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Abstract. We present a data reduction scheme for efficient surface stor-
age, by introducing a coefficient–based least squares spline operator that
does not require any pointwise evaluation to approximate (in a lower
dimension spline space) a given bivariate B–spline function. In order to
define an accurate approximation of the target spline with a significant
reduction of the space dimension, this operator is subsequently combined
with the hierarchical spline framework to design an adaptive method
that exploits the capabilities of truncated hierarchical B–splines (THB–
splines). The resulting THB–spline simplification approach is validated
by several numerical tests. The target B–spline surfaces include approxi-
mations of functions whose analytical expression is available, reconstruc-
tions of geographic data and parametric surfaces.

Keywords: Data reduction · Quasi–interpolation · Hierarchical
splines · THB–splines

1 Introduction

A general data reduction scheme indicates any process that enables to store a cer-
tain set of information by (strongly) decreasing the amount of data needed for its
reliable reconstruction. For example, an image compression algorithm represents
a data reduction approach for images. A natural choice in this context relies in
considering a reference spline representation that has to be previously generated
in a suitably large spline space in order to guarantee a certain accuracy of the
approximation. The data reduction scheme can then be applied to reduce the
dimension of the spline space while preserving the quality of the approximation.
Examples that consider an initial reference spline in the univariate case may be
found in [3,17,29]. In these schemes the dimension reduction of the spline space
was obtained through simplification of the reference spline by placing/removing
the knots according to the shape of interest.

We here consider the problem of data reduction for efficient surface repre-
sentation, see e.g., [20], by assuming an initial description of the target sur-
face in standard tensor–product B–spline form. We then look for a new spline
data reduction approach for surfaces that can also allow us to deal with com-
plex shapes when extended to multi–patch B–spline descriptions. Obviously,
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when combined with a preliminary spline approximation phase, this kind of
data reduction approach can also be applied to different surface representation
formats, as for example gridded sets of space points that define geographic areas
described by scanner acquisitions. In order to design a localized data reduction
algorithm in a multivariate spline setting, different adaptive spline constructions
may be considered. We mention T–splines [22], spline spaces over T–meshes [5]
or locally refined (LR) box–partitions [7], as well as hierarchical splines [8]. In
the bivariate context shape simplification with T–splines and polynomial splines
over hierarchical T–meshes were discussed in [21] and [6], respectively. The use
of LR B–splines for large data sets approximations was recently proposed [23].

Hierarchical B–splines were introduced as one of the first generalizations of
tensor–product B–spline representations by considering a multilevel approach [8].
The idea of exploiting a multi–resolution spline scheme constitutes a powerful
framework for data fitting with local refinements [9,14] and adaptive surface
reconstruction [10,15]. The hierarchical levels are identified in terms of nested
sequences of refined areas that define the domain hierarchy. A basis of hierar-
chical spline spaces may be easily constructed by selecting basis functions from
different refinement levels according to the domain hierarchy [16]. By assuming
mild conditions on the hierarchical mesh configuration, suitable choices of hier-
archical B–spline bases span the entire space of piecewise polynomial functions
of a certain degree and smoothness that are defined on the underlying grids, see
e.g., [1,19]. A renewed interest in this kind of construction has been prompted by
the introduction of the truncated basis for hierarchical splines [12]. Truncated
hierarchical B–splines (THB–splines) slightly modify the selection mechanism
for the hierarchical basis construction to recover the partition of unity prop-
erty and reduce the influence of coarser basis functions in refined areas. Addi-
tional properties of the truncated basis have been derived by also considering a
more general hierarchical setting, not necessarily restricted to the tensor–product
B–spline model [13]. A relevant peculiarity of the truncated basis consists in facil-
itating the construction of hierarchical quasi–interpolants [25]. For example, a
bivariate hierarchical Hermite quasi–interpolation scheme based on THB–splines
was proposed in [2]. Additional results and examples within this approach were
recently discussed [24].

