Using Data Compression for Optimizing
FPGA-Based Convolutional Neural Network
Accelerators

Yijin Guan'®), Ningyi Xu?, Chen Zhang!, Zhihang Yuan',
and Jason Cong!?

! Center for Energy-Efficient Computing and Applications, PKU, Beijing, China
guanyijin@pku.edu.cn
2 Microsoft Research Asia, Beijing, China
3 Computer Science Department, University of California, Los Angeles, USA

Abstract. Convolutional Neural Network (CNN) has been extensively
employed in research fields including multimedia recognition, computer
version, etc. Various FPGA-based accelerators for deep CNN have been
proposed to achieve high energy-efficiency. For some FPGA-based CNN
accelerators in embedded systems, such as UAVs, IoT, and wearable
devices, their overall performance is greatly bounded by the limited data
bandwidth to the on-board DRAM. In this paper, we argue that it is fea-
sible to overcome the bandwidth bottleneck using data compression tech-
niques. We propose an effective roofline model to explore design trade-
off between computation logic and data bandwidth after applying data
compression techniques to parameters of CNNs. We implement a decom-
pression module and a CNN accelerator on a single Xilinx VC707 FPGA
board with two different compression/decompression algorithms as case
studies. Under a scenario with limited data bandwidth, the peak per-
formance of our implementation can outperform designs using previous
methods by 3.2x in overall performance.

Keywords: CNN - FPGA - Compression/decompression

1 Introduction

Convolutional Neural Network (CNN) [9], a popular deep learning algorithm, has
become the most successful algorithm for visual content understanding, image
search, and classification [6,8]. In recent years, CNN has achieved great improve-
ment on both neural network architecture and accuracy, which makes CNN out-
perform conventional approaches. However, previous research has demonstrated
that general purposed processors like CPUs are not efficient to perform the
computation of CNN algorithms. As a result, various accelerators for CNN have
been proposed recently. Among these accelerators, FPGA-based CNN accelera-
tors have attracted great attention because of their high performance, low power
consumption (compared with CPUs), and flexibility [1,5,10,11,16].

© Springer International Publishing AG 2017
Y. Dou et al. (Eds.): APPT 2017, LNCS 10561, pp. 14-26, 2017.
DOI: 10.1007/978-3-319-67952-5_2

Using Data Compression for Optimizing FPGA-Based CNN Accelerators 15

Previous works on FPGA-based CNN accelerator aim at optimizing compu-
tation throughput [1,5,11] and I/O bandwidth [10] to achieve the best perfor-
mance. In [16], Zhang et al. proposed a roofline model to find the design solution
with the highest performance and lowest bandwidth requirements. The model
can help find an optimal design configuration under the constraints of compu-
tation roof and bandwidth roof, which are provided by the specific hardware
platform. More details can be found in Sect. 2.2.

Having this model, it is also easy to tell whether computation resource or I/0O
bandwidth has become the bottleneck of an FPGA-based CNN accelerator. In
fact, in most of modern embedded systems, such as UAVs, mobile phones, IoT
and wearable devices, the I/O bandwidth limitation (commonly 100-200 MB/s)
is even stricter, which further lowers the bandwidth roof and results in a decrease
on the overall performance of the CNN accelerators.

To overcome the problem of limited bandwidth, we further explore trade-
off between computation resource and data bandwidth with consideration of
compression techniques. In particular, we notice that the number of parameters
(weights and bias) in real-life CNN is usually too large to be stored on-chip (e.g.
about 60 million and 140 million of parameters for AlexNet [7] and VGG [12]
respectively), which indicates that users need to load parameters from external
storage to computation engines for CNN computation. Besides, the parameters
of CNN are pre-calculated off-line in training phase, and they remain the same
during inference phase. Taking advantage of this characteristic, we can compress
these parameters off-line in advance, and only decompress them on-line on FPGA
for CNN computation. While applied in embedded systems, CNN only performs
the inference phase in various real-life applications, so we focus on a real-time
acceleration for the inference phase of CNN.

