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Abstract. Spatial join queries play an important role in spatial data-
base, and mostly all the distance-based join queries are based on the
range search and nearest neighbour (NN), namely range join query and
kNN join query. In this paper, we propose a new join query which is
called surrounding join query. Given two point datasets Q and P of mul-
tidimensional objects, the surrounding query retrieves for each point in
Q its all surrounding points in P. As a new spatial join query, we propose
algorithms that are able to process such query efficiently. Evaluation on
multiple real world datasets illustrate that our approach achieves high
performance.

Keywords: Spatial join - Spatial indexing - Spatial database - Nearest
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1 Introduction

The spatial join query involves two datasets ) and P retrieves the object pairs
from the Cartesian Product @ x P which satisfy a spatial predicate, From the
theoretical point of view, the spatial join is similar as join that in the traditional
database system domain. The main difference is join predicate, which can be
intersection, topological, directional or distance, rather than simply equijoin.
The intersection and distance-based join queries have been widely studied. A
typical example of an intersection join is “find all suburbs that are crossed by
Southern Link Highway (M1), Western Link (M2) and Fast Link Highway (M3)
in the city of Melbourne”. In the example, we regard highway and suburb as
spatial objects, line and polygon respectively. On the other hand, a case of
distance-based join could be “find all pairs of hotels and restaurants within 1km
apart”. Both hotel and restaurant denote spatial point.

In this paper, we only focus on the distance-based join queries, most common
join queries in this category are range join and kNN join. More specifically, the
range join is a query for each query point finds all the target points that within
the pre-specified range €. In contrast, the kNN join query retrieves k nearest
neighbours for each query points. However, both above queries have some main
problems. For range join query, the result set cardinality is difficult to control.
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If the distance is defined too small or too large, the size of result set will change
enormously in some situations. The problem of range join can be overcome by
kNN join, which make sure each point in one dataset exactly combined with its
k closest neighbours in the other dataset. However, if there is a cluster of points
near all the query points, then the kNN join result is restricted to that scope
[15]. Besides, before the query processing, we have to specify the range distance
€ for range join and value of k for kNN join.

Inspired by these limitations, we introduce a new join query, called the Sur-
rounding Join (SJ) query and propose efficient query processing techniques. This
new join query is based on the surrounding query. A surrounding query is a query
to retrieve all the nearest objects that surround the query object. Figure 1 shows
an example of surrounding query. In the figure, the blue point X denotes a user’s
position, and the black dots (A to R) are all groceries in this suburb. From the
perspective of this user, the query of surrounding groceries are the points {G,
I, J, L, K, M}. If this user picks a surrounding grocery (for example I), which
means that she doesn’t need to know the groceries (A, B, H) behind the grocery
I. In this case, A, B and H are dominated by I.

i e
g O
O o or
99 |
o % o L®‘ -%
K A < R
: @ @ ¢
sl

10 Zoo® i Prir

i
Princes Park Q
8R Edinburgh
: rarrane

oo

Fig. 1. An example of surrounding query (Color figure online)

In summary, the contributions of this paper are summarized as follows:

— We introduce surrounding join (SJ) query in spatial databases, which belongs
to the distance-based join queries and involves spatial point data type.

— To solve the SJ queries, We propose two approaches; the first one is a straight-
forward algorithm that relies on a Voronoi diagram; The second approach is
a hierarchical algorithm which prunes unnecessary nodes for obtaining the
surrounding points. Meanwhile, it has higher performance.

— We have conducted extensive experimental studies on two real datasets that
demonstrate the efficiency of our algorithms.
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2 Related Work

In geospatial domain, the nearest neighbour (NN) query is to retrieve the points
in the target dataset P that has shortest distance to a query point ¢. It has been
widely used in many different type of queries, such as k Nearest Neighbor (kKNN)
[1,6,12], Reverse k Nearest Neighbor (RKNN) [7,14,16,17] and skyline query
[2,9,13]. The existing NN algorithms always assume that the target dataset is
indexed by an R-tree. In the R-tree index, the data point is completely and prop-
erly enclosed by a minimum bounding rectangle (MBR). In [11], Roussopoulos
et al. proposed a algorithm to find the nearest neighbour object to a point, which
is called branch and bound R-tree traversal. The metrics MINDIST denotes the
minimum distance of point p; to ¢, p; € P. The algorithm access the R-tree
in a depth first (DF) manner. Starting from root node, and the entry with the
smallest MINDIST is accessed first. The process is repeated recursively until the
leaf node is visited where a potential NN is found. An optimal NN algorithm
has been introduced in [10]. Consider query point ¢ is center point and radius
equals to the distance from ¢ to its NN, then a query circle is created. In this
case, the algorithm only traverses nodes whose MBR intersect with query circle.

