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Abstract. High throughput technologies have increased the need for
automated image analysis in a wide variety of microscopy techniques.
Geometric active contour models provide a solution to automated image
segmentation by incorporating statistical information in the detection
of object boundaries. A statistical active contour may be defined by
taking into account the optimisation of an information-theoretic measure
between object and background. We focus on a product-type measure
of divergence known as Cauchy-Schwartz distance which has numerical
advantages over ratio-type measures. By using accurate shape derivation
techniques, we define a new geometric active contour model for image
segmentation combining Cauchy-Schwartz distance and Gabor energy
texture filters. We demonstrate the versatility of this approach on images
from the Brodatz dataset and phase-contrast microscopy images of cells.

Keywords: Geometric active contours : Cauchy-Schwartz distance -
Gabor energy - Texture feature segmentation

1 Introduction

Due to high throughput technology, a great influx of imaging data has become
available in biomedical research producing large datasets that need to be
processed in a reliable and unbiased way. As a result, there is an increased need
for computer automation throughout the imaging framework [1] and in par-
ticular in the extension from high throughput to assays that include dynamic
behaviour over time [2]. Existing image analysis frameworks are focused either
on pre-processing the image to remove artifacts and enhance signal-to-noise ratio
[3]; or using local intensity and texture information to delineate the cell surface
from the background [4]. The latter category is non technology-specific and cou-
pled with the ability to estimate parameters from data has the potential to unify
detection techniques [5].
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Image segmentation is the task of partitioning an image into meaningful
regions delineating objects and the background. Region-based segmentation
takes into account the statistical properties of the image for example through
density estimation techniques. Often the object regions are not Gaussian-
distributed in pixel intensity making the detection by standard image analy-
sis techniques (thresholding, edge-detection, region-based and connectivity pre-
serving techniques) extremely challenging. This is the case in phase-contrast
microscopy which is a widely used imaging technology, however images produced
have low signal-to-noise ratio and illumination artifacts (bright halo around
boundaries) caused by changes in object shape [3].

Active contour models are an unsupervised image segmentation technique
consisting in defining a dynamic contour stretching over the object boundaries
which partitions the image into distinct regions [6]. Geometric active contour
models use an embedding of the contour into a higher dimensional surface (level
set function) which is adapted to the information in the image until it con-
verges to the object boundaries [7,8]. Geometric models overcome instability
and topology problems of parametric active contours [6] and in addition enable
probabilistic characterization of regions [9].

In this study, the Cauchy-Schwartz measure [10,11] of divergence is used to
optimise image segmentation. Product-type measures such as Cauchy-Schwartz
distance and Battacharyya distance [12] have numerical advantages over ratio-
type measures including Kullback-Leibler [13] and Renyi’s entropy in the approx-
imation of region-specific distributions. By combining information theory, Gabor
energy texture and a feature selection strategy, an automated segmentation strat-
egy is described that can recover boundaries in textured images and challenging
phase-contrast microscopy examples.

2 DMaterials and Methods

Let 29 be a bounded open subset of R? and let I : 29 C R?> — R represent
an image. The partitioning of image {2y into two non-overlapping regions: the
target region (2 and the background region 2\ {2 is defined by function f: {29 C
R? — R" f(x) = [f1(x), f2(X), ..., fn(x)]T which associates any image location
x = (z,y) € R? to a vector of features f;. The dimension of the feature space is
determined by the nature of features, e.g. n=1 for grayscale intensity, n=3 for
color images or large n in the case of texture.

Features observed over the target and background regions represent random
variables independently sampled from a target distribution, p;(f(x)) and a back-
ground distribution p,(f(x)) defined as:

pi(E(x)) = ﬁ /Q K (£(x) — f(%))d% (1)
1

py(f(x)) = K(f(x) — f(x))dx

11920\ 2[| Jog\0
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where X denote uniformly distributed sampling locations from where the fea-
ture observations f(X) are collected and K (f(x)) is a Parzen (Gaussian) density
estimation kernel [14].