By exploiting the truncated basis for hierarchical splines, we propose a data
reduction approach by combining multilevel spline spaces with a coefficient–
based operator applicable to spline functions. In particular our quasi–interpolant
is based on a local least squares operator which uses only the de Boor coeffi-
cients of the target spline, and, consequently, no pointwise function evaluation
is required. Its formulation in hierarchically refined spline spaces ensures a high
level of data reduction, while simultaneously preserving the shape details of the
given spline.

The structure of the paper is as follows. The coefficient–based spline oper-
ator is introduced in Sect. 2 while the construction and properties of (trun-
cated) hierarchical B–splines are recalled in Sect. 3. Section 4 presents the THB–
spline formulation of the new coefficient–based operator and the related spline
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simplification scheme. Finally, Sect. 5 provides several examples, including data
reduction for functions whose analytical expression is available, geographic data
approximation and geometric models, and Sect. 6 concludes the paper.

2 Coefficient–Based Data Reduction Operator

Let V be the multivariate tensor–product spline space of degree d =
(d1, d2, ...,dr), r ∈ N and r ≥ 1, defined on a tensor–product mesh G, with
the associated basis of tensor–product B–splines

Bd := {BJ , J ∈ Γd},

for the multi–index set Γd.
Let us consider a spline F ∈ V in the B–spline form

F =
∑

J∈Γd

cJBJ ,

with each cJ ∈ R.
Let V̄ ⊆ V be another space of splines of degree d defined on a tensor–

product mesh Ḡ, and let
B̄d := {B̄J , J ∈ Γ̄d}

be the corresponding B–spline basis.
Since V̄ ⊆ V , we have a linear relation between the basis of the two spaces:

B̄(d) = RT B(d),

where
B(d) := [BJ ]J∈Γd

and B̄(d) := [B̄J ]J∈Γ̄d

are vectors of length |Γd| and |Γ̄d|, respectively, while R is the matrix of size
|Γd| × |Γ̄d| obtained by using the knot insertion formula to move from V̄ to V
(see, e.g., [4]). We define the operator Q : V → V̄ as follows,

Q(F ) :=
∑

J∈Γ̄d

c̄J B̄J , (1)

with each coefficient c̄J obtained by setting c̄J = dJ
J , where dJ

J is the component
of index J of the set of coefficients {dJ

K}K∈L̄J
solution of the local least squares

problem

min
dJ

K :K∈L̄J

∑

H∈LJ

⎡

⎣

⎛

⎝
∑

K∈L̄J

rH,K dJ
K

⎞

⎠ − cH

⎤

⎦
2

, (2)

with rH,K denoting the element of R in the H-th row and K-th column, and

L̄J := K ∈ Γ̄d : supp(B̄K) ∩ supp(B̄J) �= ∅,

(3)
LJ := H ∈ Γd : supp(BH) ∩ supp(B̄J) �= ∅.
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Note that, considering (2) and (3), we can state that the coefficient c̄J is the
central coefficient of a local approximation of the restriction of F to the support
of B̄J defined on the analogous restriction of V̄ .

Since V̄ ⊂ V , we are approximating a spline surface with another spline
surface belonging to a coarser space. Moreover, note that the computation of
the coefficients of Q(F ) does not require any evaluation of the target spline F
to be approximated. The next Proposition proves that Q is a projector into V̄ .

Proposition 1. For any F ∈ V̄ , Q(F ) = F .

Proof. Since F ∈ V̄ , we have

F =
∑

K∈Γ̄d

āK B̄K ,

which can also be written in the form

F =
∑

H∈Γd

cHBH ,

with
cH =

∑

K: rH,K>0

rH,K āK , H ∈ Γd.

Note that for any J ∈ Γ̄d, by the definitions of LJ and L̄J in (3), if H ∈ LJ it is

{K ∈ Γ̄d : rH,K > 0} = {K ∈ L̄J : rH,K > 0}.