The Voronoi diagram (VD) of a given set G of k points {g1, g2,....gm} in
a Euclidean plane partitions the space R? into k regions. Each region contains
a point g; (g; € G) that is regard as generator point. The Euclidean distance
form any other point in its region to g; is smaller than to any other generator.
Two generator points shares a Voronoi edge and three generator points form a
Voronoi vertex. Existing algorithms for generating VD can be briefly divided
into tree categories. The first category of algorithms are incremental algorithms,
which create the VD by inserting a point at a time [5]. The second are divide and
conquer algorithms. The set of points is divided into multiple parts, and VD of
each part constructed recursively [19] The last category of algorithms compute
VD by implementing the sweepline technique [4].

3 Problem Definition

The surrounding join (SJ) query is defined as below:

Definition 1 (SJ Queries). Given a set Q of m query points q1, qa,...,qm and
a set P of n target points p1, p2,...,0n, a SJ query Q X P returns for each query
5J

point ¢; € Q, a sub-set P C P. In terms of the sub-set P!, Vp;! € P/ to the query
point q; has the shortest Euclidean distance in a particular direction. Meanwhile,
Vp;! € P is not dominated by the other points in P/.

For a surrounding join query, we are going to find all the nearest target points
that just surround each query point. As depicted in Fig.2, three query points
are respectively connected to its surrounding points.
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Fig. 2. Surrounding join

4 A Sketch-First Approach

Inspired by the Voronoi Diagram (VD), we can instantly get an idea that all
the surrounding target points of each query point look like the adjacent vertexes
in the VD [18]. Towards addressing this idea, a possible solution could be like
this: Firstly, create a VD based on all the query and target points, and then for
each query point ¢; retrieves all the adjacent vertexes which surround this query
point. Here, we assume that the adjacent vertexes are same as the surrounding
points, which are what we need for the join query. To creating a VD, we apply
the Fortune’s sweep line algorithm [4], which guarantees the O(nlogn) worst-
case running time and uses O(n) space. However, there are some limitations
of this straightforward approach: (i) the data from two datasets need to be
merged first and then sorted as the input of the algorithm. If two datasets are
very big, which contains millions of spatial points; The sorting phase will take
a substantial amount of computing resources and very inefficient. (i4) When we
add, update, delete points in any dataset, the VD will be changed accordingly.
It means that we have to create a new VD for the join queries.

Figure3 depicts an example of the VD processing. The target points are
denoted as A, B, C..., H. For simplicity and clarity, we only specify one query
point P that is represented as red square. Obviously, the surrounding points of
point P should be all adjacent vertexes, namely points {D, FE, F, G, H}. In
Fig. 3, we observe that each of these green points share a VD edge with query
point P.

Fig. 3. VD approach (Color figure online)
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5 Owur Proposed Approach

In this section, we present our approach for the surrounding join queries com-
putation, which is mainly composed of two parts: Filter and Refinement. More
specifically, in Filter phase, we implement the global Branch and Bound skyline
(GBBS) to prune all dominated points in target dataset. GBBS is an enhanced
customization of the original Branch and Bound Skyline BBS algorithm [8].
Then, based on the skyline points from phase 1, a VD is created. The pur-
pose the VD here is to help us retrieve all the adjacent points which surround
the query point. We start by introducing the skyline and its variation global-
skyline, and then we continue with a description of algorithms in Filter phase
and Refinement phase.

5.1 Skyline

Give a set T' of d-dimensional points, the original skyline operation returns all
points in T' are not dominated by any other point. More specifically, assume a
point ¢; is dominated by another point ¢;, the condition is that coordinate of ¢;
on any axis is not greater than the corresponding coordinate of ¢;, and strictly
smaller in at least one axis. Informally, this implies that point ¢; is preferable to
t; based on any real scenario. Figure 4(a) shows an example of original skyline in
a two-dimensional space. Three solid dots A, B, C are skyline points which are
dominating all the other points. If we refer to x and y axis to distance and price
attribute, retroactively, and assume all the dots denote different restaurants. For
instance, because point B dominates the point F', we can say restaurant B is
better than restaurant F'. The reason is that restaurant B is cheaper and closer
than restaurant F. In short, the skyline of a multi-dimensional dataset encloses
the best points according to any preference function that is monotone in each
dimension [3].
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Fig. 4. Skyline

Original skyline considers the static attribute values of each data point in
the dimensional space, and only examines one direction. Meanwhile, the query
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point is not involved into the operation. Since our aim is surrounding join, which
means we need to consider all the directions rather than one direction. Besides,
both query and target points should be taken into account. Accordingly, we
apply global-skyline to solve our problem. As a variations of original skyline,
global-skyline concerns about the potential targets points for each a query point,
and returns all the points that are not globally dominated by other points. In
other words, the global-skyline considers the directions of the processing, and the
minimization of the coordinate distances between a query point and the target
point is taken into account.