To find the optimal design, we propose an effective roofline model. Con-
sequently, we can further improve performance and even reduce energy con-
sumption under the same bandwidth constraint. Moreover, we also provide
analysis on the design space exploration and characteristics of different com-
pression/decompression algorithms. To the best of our knowledge, this is the
first work on applying compression/decompression methods to the parameters
of CNN to improve the bandwidth bottleneck.

The main contributions of this work are summarized as follows,

— We build an effective roofline model for problem formulation and performance
analysis, which takes both CNN accelerator and decompression module into
consideration.

— We present a method to find the optimal configuration for architecture design,
with a best on-chip resource allocation between CNN accelerator and decom-
pression module using the effective roofline model.

— As case studies, we implement decompression modules using two typical com-
pression/decompression algorithms, which improve the performance of CNN
accelerator by 2.37x and 3.20x respectively, while saving energy at the same
time.

16 Y. Guan et al.

The rest of this paper is organized as follows: Sect.2 introduces CNN and
roofline model, and Sect. 3 explains our methodology for performance optimiza-
tion. Section 4 presents our hardware implementation. Experimental results and
analysis are shown in Sect. 5. Section 6 concludes this paper and discusses about
future work.

2 Background

In this section, we first introduce some basic concepts of CNN and explain our
ideas generally. Then we present the roofline model for performance analysis in
previous work.

2.1 CNN Basis

CNN is a classical supervised learning algorithm, and has achieved state-of-the-
art accuracy across a broad set of applications. Typically, CNN is composed of
two kinds of layers: convolutional layers (feature extractor) and fully connected
layers (classifier).

A typical convolutional layer is shown in Fig.1. As this figure illustrates,
several feature maps form the input of a convolutional layer. These input feature
maps are filtered by their own convolution kernels, then we can get a set of
filtered feature maps as the output. Each convolution kernel is composed of many
parameters, also called weights and bias. Deploying a CNN normally includes
two phases: training and inference. In practice, training is accomplished off-line
using a cluster of CPUs [4] or GPUs [2,14,15], and parameters are adjusted in a
backward direction to get the best accuracy with a training set. During inference
phase, the trained CNN is deployed for real-life applications, and computation
executes in a forward direction on-line. So the speed of inference is the key factor
of CNN’s overall performance, and we focus on accelerating the inference phase in
this work. It is worth noting that parameters remain unchanged during inference,
which provides us with the possibility of compressing them off-line before they
are applied to real-life applications, and only doing the decompression work
on-line.

Output Feature Maps

Backward RN Forward
(Training) / (Inference)
Z
/ g

Input Feature Maps

Fig. 1. Overview of a convolutional layer

Using Data Compression for Optimizing FPGA-Based CNN Accelerators 17

Work in [3] has demonstrated that convolutional operations will occupy over
90% of the computation time of a CNN during the inference phase, so we focus on
accelerating convolutional layers in this work, and discuss about fully connected
layers in Sect. 6.

2.2 Roofline Model

Roofline Model is first introduced in [13] to restrict system performance under
the highest attainable performance and data accessing bandwidth provided by
a specific platform. Figure 2 shows an example of roofline model.

Attainable
Performance

Bandwidth Roof Computation Roof
v

CTC Ratio

Fig. 2. Performance analysis using roofline model

As shown in Fig. 2, in roofline model, X-axis is computation to communica-
tion ratio (CTC Ratio), which indicates the number of computation operations
per I/O traffic. Y-axis is the attainable performance (AP) of a design in GOPS
(Giga operations per second). Here we denote the number of computation oper-
ations in CNN accelerator as Operations, and denote the amount of external
data access for computation as Data. So we can calculate CTC Ratio and AP
according to Eq.1. According the definitions of CT'C' Ratio and AP, we can
calculate the required bandwidth (BW,) of a possible design by Eq. 2.

Roofline model defines computation roof to represent the peak performance
that utilizes all the computation resources, and it also defines bandwidth roof,
whose slope equals to the maximum data accessing bandwidth provided by the
hardware platform (denoted by BW). On this hardware platform, the highest
performance that the accelerator can achieve is restricted by computation roof
and bandwidth roof. This can be summarized in Eq. 3.