Therefore, we get

cH =
∑

K∈L̄J : rH,K>0

rH,K āK =
∑

K∈L̄J

rH,K āK , H ∈ LJ .

This implies that, for any J ∈ Γ̄d, it is

∑

H∈LJ

⎡

⎣

⎛

⎝
∑

K∈L̄J

rH,K āK

⎞

⎠ − cH

⎤

⎦
2

= 0.

Since each coefficient c̄J in (1) is obtained by solving the minimum problem (2),
we must have c̄J = āJ for any J ∈ Γ̄d, and, consequently, Q(F ) = F .

3 Hierarchical Spline Spaces

This section briefly reviews (truncated) hierarchical B–spline—(T)HB–spline —
construction and quasi–interpolation in hierarchical spline spaces. For a detailed
introduction to (T)HB–splines and hierarchical quasi–interpolation, we refer to
[12,13] and [2,24,25], respectively.
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3.1 Hierarchical B–spline Bases

Let V �−1 ⊂ V � and Ω�−1 ⊇ Ω�, � = 1, . . . , M be two nested sequences of
multivariate tensor–product spline spaces and closed domains, respectively. By
starting from an initial tensor–product configuration, each spline space V � is
defined over a grid of level �, obtained through h-refinement of the grid of level
� − 1. The B–spline basis of degree d that spans the space V � is indicated as

B�
d :=

{
B�

J , J ∈ Γ �
d

}
,

for a certain multi–index set Γ �
d. We assume Ω0 = Ω and ΩM = ∅. Each Ω�

is defined as a collection of cells with respect to the tensor–product grid of
level � − 1.

At each level �, the set of B–splines B�
J whose support is completely inside

Ω� but not in successive refined domains is included in the hierarchical B–spline
(HB–spline) basis [16,28].

Definition 1. The hierarchical B–spline basis Hd(GH) of degree d with respect
to the mesh GH is defined as

Hd(GH) :=
{
B�

J ∈ B�
d : J ∈ A�

d, � = 0, ...,M − 1
}

,

where
A�

d := {J ∈ Γ �
d : suppB�

J ⊆ Ω� ∧ suppB�
J �⊆ Ω�+1} ,

is the active set of multi–indices of level �, A�
d ⊆ Γ �

d, and suppB�
J denotes the

intersection of the support of B�
J with Ω0.

In view of the linear independence of hierarchical B–splines, they form a basis
for the space SH := span Hd(GH) associated to the mesh GH.

Definition 2. Let
s =

∑

J∈Γ �+1
d

σ�+1
J B�+1

J ,

be the representation in the B–spline basis of V �+1 ⊃ V � of s ∈ V �. The trunca-
tion operators

trunc�+1 : V � → V �+1 and Trunc�+1 : V � → SH ⊆ V M−1

are defined as

trunc�+1s :=
∑

J∈Γ �+1
d : suppB�+1

J �⊆ Ω�+1

σ�+1
J B�+1

J , � = 0, . . . , M − 1,

and

Trunc�+1 := truncM−1(truncM−2(· · · (trunc�+1(s)) · · · )) , � = 0, . . . , M − 1,

respectively.
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The operators introduced in Definition 2 allow us to define an alternative
basis for the hierarchical spline space SH , known as truncated hierarchical
B–spline (THB–spline) basis [12].

Definition 3. The truncated hierarchical B–spline basis Td(GH) of degree d with
respect to the mesh GH is defined as

Td(GH) :=
{
T �

J : J ∈ A�
d, � = 0, ...,M − 1

}
, with T �

J := Trunc�+1(B�
J) .

In view of the B–spline refinement rule and the non–negativity of HB–splines,
by subtracting from coarser THB–splines the values of B–splines inserted at
subsequent hierarchical levels, the truncated basis forms a convex partition of
unity [12]. The truncation also guarantees the property of coefficient preserva-
tion: THB–splines preserve the coefficients of functions represented with respect
to one of the bases B�

d. This property is stated in [13, Theorem 12] and can
be summarized as follows. Let s|D� be the restriction of s ∈ span Td(GH) to
D� = Ω� \ Ω�+1 and consider its representation with respect to Td(GH) and B�

d,

s|D� =
M−1∑

k=0

∑

I∈Ak
d

dk
IT k

I =
∑

J∈Γ �
d

c�
JB�

J .