Figure 4(b) illustrates the global-skyline of query point U contains six points,
H, O, M, G, I, E, which dominates the other points on all directions. Notice
that these dominating points surround the query point U, which means no other
target point is better than one of them with regard to U. Actually, these domi-
nating points are the initial result of the surrounding join query. In the following
section, we present the algorithm to generate these global-skyline points.

5.2 Filter Phase: GBBS Process

Same as NN and BBS, the GBBS join algorithm is also based on the nearest
neighbour [11] search. Although all of these algorithms could be implemented
by using data partition method, in this paper we use R-tree as index for tar-
get dataset due to its simplicity and popularity in spatial area. The set of 2-
dimensional data points are used in Fig.3, which is organized in the R-tree of
Fig. 5.
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Fig. 5. R-tree

For the query processing, we take point P as the query point to describe the
detail of the algorithm. GBBS starts from the root node of the R-tree and inserts
all its entries (R, Ra, R3) in a empty heap. The element in the heap is sorted
by the Euclidean distance from point P as ascending order. Then, the entry
with the minimum distance Rj is expanded. This expansion prunes R3 from the
heap and add its children (F, G, H). Currently, the elements in the heap are
(R2, Ry, F,G, H). Then, the entry Ry with minimum distance is expanded, and
insert its children (E, B, D), in which the first nearest data point E appears.
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Algorithm 1. GBBS Join Algorithm

Input: query points @, R-tree R of all target points
Output: S. list of target points
1 initialization: ¢ « {}, S « {}, insert all entries of R in H,
2 while H.size() # 0 do

3 e « poll first element of H;
4 if e is not leaf then // MBR, intermediate node
5 for each child e; of e do
6 if e; is not dominate by any item in S then
7 ‘ insert e; to H;
8 end
9 end
10 else if e is leaf then // leaf node
11 for each child e; of e do
12 if e; is not dominate by any item in S then
13 ‘ insert e; to H;
14 end
15 end
16 else
17 insert e; to S;
18 end
19 end

20 Return result list S

Point E belongs to the global skyline and is added to result list S. After we
moved F from the heap to S. The first element in the heap is R1, which still is
an intermediate node, not the real data node. GBBS proceeds with the R1 and
inserts its children (A, C'). The heap now becomes (G, B, F, D, C, H, A), and
S = {E}. The algorithm processes in the same way until the heap becomes empty
thus all global skyline points are added in the result list S. The join result of
P in phase 1 is a list {E, F, G, H, A}. The join operation between the other
two query point U, @ and target points will be processed as the same manner,
and the result about U, @ are the list {B, E, F, G, H, D} and {A, F, G, H},
respectively. The pseudo-code of GBBS is shown in Algorithm 1.

5.3 Refinement Phase: VD Process

In this phase, we consider the join result from step 1 is candidate result which
needs further process. Therefore, we create VD based on the query point and
skyline points which come from step 1. This means, as soon as we find the skyline
S of query point g, we check if the point ¢ in S is the adjacent of the ¢. If this
is the case, we add this ¢ to the final join result. Otherwise, we can safely prune
point ¢t. Note that the number of target points is much smaller than the number
of the original dataset and consequently, the VD can be created much faster. For
generating VD, we still use Fortune’s sweep line algorithm [4].
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Fig. 6. Candidate result in VD

In the following discussion, we continue to use query point P to describe the
detail of the refinement algorithm. So for, we have already got the skyline points
of Pis alist {E, F, G, H, A}. Therefore, we merge p and five skyline points
together and create a VD. The VD is shown in the Fig.6(a). Next, we retrieve
the points around the cell of P. If a point share a same edge with P, then we
add this point to reset list. For example, each of point F, F'; G and H shares
a VD edge with P, we can say the surrounding join result of P is the list of
target points {E, F, G, H}. Note that, the point A is pruned in this phase. The
reason is obvious, because A is not the adjacent of P. In Fig.6(b), We can see
there is an edge between P and A. For the other query points, the same process
can be followed to get the join result. The pseudo-code of refinement is shown
in Algorithm 2.