. Operations Opereations
T =— AP=——— 1
CTC Ratio Data Cycles (1)
Data AP
B = = 2
W Cycles CTC Ratio 2)

APy = min(Computation Roof, CTC Ratio* BW) (3)

18 Y. Guan et al.

3 Methodology

3.1 Effective Roofline Model

Inspired by roofline model, we propose an effective roofline model for perfor-
mance optimization. Applying decompression module to CNN accelerator brings
some changes to the formulations in Sect. 2.2. We denote the compression ratio
as r (Eq.4). For a single decompression unit, we denote its throughput as BW,,
which equals to the amount of data that the decompression unit can output in
one second. However, a single decompression unit may not satisfy our demand for
maximized resource utilization and higher performance, so we duplicate decom-
pression unit according to the resources on chip, which offers great conciseness
and flexibility to our adjustment of resource utilization and speed of decompres-
sion. Here we denote the number of duplications as n. In fact, the data size
of input enoughignored when compared with the huge amount of parameters
to be loaded during inference phase. So the Attainable Performance and CTC
Ratio after applying a decompression module can be calculated by Eqs. 5 and 6
respectively.

_ Size of Compressed Data
~ Size of Original Data

(4)

Operations _ Operations

CTC Ratio' = = 5

ano Data’ Data * r (5)

AP — Operations B Opereations (6)
~ Cycles + Cycles of Decompression Cycles + n?%

To find the best design configuration under roofline model, we need to cal-
culate the new locations of all the design points again every time the value of n
changes. As a result, the amount of overall computation for estimation is highly
increased, which makes it more difficult to find the best design configuration. So
we propose to solve this problem in another easier and clearer way.

According to Sect. 2.2, we denote the I/O bandwidth provided by the plat-
form as BW. While applying a decompression module between storage and CNN
accelerator, the I/O bandwidth that the CNN accelerator actually obtains varies,
we denote it as BW’. Based on the definitions above, the relationship between
BW’ and BW is shown in Eqs.7 and 8. BW is determined by the specific
platform. » and BW, are determined by the compression/decompression algo-
rithms and hardware implementations respectively. n is the variant to reflect the
trade-off between resources for decompression module and resources for CNN
accelerator.

When n =0, BW = BW (7)
B
When n >0, BW' = 7WBW (8)
T+ o Bw,

With the formulations above, we present an effective roofline model to
solve the highly complex problem that the decompression module brings.

Using Data Compression for Optimizing FPGA-Based CNN Accelerators 19

Figure 3 shows an example of our effective roofline model. In effective roofline
model, we define an effective computation roof (ECR) as the highest attainable
performance of CNN accelerator with the on-chip resources that can be used for
it, and we also define an effective bandwidth roof (EBR), whose slope equals
to BW'.

Deploying a decompression module has two aspects of influence on the CNN
accelerator: On the one hand, the decompression module definitely occupies a
certain amount of resources, which may decrease the on-chip resources available
for CNN accelerator. As n increases, the resources for CNN accelerator may fur-
ther decrease, which results in a decrease on the attainable performance. This
can be reflected as a downwards movement of EC'R. On the other hand, accord-
ing to Eq. 8, BW’ will increase when n increases, which results in a anticlockwise
movement of EBR in effective roofline model. Therefore, for different choices of
values for n (ng < ny < ng), the corresponding ECRs and EBRs are shown
in Fig. 3.

As a result, the design space of the roofline model introduced in [16] is just a
subset (when n = 0) of the design space of effective roofline model. After adding
the decompression module, our effective roofline model takes computation power,
bandwidth requirements and on-chip resource allocation into consideration, so it
can explore a much larger design space and probably find a design configuration
with better overall performance.

Attainable
Performance

CTC Ratio,

Fig. 3. An example of effective roofline model

3.2 Design Space Exploration

Taking advantage of the characteristics and parameterization of CNN accelera-
tor, every possible design can be represented as a point in the effective roofline
model. All these points comprise a huge space of possible design choices, and we
propose a method to efficiently find the design with highest overall performance.