The coefficient d�
I of each THB–spline T �

I of level � is equal to the coefficient c�
I

of the B–spline B�
I from which T �

I is originated via truncation, namely d�
I = c�

I ,
I ∈ A�

d. In addition, THB–splines form a strongly stable basis: the constants
arising in the stability analysis of the basis do not depend on the number of
refinement levels, see [13, Theorem 19].

3.2 THB–Spline Quasi–Interpolation

The property of coefficient preservation mentioned at the end of the previous
section directly leads to the generalization of any quasi–interpolation operator
to the hierarchical setting [25]. Let f ∈ C(Ω0) and let

Q�(f) :=
∑

J∈Γ �
d

λ�
J(f)B�

J , � = 0, . . . , M − 1,

be a sequence of quasi–interpolants defined in terms of certain linear functionals
λ�

J(f). Let also the B–spline B�
J related to the truncated basis function T �

J =
Trunc�+1(B�

J ) through Definition 3, be the mother B–spline of T �
J . Thanks to the

preservation of coefficients, the hierarchical quasi–interpolant is simply defined
by associating at each THB–spline the linear functional of its mother function,
namely

QH(f) :=
M−1∑

�=0

∑

J∈A�
d

λ�
J(f)T �

J .



Data Reduction by Hierarchical Spline Spaces 29

Note that the property of reproducing polynomials is preserved by the hierar-
chical construction:

Q(p) = p ⇒ QH(p) = p, ∀p ∈ P
d,

where Pd is the space of tensor–product polynomials of degree d. While [25] intro-
duced the general framework for hierarchical quasi–interpolation based on the
truncated basis together with the related properties, the hierarchical Hermite BS
quasi–interpolation scheme was presented in [2]. THB–spline quasi–interpolation
was recently discussed also in [24].

4 THB–Spline Simplification

Given a tensor–product B–spline function, possibly obtained by approximation
of a set of gridded data or by interactive modeling and processing, our data reduc-
tion scheme produces an accurate THB–spline approximation with a strongly
reduced number of degrees of freedom. This result is obtained by locally apply-
ing to the original B–spline function the coefficient–based operator introduced in
Sect. 2 to compute the coefficient associated with each truncated basis function.
Note that, in the case of regular grids, the refinement matrices which express
the relation between the coefficients on different levels of the hierarchy and are
needed by the least–squares operator depend only on the spline degree. Conse-
quently, they can be computed once and for all in the implementation of the
method.

4.1 The Hierarchical Coefficient–Based Operator

Let GH be a hierarchical mesh with M levels, and let V 0 ⊂ · · · ⊂ V M−1 be the
sequence of associated nested tensor–product spline spaces with V M−1 ⊆ V . We
recall from the previous section that B�

d is the B–spline basis of V �, while G� is
the associated tensor-product mesh. For any F ∈ V, of the form

F =
∑

H∈Γd

cHBH , (4)

we define the hierarchical operator

QH(F ) :=
M−1∑

�=0

∑

J∈A�
d

c�
J T �

J , (5)

where each c�
J is the coefficient of the corresponding tensor–product operator of

type (1) defined in the space V � and expressed as

Q�(F ) :=
∑

J∈Γ �
d

c�
J B�

J .
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Analogously to the tensor–product case, each coefficient c�
J is obtained by solving

the local least squares problem

min
c�

K :K∈L̄�
J

∑

H∈L�
J

[( ∑

K∈L̄�
J

r�
H,Kc�

K

)
− cH

]2

, (6)

where cH are the coefficients in the tensor–product B–spline representation of F
provided by (4),