Algorithm 2. Refinement Algorithm
Input: query points @), Skyline points S
Output: Result set R
initialization: Merger @ and Skyline points, generate V' D;
for each edge e of VD.edges do
if e.left is equal to @ then
‘ insert e.right into R;
else if e.right equals Q@ then
‘ insert e.left into R;

end
Return result set R

0w N O A W N

At this point, we get the join result of query points U, P, () and target points
A, B,C, D, E, F,G, H. For Point P, if implement sketch-first approach, which
is a pure VD approach, then we get the join result P — {D, E, F, G, H}.
The detail is shown in Sect. 4, Fig. 3. In contrast, in our improved approach, the
join result of P is the {E, F, G, H}. If we compare these two lists, we can find
that the first approach contains extra point D. Consider this case based on the
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perspective of the global-Skyline; we can see D is dominated by E. Note that,
FE is a surrounding point of P. Since there are no other existing approaches to
answer the surrounding join query, and we are the first to propose these two
possible solutions. Therefore, if we only consider these approaches, the second
approach is more accurate than sketch-first approach.

6 Experiments

6.1 Experimental Setup

According to our literature research, in addition to our two approaches, there
are no prior methods to process surrounding join queries. Therefore, we compare
two proposed algorithms with each other to evaluate their performance. We
refer to our sketch-first approach, improved approach as the VDS and SVDS in
the following evaluation report, respectively. The experiments are performed on
the real datasets which are road network of San Francisco and California. Both
datasets are retrieved from the website!. For the input data, we randomly obtain
2000 points and set them as query points. Then, get rid of those 2000 points, we
randomly generate five target datasets which contain 2000, 5000, 8000, 11000
and 14000 points, respectively. The experiments are repeated 100 times, and
the average value is reported. All algorithms were implemented in JAVA and
experiments were conducted on a Linux PC with 16 Intel Xeon E312xx 2 GHz
CPUs and 64 GB main memory.

6.2 Experimental Results

In this section, we will evaluate two approaches of surrounding join query from
four different perspectives, namely index construction, a diverse number of target
points, a diverse number of query points and the detail of the second approach.

Evaluation on Index Construction: In the first approach VDS, we create a
Voronoi Diagram first, then conduct the join operation on this VD. We assume
the VD that stored in the main memory is a kind of index. Besides, The sec-
ond approach SVDS is based on the R-Tree. Therefore, we compare the time
and space consumption of the index construction of two approaches. Figure 7(a)
illustrates the runtime of two index construction on same datasets. We specify
the number of query point equals to 2000 and gradually increase the number
of target points. The index creation time of SVDS is slighter faster than VDS.
However, the VD-index need more memory space to store index as shown in
Fig. 7(b). Specifically, the size of VD-index is about seven times that of SVDS-
index, which dues to that VD-index involves both query and target datasets,
and the structure is not good as R-Tree.

Evaluation on the Varied Number of Query and Target Points: We
evaluate the overall performance of VDS and SVDS from two perspectives,

! http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm.
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CPU cost and average I/O cost. Figure 8(a) shows the CPU cost and Fig. 8(b)
shows the I/O cost of each method for increasing the number of the target
point. The number of query point is specified as 2000. When the number of
target point increases, the CPU and I/O cost of both two approaches increase
correspondingly. However, with the increment of the number of target points,
the cost of VDS rises rapidly because it has to access all the points. On the other
hand, we set target point equals to 2000 and increase the number of the query
point. For this case, Fig.8(c) and (d) show the processing time and I/O cost,
respectively. The experimental results still indicate that SVDS is more efficient
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Fig. 9. Performance comparison on two phases of SVDS

than VDS. The main reason behind this is SVDS prunes all the dominated points
in the filter phase. Nevertheless, VDS always access all the points.

Evaluation of SVDS: Based on the above evaluation, we understand the per-
formance of SVDS is much better than VDS. Evaluating the filter and refinement
phase in SVDS is necessary. In Fig.9(a), we observe that the running time of
filter phase increases gradually with the increase of the number of the target
point. In contrast, the refinement phase remains almost constant during the
whole experiment. The CPU cost of two phases is displayed in Fig. 9(b), which
roughly illustrates the similar characteristics as Fig. 9(a). The reason is obvious.
The candidate join result as the input for refinement phase which comes from
filter phase is much smaller than the original size of target points.

7 Conclusion

In this paper, we introduced a new type of query, namely Surrounding Join Query
that enables for each query point to identify the surrounding target points. It
enriches the semantics of the conventional distance-based spatial join query. To
efficiently process a Surrounding Join Query, we proposed two approaches. The
first one, VDS, relies on the Voronoi Diagram. In contrast, the second approach,
SVDS that combines the skyline and Voronoi Diagram to answer the query. Our
experiments also illustrate that our algorithm has the capability to process the
query efficiently. In the future, we are going to implement the surrounding for
range join query and other spatial data types.
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