In the following, the use of the Cauchy-Schwartz information-theoretic mea-
sure is discussed as basis for defining a new image segmentation model. Cauchy-
Schwartz distance is a measure of divergence between two distributions. It
is part of a class of cross-entropy measures that includes Kullback-Leibler,
Battacharyya and Renyi’s entropy. The Cauchy-Schwartz distance is derived
from the Cauchy-Schwartz inequality [10]:

LITV

2 2
[alFIVI" < (0"v)? & —log ——=—=>0. (2)
[al[*[v]]

where u and v are any two vectors. Cauchy-Schwartz distance is a product-type
measure which alongside with Battacharyya distance has been shown to provide
numerical advantages over ratio-type measures such as Kullback-Leibler in the
approximation of region-specific distributions [11]. Given a partitioning of the
image, region-specific p; and p, can be optimally estimated by modifying the
partitioning in the direction of maximising Cauchy-Schwartz distance:

= —log Jgn e (£(x))py (£(x))df .
\/fR” pi(£(x))df [5. p?(f(x))df

Des (pi(£(x)), pp(£(x)))

2.1 Geometric Active Contour Model Based on Cauchy-Schwartz

The active contour partitioning of the image is represented using a level set

function:
>0,ifxe 2

B(x){ <0,if x €2\ 2. (4)
=0, if x € 902

Maximising (3) is equivalent to minimising the argument of the logarithm.
In the following, this is refered to as the Cauchy-Schwartz (CS) criterion:

S (%)), po (£())) = —dze PeECDPECONIE
’ S PRECO)E f, pR (ECx)af

Let the notations be introduced:

Gi(x, 2) = po(£(x)); Galx, 2) = / P (£(x)) df: (6)

n

()

n

Ga(x, 2) = p(E(x)); Ga(x, 2) = / P2 (£(x)) df

We define the Cauchy-Schwartz region-based geometric active contour
model as:

B G1(x, 2)G2(x, 12) .
J(P) = o VG e )G, ) df + o ds = J1(P) + J2(P) (7)
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where J1(P) is a region-based term enforcing the CS criterion (5) and Jo(®) is a
boundary-based term enforcing minimum length of the contour. The evolution
of @(f(x),t) from an initial given state &(f(x),0) = Po(f(x)) in the direction of
minimising (7) is parameterised by ¢ > 0.

We use shape derivation theory [15,16] to obtain the Euler derivative of (7). The
term J1(®) = || g k(x, 2)dfis aregion-based term with region-dependent descrip-
tor k(x, Q) = G1(x,2)Ga(x, 2)Gs(x, 2)” 1/2(;74(x, ) /2 Derivation leads to a
summation of region-based terms with region-dependent descriptors detailed in
the Appendix. Therefore, the Euler derivative of J; in the direction of v is:

A (2,v) = A D). <1 - %) Gi(x, 2) % K(£(x)) (v-n)ds + (8)

[[£20 \ £2]| Ga(x, 2)
- A G DY G, e, ) # K() (v - m) ds
121] /@9<1 Gg(xﬁ))Gz( ,02) % K(f(x)) (v n)d

where A(x, 2) = G;l/z(x, Q)Gzlm(x, £2) and * denotes convolution.

The term J2(®) is a boundary-based term with boundary-independent
descriptor, therefore d.Jy,(2,v) = — [, pdiv (IIVill) (v - n)ds. The evolution
equation becomes:

b {A(x7 ) (1 Gi1(x, 2

>) (Ga(x, 2) % K (£(x))) — (9)

o~ e G, 2)
LAY (1 GEDN o o ke (vl
|rzo\rz||< G4<x,9>)(Gl( - $2) x K(8(x))) + pd (IWIIN

2.2 Gabor Energy Texture Features

Texture features include spatial information of pixel intensities. Commonly used
in image processing is Gabor filtering which decomposes the image into sub-
bands with a preferred orientation and spatial frequency by kernel convolu-
tion. The use of Gabor energy features sets the basis for a nonlinear multi-scale
method of describing texture that resembles the way information is interpreted
in the visual cortex [17,18]. A 2D Gabor filter has the expression:

_ar?4y?ys? x!
g,\,ame,w(% y)=e 202 COS (QWX + gp)
ot = (¢ = o) cosf + (y — yo) sin (10)

yl = —(x — xg)sinf + (y — yo) cos b

where § € [0 7) is the rotation angle of the gaussian envelope and A and ¢ €
(—m 7] denote the spatial frequency and phase of the sinusoidal carrier. The
Gaussian envelope is characterised by parameters 7y, which specifies ellipticity
and o, a scaling parameter which controls the size of the Gaussian. The ratio
o/ controls the number of parallel on and off stripes that the kernel contains.
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This ratio is determined by the bandwidth b. In the following, we consider the
case of b = 1 for which o = 0.56 A. The response of a Gabor filter (10) applied
to an image is:

TX,0,7,0,p = / I(’U,, U)gk,a,'y,e,tp(x —uYy— U)dudv' (11)
0

Gabor energy represents the combined magnitude of phase-shifted responses:

exor (@ 9) = /13 0.0 (@9) 413 0.5 (@), (12)

Single Orientation Texture Features. Gabor energy feature function can be
defined by discretising A = [Anins Amin+ AN, ... ], ¥ = [Ymin, Ymin+ 47, ... ] and
0 =1[01,02,...],0p = k%, k =0, N — 1. Single orientation features are combined
into a set:

fl : QO € an fl (33, y) = [f},O(x7 y)v fi,l(l‘v y) s f’}L,N—l(x7 y)]T (13)
where f,lhk = €ex, .05 (T, Y).
Combined Orientation Texture Features. For textures without a preferred

spatial orientation, combined Gabor energy features representing the superposi-
tion of Gabor energy terms for multiple orientations are added to a set:

£: 0 e R", P (a,y) = [ (z,y), B@,y) ... £ ()] (14)

N
where fi(m,y) = Ze/\n,%,ok (7,y).
k=1

« All candidate features While N > 0 for k = {1, N} 5. Find feet = froous
fpoot = _ : ’ Terminate if
1. N _ for which
. New set F = L
[fpool,lvfpool,z fpaal,N] CS,, = min (CS,)
* Number of feature is [F'fpool,k] 6. Undat timal €S, < 0.1CS,
N > 2. Compute a, for F —> féatgreasztop ima > )
. Selected feature set F (Scott's rule) F = IF foul Orblf il
is empty . . - W) se suboptima
« Size of selected set is 3. Est|m?%e) den;‘mes 7. Remove CS, > CSy—4
u=0 Pe 'pb( ) fpool,k from fpool
4. Evaluate N=N-1
CSu(pe(F).ow(F) )
N

Else: u=u+1

Fig. 1. Feature selection strategy produces a CS optimal feature set.
2.3 Feature Selection Strategy

The number of texture features increases computational complexity. This can
be prevented by using a suitable feature selection strategy. In the following, a
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Fig. 2. Grayscale intensity segmentation using (a) Cauchy-Schwartz and (b) Kullback-
Leibler models applied to a phase-contrast microscopy image of a cell: initialisation (top
panel) is identical and evolution of the active contour is shown at intermediate (middle
panel) and final (bottom panel) iterations accompanied by corresponding target and
background distributions. Parameters u = 0.001; w = 10.
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(b)

Fig. 3. Grayscale intensity segmentation using Cauchy-Schwartz model: (a) final itera-
tion of active contour segmentation of phase-contrast microscopy images of cells (image
inserts) with narrow band shown as a shaded region; (b) target and background dis-
tributions corresponding to contours in (a). Parameters p = 0.2;w = 5.
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supervised approach is proposed to maximise the potential of each initialisation
by using the region defined by & as prior information of the densities of target
p¢ and the background p, and performing selection based on the CS criterion
(5). Given features fpo0r = [fpoo1,1(2,Y), fpoot,2(2, ), . . . ], procedure is detailed in
Fig. 1.