L̄�
J := K ∈ Γ �

d : supp(B�
K) ∩ supp(B�

J) �= ∅,

L�
J := H ∈ Γd : supp(BH) ∩ supp(B�

J) �= ∅,

and r�
H,K is the element in the H-th row and K-th column of the matrix R� so

that
B(d,�) = (R�)T B(d), (7)

with
B(d,�) := [B�

J ]J∈Γ �
d

and B(d)

representing the B–spline bases of V � and V , respectively. Note that, for given

0 ≤ � ≤ M − 1 and J ∈ A�
d,

only a submatrix of R� is employed for computing the solution of (6), namely

R�
J := [rH,K ]H∈L�

J , K∈L̄�
J
.

This matrix can be obtained as the Kronecker product of matrices expressing
the relation between univariate B–splines:

R�
J = R�

J,1 ⊗ R�
J,2 ⊗ · · · ⊗ R�

J,r,

where
B(d,�)

J,h = (R�
J,h)T B(d)

J,h

with B(d)
J,h and B(d,�)

J,h being the vectors containing the univariate B–splines whose
tensor–product gives the r-variate B–splines BH , H ∈ L�

J and BK , K ∈ L̄�
J ,

respectively.

Remark 1. We observe that, when we consider uniform meshes on each level and
V = V M−1, each matrix R�

J,h depends only on the degree d, and on the number

of dyadic refinements needed to pass from B(d,�)
J,h to B(d)

J,h, that is, M − 1− �. For
example, in the case of only single knots at all levels, when r = 2, d = (2, 2) and
M − 1 − � = 1, for any J , we have

R�
J,h =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3/4 1/4 0 0 0
1/4 3/4 0 0 0
0 3/4 1/4 0 0
0 1/4 3/4 0 0
0 0 3/4 1/4 0
0 0 1/4 3/4 0
0 0 0 3/4 1/4
0 0 0 1/4 3/4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, h = 1, ..., r.
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The following proposition proves that QH reproduces the polynomial space Pd.

Proposition 2. For any q ∈ Pd, QH(q) = q.

Proof. Note that, by Proposition 1 we have

Q�(q) = q for any q ∈ Pd, � = 0, ...,M − 1.

As a consequence, by applying Theorem 3 in [25], we obtain the thesis.

In addition, the hierarchical operator QH reproduces all splines of the sub-
space V 0, as it is proved in Proposition 3 below.

Proposition 3. For any F ∈ V 0, QH(F ) = F .

Proof. Let us consider c�
J in (5) determined by solving problem (6). Since F ∈

V 0 ⊆ V � ⊆ ... ⊆ V M−1 ⊆ V , we have

F =
∑

K∈Γ 0
d

a0
K B0

K =
∑

K∈Γ �
d

a�
K B�

K =
∑

H∈Γd

cHBH ,

with
cH =

∑

K: r�
H,K>0

r�
H,Ka�

K , H ∈ Γd,

where each r�
H,K is the element in the H-th row and K-th column of the matrix

R� in (7). Analogously to the proof of Proposition 1, this is enough to prove
that c�

J = a�
J . This in turn, by using the THB–spline property of coefficient

preservation [13], implies that QH(F ) = F .

It is clear that the accuracy of the hierarchical approximation QH(F ) of
F ∈ V strongly depends on the choice of the hierarchical mesh GH, and a strategy
for its automatic generation is crucial.