According to our effective roofline model, when n equals to an arbitrary
value, the method to find the best design configuration is similar to that in
conventional roofline model. Under the constraints of ECR and EBR, we can
use a traversal approach to find the optimal configuration for architecture design
with highest performance and lowest bandwidth requirements, and this method

20 Y. Guan et al.

has been presented in [16]. Every time n changes, ECR and EBR will change,
which means that we need to search for the best design among all the points in
all possible values of n. To simplify this procedure, we use pruning methods to
shrink the searching space.

On the one hand, when n = 0, which means we do not apply decompres-
sion module to the CNN accelerator, we have BW’ = BW. Using the method
provided in [16], we can find a point (X in Fig.4) with the best performance.
Then we add decompression module to this system to search for a point with
better overall performance. So if there exists such a point that is better than
X, this point must be located at the left side of EBR,—¢ and at the upside of
X’s attainable performance. On the other hand, when we increase n to further
improve bandwidth bottleneck, EFC' R may move downwards. Supposing ECR
equals to X’s attainable performance when n equals to a certain value (denoted
by Nmaz), then there is no need to further increase n. Above all, we need to
traverse n from 1 to n,,4z to search for the best trade-off in resource allocation.
For each value of n, we only need to search for the best design among the points
in the shaded region (shown in Fig.4) instead of the entire design space.

Attainable
Performance

n=20

0= Npax

CTC Ratio

Fig. 4. An example of design space exploration

4 Implementation

4.1 System Design

The system design is shown in Fig. 5. We divide the whole function of this system
into two parts: Compression and CNN-D (CNN accelerator with decompression
module). The arrows in Fig. 5 show the direction of parameter flow. White arrows
indicate that the parameters transferred are compressed, while black arrows
indicate that the parameters transferred are decompressed.

As Fig. 5 illustrates, Compression is mainly implemented on software. The
Compression Module is used to compress the parameters of our implemented
CNN, and Dispatcher is deployed to dispatch them into the format suitable for
parallel decompression. To emulate the bandwidth bounded scenario in embed-
ded systems, we attach a NAND Flash chip to our FPGA board, and this NAND
Flash chip works as the external storage where the parameters of CNN are stored.

Using Data Compression for Optimizing FPGA-Based CNN Accelerators 21

Compression
4 CPU FPGA h
" NAND
CNN Training » Compression E> ,) |:> NAND Flash |::>
Module Module Dispatcher Controller Flash
A J
CNN-D
FPGA \
Decompression Module
S P CNN
E: > D: Unit 2 *
NAND Controller Accelerator
Flash i
T T
H §
(Timer)

Fig. 5. Overview of system design

Our whole design of CNN-D is implemented on a single FPGA board. The
NAND Flash Controller works as a data fetcher and data dispatcher for Decom-
pression Module. It fetches parameters stored in the NAND Flash and dispatches
parameters to each Decompression Unit. The Decompression Module is com-
posed of n Decompression Units, and each Decompression Unit decompresses
the parameters transfered into it. After decompression, the decompressed para-
meters are transfered to the CNN Accelerator, where the main part of CNN
computation is performed. What is more, we use a Timer to measure the execu-
tion time of our design.

4.2 Compression/Decompression Algorithms

Applying compression/decompression modules to minimize the amount of data
to be transfered is a common approach in system design for bandwidth opti-
mization. However, there is something different for our demand on the com-
pression/decompression algorithms. Firstly, we do not care how much time and
resources it costs to compress parameters of CNN, since we compress them off-
line only once, and store them in a read-only mode. Secondly, we hope decom-
pression does not cost much time and resources considering the performance
of the whole CNN accelerator. In summary, our requirements to the compres-
sion/decompression algorithms are: high compression ratio, high decompression
speed and low resource utilization for decompression. Considering representa-
tiveness and our requirements, we choose LZ77 as an example of dictionary
based algorithms, and Huffman Encoding as an example of entropy encoding
based algorithms. Many compression/decompression algorithms used nowadays
are variants or combinations of these two algorithms.