The first feature, fpo14,1(x,y), is chosen according to the procedure:
fser,0(z,y) = fpoo,1 (2, y) and the value of the criterion C'Sy(pt, pp) is used to eval-
uate the rest. Sequentially, features are added to a reduced feature set F = [f; ,,]
and the potential of the selected set to discriminate between p; and py is evalu-
ated by optimising C'S,, (p:(F), pp(F)). The feature selection strategy terminates
when the criterion becomes worse CSy(ps,pp) > CSu—1(pt,pp) or when it is
sufficiently minimised C'S,,(pt, pp) < 0.1CSo(pt, p)-

2.4 Numerical Implementation

The level set function @ is initialised as a signed distance function and the
pixels in the narrow-band region around the contour are updated followed by
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Fig. 4. Brodatz texture segmentation examples in images generated as fusion of two
textures: (a, b) active contours evolving from initialisation (top), intermediate (middle)
and final iteration (bottom) with corresponding estimated target and background dis-
tributions for three dominant features; (c) and (d) optimal feature sets corresponding
to (a) and (b) respectively. Parameters y = 0.2, w = 15.
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reinitialisation of the distance function to prevent numerical errors using the pro-
cedure in [19]. Density estimation was implemented using a (Parzen) Gaussian
kernel with optimal variance obtained using Scott’s rule [14] where n and m
represent number of features and pixels respectively: 0% = %Z?:l o%i0% =
O'xmﬁ.

The narrow band technique was used to reduce computational complexity
from O(n?) to O(nk) where n and k represent the size of the image and of the
narrow band region respectively [20]. Convergence was assesed from stationarity
of the contour, i.e. less than 10% of pixels in the narrow band change sign in
subsequent iterations. The geometric active contour parameters stiffness p €
[0,1] and width of the narrow band w are reported for each example.

3 Results

To demonstrate the ability of the Cauchy-Schwartz model to recover boundaries
of objects, segmentation examples using grayscale are compared with an existing
information theory-based active contour and limitations of using grayscale in
phase-contrast microscopy images is discussed. Following this, Gabor energy
texture segmentation is demonstrated on a number of Brodatz texture samples
and phase-constrast microscopy images.

3.1 Segmentation of Phase-Contrast Images Based on Grayscale
Intensity only Partially Recovers Boundaries

The CS-based geometric active contour was evaluated on images of cells acquired
with a phase-contrast microscope (Fig. 2). Boundaries of the cell could be recov-
ered in challenging examples where distributions of target and background
regions showed significant overlap (Fig.2a). We compared these results against
a Kullback-Leibler (KL) active contour described in [13]. The KL model lead to
faster convergence (Fig. 2b, 4 iterations) compared to CS (Fig. 2a, 11 iterations).
Notably, cell debris was correctly excluded in the final contour by both models.
However, by avoiding the local minimum in divergence visible in the final step of
KL segmentation (Fig.2b), the CS model recovered more of the object interior
at the cost of increased number of iterations.

When applied to a wider phase-contrast microscopy image set results
appeared mixed (Fig.3) and boundaries were only partly recovered by the CS
model (Fig.3a) and no improvements were noted using KL (data not shown).
Images with halo artifacts and the inclusion of dark and bright objects which
are characteristic of phase-contrast, appeared to increase errors in the detection
of target distributions (Fig.3b). Overall, these examples indicated that not all
microscopy images could be segmented using grayscale intensity alone. Given
that the CS criterion showed increased detection compared to KL, we further
tested the CS model by including information hidden in the texture character-
istics of target and background regions.
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3.2 Gabor Features Enable Detection of Noisy Object Boundaries
in Textured Images

To investigate the ability to recover boundaries using Gabor texture features, test
images were generated by fusing samples from the Brodatz [21] dataset (Fig.4).
The fused textures have similar mean intensity and contain noise thus resembling
properties of microscopy images. A single orientation feature space was generated
using b = 1, A = [1/15, 1/30, 1/60, 1/120, 1/240], v = [0.2, 0.4, 0.6, 0.8, 1];
this was reduced to an optimal feature set using the CS-based feature selection
strategy and the active contour was able to successfully recover the boundaries by
estimating the target and background distributions. More features are selected in
the example (Fig. 4b) and they appear more similar to each other when compared
to (Fig. 4c). This suggested that a sparse feature set may be preferable to a finely
sampled one.