4.2 The Adaptive Data Reduction Scheme

Let V be a d–degree tensor–product spline space, d = (d1, d2, ..., dr) , r ∈ N and
r ≥ 1. For simplicity, we assume that V is defined on a grid GMmax−1 obtained
from a coarser grid G0 by applying Mmax − 1 successive dyadic refinements.
Consequently, the mesh G� is obtained by one dyadic refinement of the cells of
G�−1, � = 1, ...,M − 1, with M ≤ Mmax. Let

T := [TK ]K∈ΓT
d

with Γ T
d := {(�, I) : I ∈ A�

d , 0 ≤ � ≤ M − 1}

be the set of THB–splines defined by the spline hierarchy. We can then write

T = PT Bd

where the transpose of P is the matrix that expresses the linear relation between
the basis of the hierarchical spline space and the basis of V . We denote by pJ,K
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the element of P in the J-th row and K-th column. For subsequent use, we also
rewrite (5) as

QH(F ) =
∑

K∈ΓT
d

cT
K TK . (8)

The following ascending algorithm summarizes the main steps to compute
a THB–spline with M ≤ Mmax levels which approximates F ∈ V with knots
in GMmax−1 within a given tolerance ε. As previously mentioned, for simplicity,
we assume that V is a spline space whose mesh can be dyadically simplified
Mmax − 1 times.

Input:

– the set of coefficients {cJ , J ∈ Γd} defining F ∈ V with knots in GMmax−1 ;
– a dyadic coarsening G0 of GMmax−1 ;
– a maximum number of hierarchical levels M ≤ Mmax ;
– the tolerance ε > 0 .

1. initialize GH = G0 and, consequently, Γ T
d and P ;

2. compute the coefficients cT
K , K ∈ Γ T

d , of QH(F ) in (8) by solving for each of
them the local least square system in (6);

3. while ∣∣∣∣∣
∑

K: pJ,K>0

pJ,KcT
K − cJ

∣∣∣∣∣ ≤ ε ·
(

max
H∈Γd

cH − min
H∈Γd

cH

)
(9)

is not satisfied for all J ∈ Γd and the current number of levels is less than
M , repeat the following steps:
(a) for all J ∈ Γd which do not satisfy (9), mark the cells which belong to

supp(B�
I) for all K = (�, I) ∈ Γ T

d such that pJ,K > 0 ;
(b) obtain the new mesh GH by dyadically refining each marked cell belonging

to G�, � < M − 1 and update Γ T
d and P ;

(c) compute the new coefficients cT
K , K ∈ Γ T

d , of QH(F ) in (8) by solving for
each of them the local least square system in (6).

Output: THB–spline approximation QH(F ) with M ≤ Mmax levels of the form
(8) approximating F within the given tolerance ε.

In the stopping criterion, the tolerance ε is compared with the error in the
current hierarchical approximation of cJ , scaled with respect to the data, accord-
ing to (9). The right–hand side of (9) vanishes if all the coefficients cH ,H ∈ Γd,
are equal to a constant. Even if this case is not of practical interest, we may note
that it is still covered by the algorithm since the target spline is just a constant
exactly represented already in V0.

Note that, in step 3(a) of the algorithm, in order to avoid additional compu-
tations, instead of marking the cells in the support of the THB–splines associated
to the coefficients that do not satisfy the desired tolerance, we simply consider
the support of the corresponding B–splines. This is justified since the support of
a THB–spline is contained in the one of its mother function, namely the B–spline
from which the truncated basis functions is obtained by truncation.
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Remark 1. It is worth to mention that the whole algorithm can be naturally
generalized for applying the data reduction scheme to tensor–product B–spline
parametric surfaces where the coefficients are replaced by control points. Since cH

is now a vector and no more a scalar, the necessary changes consist in replacing
the square brackets in (2) and (6) and the absolute value in (9) with the euclid-
ean norm, and substituting the normalizing factor (maxH∈Γd

cH − minH∈Γd
cH)

in (9) with maxH,K∈Γd
‖cH − cK‖.

Remark 2. Note that, when M = Mmax, the algorithm always succeeds at
meeting any tolerance, at most by producing a hierarchical mesh with Mmax

levels. This is due to the fact that, at each iteration of the algorithm, if (9)
is not satisfied for a certain J ∈ Γd, all the cells belonging to the supports
of the B–splines B�

I , K = (I, �), such that pJ,K > 0 are refined. As a conse-
quence, at each iteration the level � of the indices K = (�, I) such that pJ,K > 0
increases by 1. Eventually, in the worst case we will get � = Mmax − 1 and
{K = (�, I) : pJ,K > 0} = {J}, that is, the obtained hierarchical space is locally a
tensor–product space. Therefore, cMmax−1

J = cJ , which of course implies that (9)
is satisfied for cJ .