22 Y. Guan et al.

4.3 CNN Accelerator

The implementation of CNN accelerator is generally shown in Fig.6. All the
computation of CNN are accomplished in parallel by numerous convolution units.
Several optimizations are applied to the design of convolution units, such as
deep pipelining, loop unrolling and loop tiling. For data access optimization,
we implement two data buffers for data reusing and ping-pong operations. All
these optimization strategies can be parameterized, which makes it possible to
calculate the CTC Ratio and AP of each design configuration accurately. For
the choice of optimization parameters, we refer to the best design configuration
found by our effective roofline model.

CNN Parameters / Input Data / Output Data

=

CNN Accelerator

Data
Buffer 0

Data
Buffer 1

J |

N

-

Convolution
Unit 0

XSO

Convolution
Unit 1

QSO

.

Unit m

[Convolution

XSO

S

N

2/

Fig. 6. Overview of CNN accelerator

5 Case Study

In this section, the experimental setup of our experiments is provided first. Then
we present and analyze the experimental results.

5.1 Experimental Setup

We use Vivado HLS (v2015.4) to implement our CNN accelerator and decom-
pression module. Vivado HLS is a high level synthesis design tool, which takes C
code as input and outputs IP core in Verilog HDL. For the design space explo-
ration and performance estimation, we use the pre-synthesis report of Vivado
HLS. Then the RTL synthesis and implementation are done in Vivado (v2015.4).

The hardware platform we choose is a VC707 board with a Xilinx Virtex7
485t FPGA chip on it, and its working frequency is set to be 100 MHz. The
storage device we use is SAMSUNG K9F1G08UOD NAND Flash board.

To test our effective roofline model in a real-life case, we implement a CNN
with our accelerators, VGG-19 [12], which has 16 convolutional layers. The VGG

Using Data Compression for Optimizing FPGA-Based CNN Accelerators 23

Model increases depth using an architecture with very small (3 x 3) convolution
kernels, which shows that a significant improvement on the prior-art configu-
rations can be achieved by pushing the depth to 16-19 layers. The detailed
configurations of VGG-19 can be found in [12]. The input is a 224 x 224 RGB
image, and the convolution kernel size in convolutional layers is 3 x 3, with a
sliding stride of 1.

5.2 Experimental Results

Table 1 shows the average compression ratio (r in Sect.3.1, r < 1), speed of
decompression (BW; in Sect. 3.1) and resource utilization of different decom-
pression units. From Table 1 we can see that Huffman Encoding performs about
1.30x better than LZ77 on average compression ratio. This is because that LZ77
is a dictionary-based compression algorithm, and performs better when the data
has a stronger locality. However, parameters of VGG-19 show a weak locality.
In other CNN models, the locality of parameters varies, LZ77 may perform bet-
ter. This is also the reason why we implement two different typical compression
algorithms. According to analysis in Sect. 3.1, decompression speed of a single
decompression unit is not very important for our application, since we can adjust
n for different BW’, and CNN computation is the dominating factor. As shown
in Table1, a single decompression unit does not occupy much resource. More
specifically, the main kind of resource these decompression units occupy is LUT,
and they do not use DSP at all. While computation resource (DSP) is crucial
to the performance of CNN accelerator, so this means a greater space for our
optimization.

Table 1. Decompression unit comparison

Algorithm | r BW4 DSP |BRAM |LUT |FF
LZ77 0.48 | 114.7MB/s | 0.00% |0.97% | 4.52% | 0.82%
Huffman |0.37| 90.61 MB/s|0.00% | 0.49% |1.04% | 0.16%

We implement three cases for our studies: design with no decompression
module (named as CNN), design combined with LZ77 decompression module
(named as CNN —D(LZ)) and design combined with Huffman Encoding decom-
pression module (named as CNN — D(HE)). All implementations implement
the best hardware configuration found by the method presented in Sect. 3.2.
The bandwidth of data accessing is 181.20 MB/s, which is within the typical
bandwidth range (100-200 MB/s) in real-life embedded systems.