3.3 Cauchy-Schwartz Model Detects Cells in Phase-Contrast
Images Using Gabor Features

The performance of the geometric active contour and feature selection strategy
were tested on real microscopy images displaying cells with bright and dark cell
interior (Figs.5 and 6). The texture of cells has no preferred orientation, there-
fore the feature space was combined from features at 8 different orientations
followed by reduction to an optimal feature set. The active contour could detect
each cell separately (Fig.5) as well as jointly (Fig.6). As expected, initial CS
level exceeded the optimal threshold (final C'S,) obtained by the feature selec-
tions strategy (Fig. 1) but consistently fell under at large iteration numbers in all
examples (Figs. 5c¢, d and 6b; dashed lines indicate optimal threshold). Bound-
aries of the dark cell (Fig. 5a) were easiest to detect as indicated by a large drop
followed by approximately linear decay in the evolution of CS criterion (Fig. 5c).
The bright cell example (Fig.5b) posed increased difficulty in detection thus
requiring larger iteration numbers compared to the dark one. In this case, the
trend of the CS criterion showed a region of local minima followed by slow expo-
nential decay (Fig. 5d). The combined bright and dark cell segmentation (Fig. 6a)
proved the most challenging with multiple local minima and requiring the most
iterations to achieve minimisation below the optimal threshold (Fig.6b). These
examples highlight that the problem of simultaneous segmentation of multiple
objects with different intensity characteristics has an unexpectedly high level of
difficulty when compared to the detection of individual objects. Nevertheless,
the proposed feature selection and CS-based segmentation strategy is flexible
enough to deal with either case and thus provides a solid basis for multiple
object detection in microscopy images.
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Fig. 5. Single cell detection using texture: (a, b) active contours evolving from initiali-
sation (top), intermediate (middle) and final (bottom) interations applied to a cell with
(a) dark and (b) bright cell interior; (c) and (d) show optimal features and criterion
minimisation corresponding to (a) and (b) respectively. Parameters p = 0.2;w = 15.
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Fig. 6. Multiple cell detection using texture shows natural splitting of the contour
to recover individual target regions: (a) active contours evolving from initialisation
(top), intermediate (middle) and final (bottom) interations applied to a phase-contrast
microscopy image of cells with bright and dark cell interior; (b) optimal feature sets
and minimisation of criterion corresponding to (a); dashed line indicates optimal values
of criterion predicted by the feature selection strategy. Parameters p = 0.2; w = 15.

4 Conclusions

The challenges of segmentation in phase-contrast microscopy images were
addressed through a strategy combining information theory and Gabor energy
features. A new image segmentation model was defined to optimise Cauchy-
Schwartz (CS) distance between a desired (target) region and the background
using a geometric active contour model. The CS model incorporates the use
of a product-type measure of divergence and shape derivation techniques con-
tributing to improved numerical accuracy. Similar to CS, segmentation based on
Battacharyya distance was shown to improve detection compared to ratio-type
measures [12]. Indeed in grayscale only segmentation, the CS model produced
better separation between target and background regions in phase-contrast
image of cells when compared to a Kullback-Leibler (KL) model [13] but at
the cost of lower convergence speed. However, these results were confined to a
subset of images exhibiting relatively smooth dark cell interior and boundaries
of cells with mixed bright and dark appearance and halo artifacts failed to be
detected by either CS or KL.
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Texture information based on Gabor energy critically improved the recovery
of boundaries of objects (either artificially generated or microscopic cells) with
various intensity distributions. By incorporating Gabor energy features into the
CS model, textured objects with geometric orientation could be recovered with
single orientation features while microscopy images of cells which have non spe-
cific orientation required combined orientation texture features. The introduction
of texture information posed the problem of increased computational complex-
ity which was solved through a CS-specific feature selection strategy to ensure
optimal segmentation.