5 Numerical Experiments

For testing the proposed hierarchical data reduction scheme, we implemented
the coefficient–based scheme in MATLAB and combined it with THB–splines
by relying on the hierarchical B–spline implementation within the MATLAB
package GeoPDEs, see [11,27]. Open knot vectors are considered for all the
examples.

Example 1. We first consider two test tensor-product B–spline surfaces, Si, i =
1, 2, shown in Fig. 1(a) and (b). Each of them was obtained with a preliminary
spline approximation of a corresponding set of 129×129 uniformly gridded func-
tional data. More precisely, the tensor–product extension of the BS Hermite QI
scheme introduced in [18] was adopted for this aim. The two discrete data sets
used to generate S1 and S2 were defined by uniformly sampling the following two
test functions,

f1(x, y) =
tanh(9y − 9x) + 1

9
, (x, y) ∈ [−1, 1]2,

f2(x, y) =
2

3 exp (10x − 3)2 + (10y + 4)2
, (x, y) ∈ [−1, 1]2.

Example 2. We applied the algorithm to a tensor–product B–spline surface S3

approximating the set of geographic data available at [26] and describing the
terrain elevation in a mountain region of the Hawaii Islands, see Fig. 1(c). The
tensor–product surface was obtained with a modified version of the BS Hermite
QI scheme (mentioned in [18]). Such variant, unlike the basic one, does not
require the values of the first and second–order mixed partial derivatives of the
approximated function on the rectangular mesh defining the spline knots.
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(a) S1 (b) S2

(c) S3 (d) S4

Fig. 1. The reference tensor–product spline surfaces Si, i = 1, 2, 3, 4. The spline break-
points are 129 uniformly spaced points in [−1 , 1] with respect to both directions.

Example 3. In this example, we applied the data reduction algorithm to the
“igloo”model S4, defined in a tensor–product B–spline space of degree (3, 3) on
a 128 × 128 uniform grid, see Fig. 1(d). In this case the reference parametric
surface is obtained through control point modification and the control points cJ

belong to R3.

In all the experiments we set M = Mmax. For each test, we report the
spline degree, the number M of levels, the tolerance ε used for generating the
hierarchical mesh and the dimension of the spaces SH and V . In addition, the
last column of the table shows the discrete approximation of the infinity norm
of the error ei

ei := QH(Si) − Si, i = 1, 2, 3, e4 := ‖QH(S4) − S4‖2,

computed by sampling the error at the vertices of the original tensor-product
grid. It is clear that the data reduction approximation error can be controlled by
setting a suitable tolerance for the marking strategy considered in the algorithm.
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Note that, for any considered test, there is a significative reduction of the number
of degrees of freedom, thanks to the local refinement capabilities of hierarchical
spline spaces.

Table 1 shows the results obtained by applying the hierarchical operator to
the four reference surfaces with different tolerance values (ε=5e-2,1e-2,5e-3).
The adaptive nature of the refinements obtained with the application of the
algorithm is evident from the hierarchical meshes generated by the THB–spline
simplification approach, see Figs. 2, 3 and 4 (right). The comparison between the
approximated surfaces shown in Figs. 2, 3 and 4 (left) and the original surfaces
Si, i = 1, . . . , 4 of Fig. 1 suggests that the shape of the data is also well repro-
duced. The corresponding contour plots are shown in Figs. 5 and 6 which confirm
the good quality of the approximations (only very minor differences between the
original and the approximated contour plot are present). Different experiments
with periodic (rather than open) knot vectors suggest that this choice leads
to more refined meshes near the boundary (and consequently more degrees of
freedom).

