [11], we use interfaces to control visibility of methods. Moreover, our
approach is not dependent on the concept of futures. In addition, in [11] remote
method calls are considered side-effect free which guarantees that no informa-
tion from the caller side is leaked. Therefore, although secure down-calls are
supported in [11], interaction noninterference is not preserved.

Our paradigm is based on a simple, compositional semantic model, which
gives flexible analysis of program variables, including fields and communicated
values, and of synchronization mechanisms, thereby reducing the amount of false
positives. Scheduling-related primitives are included in our high-level language;
this enables further static analysis than in [3]. Compared to [3], we consider
more high-level concurrency constructs such as asynchronous calls and suspen-
sion mechanisms. A complementary work on SeCreol [17] focuses on indirect
leakage caused by observations of network traffic, where enforcement of network-
level non-interference is handled by means of static trace analysis. It assumes a
similar secrecy typing system, but without including an operational semantics
with secrecy levels nor a soundness proof of the secrecy typing.

While most of the related work aim at preventing traditional progress-
insensitive non-interference, we are considering progress-sensitive non-
interference, where an attacker can indirectly observe the progress of an object,
caused by e.g. process termination or suspension (assuming termination proofs
of while loops). Another aim of that paper is minimizing the Trusted Comput-
ing Base (TCB) by not trusting the compiler and using Proof-Carrying Code
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(PCC). Moreover, [3,11] prevent all flows from secret to public variables, while in
our setting this is not necessary. In addition, for explicit flows, we also consider
interaction between objects such as if secret then call fi for different
method calls.

Dynamic checking of runtime access control, which has been done in the
Java virtual machine and the .NET runtime systems, provides useful guarantee
especially in the application of dynamic code involvements like mobile code. For
example, in [2] static permissions are assigned to classes based on code origin,
and when untrusted code calls trusted code, then the permission is checked using
the run-time stack, while our approach is static. However, we aim at an extension
to runtime checks in future work.

7 Conclusion

We have considered a model for concurrent object-oriented systems suitable for
distributed service-oriented systems. The concurrent objects may communicate
confidential and non-confidential information, restricting confidential informa-
tion to method parameters/returns declared as safe for confidential information.
The language is high-level and includes process control and suspension, with-
out explicit signaling and locking operations. Objects are imperative and non-
deterministic. We introduce a type and effect system and prove a noninterference
property, as well as soundness of the secrecy typing system. Due to hiding and
encapsulation, we do not impose unnecessary restrictions on information flow
inside objects. The language has a compositional semantics and supports com-
positional program reasoning [5]; and the process control mechanisms include
primitives typically part of an operating system. This allows class-wise secrecy
analysis that goes beyond what is normally possible by static checking. The
absence of futures simplifies the analysis. As shown in a complimentary work
[16], one can deal with implicit leakage caused by network level observations of
observable aspects of communicated messages.

The Creol concurrency model is adopted by the ABS language [14], and the
work here can be extended to ABS by considering object groups, which impose
concurrency restrictions, and futures, which may give rise to implicit informa-
tion leakage. We have presented a more high-level language without (explicit)
futures and object groups, which simplifies the formalization. We are initiating
an implementation based on a Creol interpreter in Maude. The ABS tool support
will be used for an ABS implementation.
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