Overall, this study introduces a unified approach to achieve active contour
segmentation based on the Cauchy-Schwartz information theoretic measure. By
the inclusion of unsupervised feature learning from training target and back-
ground datasets, this work could enable general detection of target objects with-
out prior information of intensity distribution characteristics of the image. By
extension to tracking it could address the lack of a generic platform for detec-
tion of multiple regions in biological images which is a major setback in the
automation of high throughput analysis including dynamic behaviour over time.
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of Sheffield. Authors kindly thank members of the Peter W Andrews Laboratory at
the Centre for Stem Cell Biology for providing the microscopy images of cells.

Appendix

The derivative of J; in the direction of v is computed as:

dJlT(Q,V):/ ks(xJ),v)df—/ k(x, 2)(v-n)ds (15)

a0

n

The shape derivative of k£ in the direction of v is given by:

ok ok ok ok
ks(£2,v) = pTen dG1,(£2,v) + 9G, dG2,.(£2,v) + a—Gsngr(Q,v) + a—&dGM(Q,V).
(16)
The term G1 is a region-based term with region-dependent descriptor.
. K (f(x) — f(x))
= H Ndx; H N=———r 1
Gitx. ) = [ mx. @)z #x.2) = 2D
Kll(X, .Q) :/ Lll(X, Q)df(, Lll(X, Q) =1.
Q
The Eulerian derivative of G1 is:
1
dG1,.(x,82,v) = (pe(f(x)) — K(f(x) — £(s))) (v -n) ds. (18)

121l Jaa
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Similarly, the derivative of G5 is:
1

dGQT(X, Q(] \ Q,V) = _m .

(po(£(x)) — K(f(x) — £(s))) (v - n) ds.
(19)
Note that the expression (19) has a change of sign due to the normal vector n
that changes direction w.r.t. the target and background region.
The term G3 is a function of region-based terms:

x 2
Gs(x,2,V) = [n Ha(x, Q)df;  Hy(x,0) = 32000 (20)
The shape derivative of Hs in the direction v of (20) is:
O0H3 0H3
H3,(02,v) = ———dK ——dK. 21
35(£2,v) DK, 8L + DKy, 32 (21)

where the terms K3;, K32 are region-dependent terms with region-dependent
descriptors and factorise as:

KMszéfM&mﬁ;LM&m=KW@—MM (22)

I(32(X7 .Q) Z/ LgQ(X, Q)df(, L32(X, .Q) =1.
0
The corresponding derivatives are:

dKsz1, = — | K(f(x) —f(x)) (v-n)ds (23)
o1

ngQr = 7/ (V‘l’l) ds.
082

Substituting (23) into (21), the expression for the derivative of G's becomes:
2
dGs,(x,2,v) = Tl (G3(x,2) — K(f(x) — f(%x))) (v -n)ds. (24)
on
Similarly, the derivation of the term G4 with a sign change corresponding to the
orientation of n w.r.t. the background region has the expression:

2 ~
TN o, (G100 D) = K(F0) — £))) (v- m) ds.
(25)

Substituting results (18), (19), (24), (25) into (16), the shape derivative of
the descriptor k is obtained:

dG4T(X7 2 \ ‘Qa V) =

ks(2,v) = 8QG2G;1/2G;1/2 (G, — K)(v-n)ds (26)

~ MEnan AQG1G51/2G21/2 (G2 — K) (v -m)ds

- T G1G2G52GY? (Gs — K) (v -n) ds
(o103

+ ke [ G1GaGy G (G K (v m s
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Following cancellation of duplicate terms and reordering, the final expression for
the Eulerian derivative of criterion term J; is obtained:

Ay (2,v) = - A|(|>;2,|9) /ag <1 - m)

Ga(x, Q) K (f(x) — f(x))df (v - n) ds (27)

]Rn
A(x, ) Ga(x, )
20 2] zm(l Ga(x. 2 ))
o Gi1(x, 2)K (f(x) — f(x))df (v - n) ds

where A(x, 2) = G5 /*(x,2)G;*(x, Q).
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