Table 1. Numerical results obtained by applying the hierarchical quasi-interpolation
operator QH to the tensor–product splines S1, S2, S3, S4.

S1 (d1 = d2 = 3)

M ε dim(SH) dim(V ) ‖e1‖∞
3 5e-2 361 17161 5.519e-3

4 1e-2 973 17161 2.546e-4

4 5e-3 1027 17161 2.546e-4

S2 (d1 = d2 = 3)

M ε dim(SH) dim(V ) ‖e2‖∞
4 5e-2 550 17161 9.251e-3

5 1e-2 820 17161 1.609e-3

5 5e-3 928 17161 3.456e-4

S3 (d1 = d2 = 2)

M ε dim(SH) dim(V ) ‖e3‖∞
3 5e-2 190 16900 2.125e-2

6 1e-2 2485 16900 4.733e-3

6 5e-3 5718 16900 2.504e-3

S4 (d1 = d2 = 3)

M ε dim(SH) dim(V ) ‖e4‖∞
6 5e-2 2848 17161 1.373e-2

6 1e-2 3739 17161 3.835e-3

6 5e-3 3952 17161 3.334e-4
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Fig. 2. THB–spline approximations (left) and corresponding hierarchical meshes
(right) obtained by applying QH to the tensor–product splines of Example 1 with
ε=1e-2.

Fig. 3. THB–spline approximation (left) and corresponding hierarchical mesh (right)
obtained by applying QH to the tensor–product spline of Example 2 with ε=1e-2.
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Fig. 4. THB–spline approximation (left) and corresponding hierarchical mesh (right)
obtained by applying QH to the tensor–product spline of Example 3 with ε=1e-2.

Fig. 5. Contour plots of the tensor–product splines (left) of Example 1: S1 (top) and
S2 (bottom) and of their THB–spline approximations (right) obtained with ε=1e-2.
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Fig. 6. Contour plots of the tensor–product spline of Example 2 (left) and of its THB–
spline approximation (right) obtained with ε=1e-2.

Table 2. Numerical results obtained by applying the hierarchical quasi-interpolation
operator QH to the tensor–product splines S1, S2, S3, shown in Fig. 1(a), (b) and (c).

test M d1 = d2 ε dim(SH) dim(V ) ‖ei‖∞

S1 6 3 5.0e-6 7597 17161 1.702e-7

S2 6 3 5.0e-6 3142 17161 5.157e-7

S3 6 2 5.0e-3 5718 16900 2.504e-3

In order to show that the adaptive scheme can generate approximations with
the same accuracy of the tensor–product case with a reduced number of degrees
of freedom, we also present the results in Table 2. In this case the tolerance
values were chosen of the same order of the error obtained by approximating
the original data with tensor–product B–splines. The corresponding meshes are
shown in Figs. 7 and 8.

Fig. 7. Hierarchical meshes (right) obtained by applying QH to the tensor–product
splines of Example 1 with ε=5e-6.
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Fig. 8. THB–spline approximation (left) and corresponding hierarchical mesh (right)
obtained by applying QH to the tensor–product spline of Example 2 with ε=5e-3.

6 Conclusions

In order to reduce the computational costs connected with the reconstruction of
large data sets, we introduced a data reduction operator that does not require any
pointwise functional evaluation and its THB–spline generalization. Such operator
can be applied to any initial (highly refined) standard bivariate spline, prelim-
inarily constructed by suitable classical spline approximation, or alternatively
obtained either by control point modification of an initial spline configuration,
or as the result of modeling techniques. The THB–spline simplification algo-
rithm ensures accurate spline representations with a strongly reduced number
of degrees of freedom. The algorithm can also be exploited for interactive design
and model simplification. In principle, the data reduction scheme can also be
applied to other kind of Bernstein/B–spline-type representations, assuming to
start with a target function represented in this alternative form. The analysis of
the influence of the chosen representation on the final approximation is beyond
the scope of this paper.
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