The overall resource utilization of these three designs are shown in Table 2.
As shown in Table 1, decompression units occupy much more LUT and FF than
DSP and BRAM. When we duplicate decompression units to achieve better per-
formance, the demand for LUT and FF increases greatly. As a result, compared
with CNN in Table 2, we can observe a significant increase on the utilization of
LUT and FF in CNN — D(LZ) and CNN — D(HE).

24 Y. Guan et al.

Table 2. Overall resource utilization

Implementation | DSP BRAM |LUT FF

CNN 10.00% | 6.25% | 8.66% | 5.23%
CNN — D(LZ) | 27.14% | 17.48% | 85.36% | 32.78%
CNN — D(HE) | 40.00% | 30.10% | 89.92% | 18.39%

Table 3. Performance comparison

Number of layer | CNN CNN —-D(LZ) |CNN — D(HE)
Time (s) | GOPS | Time (s) | GOPS | Time (s) | GOPS
1 0.061 5.69 |0.031 11.19]0.031 11.19
2 1.31 5.65 |0.66 11.21 |0.65 11.38
3 0.49 7.55]0.16 23.12 | 0.16 23.12
4 0.98 7.55]0.33 2242 10.33 22.42
5 0.41 9.02 |0.16 23.12 |0.082 45.11
6,7,8 0.82 9.02 |0.33 2242 10.16 46.24
9 0.37 10.00 |0.16 23.12 | 0.12 30.83
10, 11, 12 0.73 10.14 | 0.33 22.42 10.24 30.83
13, 14, 15, 16 0.18 10.07 |0.082 22.55 | 0.061 30.21
Overall GOPS |8.66 20.49 27.69
Speedup 1.00x 2.37x 3.20x

The performance comparison is shown in Table 3. Since the configurations of
some convolutional layers in VGG-19 are the same, their results are shown in
a single row. We show the results of convolutional layers only, because convo-
lutional operations occupy most of the computation time of a CNN during the
inference phase, which has been discussed about in Sect. 2.1.

The overall performance of CNN is only 8.66 GOPS, which is pretty bad
if compared with previous designs. For example, design in [16] can achieve an
higher overall performance of 61.62 GOPS. However, it is worth noticing that
the bandwidth roof of data accessing in CNN is limited to 181.20 MB/s, which
is within the typical bandwidth range (100-200MB/s) in real-life embedded
systems, while in design of [16], the bandwidth roof is 4.5 GB/s. So the obvious
difference of overall performance proves our claim that limited bandwidth in
embedded systems becomes a strict bound that prevents CNN accelerator from
achieving a higher performance.

Compared with CN N, we can see that CNN — D(LZ) achieves 2.37x spee-
dup in overall performance, and the speedup that CNN — D(HE) achieves is
3.20x. Since the change of runtime power of our FPGA board due to changes of
resource utilization is slight enough to be ignored, we can save almost the same
ratio of energy as that of speedups.

Using Data Compression for Optimizing FPGA-Based CNN Accelerators 25

6 Conclusions and Future Work

In this paper, we propose to use data compression to further improve the overall
performance of FPGA-based CNN accelerators. We present an effective roofline
model to solve the resource trade-off between decompression module and CNN
accelerator. This effective roofline model formulates a more general scenario and
includes the design space of former CNN accelerator works. In addition, we shrink
the design space for exploration, and provides a method to find the optimal
design configuration. Finally, we implement the system on a Xilinx VC707 FPGA
board, which achieved great improvement upon implementations using previous
methods.

We are working on extension of this work in several directions. First of
all, we use LZ77 and Huffman Encoding in our case studies. Lossy compres-
sion/decompression algorithms are not taken into consideration. We expect that,
in the near future, we can come up with an accurate model to describe the
key characteristics of different compression/decompression algorithms. What is
more, this model can be combined with our effective roofline model for a better
modeling and estimation. Secondly, Artificial Neural Network (ANN) is com-
posed of fully connected layers only, which indicates more parameters to be
transfered. Though the computation pattern of ANN is a little different from
that of CNN, our proposed effective roofline model can still work with a few
modifications. We plan to analyze several real-life ANNs applied in embedded
systems, and test how much improvement we can achieve with the help of effec-
tive roofline model.

References

1. Cadambi, S., Majumdar, A., Becchi, M., Chakradhar, S., Graf, H.P.: A program-
mable parallel accelerator for learning and classification. In: Proceedings of the
19th International Conference on Parallel Architectures and Compilation Tech-
niques, pp. 273-284. ACM (2010)

2. Coates, A., Huval, B., Wang, T., Wu, D., Catanzaro, B., Andrew, N.: Deep learning
with COTS HPC systems. In: Proceedings of the 30th International Conference on
Machine Learning, pp. 1337-1345 (2013)

3. Cong, J., Xiao, B.: Minimizing computation in convolutional neural networks. In:
Wermter, S., Weber, C., Duch, W., Honkela, T., Koprinkova-Hristova, P., Magg,
S., Palm, G., Villa, A.E.P. (eds.) ICANN 2014. LNCS, vol. 8681, pp. 281-290.
Springer, Cham (2014). doi:10.1007/978-3-319-11179-7_36

4. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Senior, A.,
Tucker, P., Yang, K., Le, Q.V., et al.: Large scale distributed deep networks. In:
Advances in Neural Information Processing Systems, pp. 1223-1231 (2012)

5. Farabet, C., Poulet, C., Han, J.Y., LeCun, Y.: CNP: an FPGA-based processor
for convolutional networks. In: International Conference on Field Programmable
Logic and Applications, FPL 2009, pp. 32-37. IEEE (2009)

6. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human
action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221-231 (2013)

http://dx.doi.org/10.1007/978-3-319-11179-7_36

26

10.

11.

12.

13.

14.

15.

16.

Y. Guan et al.

Krizhevsky, A., Sutskever, 1., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097-1105 (2012)

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical
evaluation of deep architectures on problems with many factors of variation. In:
Proceedings of the 24th International Conference on Machine Learning, pp. 473—
480. ACM (2007)

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 22782324 (1998)

Peemen, M., Setio, A., Mesman, B., Corporaal, H., et al.: Memory-centric acceler-
ator design for convolutional neural networks. In: IEEE 31st International Confer-
ence on Computer Design (ICCD), pp. 13-19. IEEE (2013)

Sankaradas, M., Jakkula, V., Cadambi, S., Chakradhar, S., Durdanovic, I., Cosatto,
E., Graf, H.P.: A massively parallel coprocessor for convolutional neural networks.
In: 20th IEEE International Conference onApplication-specific Systems, Architec-
tures and Processors, ASAP 2009, pp. 53-60. IEEE (2009)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65-76 (2009)
Yadan, O., Adams, K., Taigman, Y., Ranzato, M.: Multi-GPU training of convnets.
arXiv preprint arXiv:1312.5853, p. 17 (2013)

Yu, K.: Large-scale deep learning at Baidu. In: Proceedings of the 22nd ACM Inter-
national Conference on Conference on Information and Knowledge Management,
pp. 2211-2212. ACM (2013)

Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., Cong, J.: Optimizing FPGA-based
accelerator design for deep convolutional neural networks. In: Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pp. 161-170. ACM (2015)

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1312.5853

2 Springer
http://www.springer.com/978-3-319-67951-8

Advanced Parallel Processing Technologies

12th International Symposium, APPT 2017, Santiago de
Compostela, Spain, August 29, 2017, Proceedings
Dou, ¥.; Lin, H.: 5un, G.; Wu,).; Heras, D.; Bougég, L.
(Eds.)

2017, IX, 129 p. 74 illus., Softcover

ISBM: 978-3-319-67951-8

	Using Data Compression for Optimizing FPGA-Based Convolutional Neural Network Accelerators
	1 Introduction
	2 Background
	2.1 CNN Basis
	2.2 Roofline Model

	3 Methodology
	3.1 Effective Roofline Model
	3.2 Design Space Exploration

	4 Implementation
	4.1 System Design
	4.2 Compression/Decompression Algorithms
	4.3 CNN Accelerator

	5 Case Study
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Conclusions and Future Work
	References

